/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CpuOperationUtils.h" #include "Operations.h" #include <cfloat> #include <cmath> #include "Tracing.h" #include "tensorflow/lite/kernels/internal/common.h" namespace android { namespace nn { #define ANDROID_NN_GROUPED_CONV_PARAMETERS \ uint32_t numBatches = getSizeOfDimension(inputShape, 0); \ uint32_t inputHeight = getSizeOfDimension(inputShape, 1); \ uint32_t inputWidth = getSizeOfDimension(inputShape, 2); \ uint32_t inputDepth = getSizeOfDimension(inputShape, 3); \ uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \ uint32_t filterWidth = getSizeOfDimension(filterShape, 2); \ uint32_t filterDepth = getSizeOfDimension(filterShape, 3); \ uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \ uint32_t outputWidth = getSizeOfDimension(outputShape, 2); \ uint32_t outputDepth = getSizeOfDimension(outputShape, 3); \ uint32_t outputGroupDepth = outputDepth / numGroups; bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData, const Shape& filterShape, const float* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, int32_t activation, float* outputData, const Shape& outputShape) { NNTRACE_TRANS("groupConvFloat32"); ANDROID_NN_GROUPED_CONV_PARAMETERS float output_activation_min = 0.0f, output_activation_max = 0.0f; CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); const float* inputBase = inputData; float* outPtr = outputData; for (uint32_t b = 0; b < numBatches; b++) { for (uint32_t h = 0; h < outputHeight; h++) { for (uint32_t w = 0; w < outputWidth; w++) { const float* filterBase = filterData; for (uint32_t g = 0; g < numGroups; g++) { for (uint32_t d = 0; d < outputGroupDepth; d++) { int32_t wInputOrigin = static_cast<int32_t>(w) * stride_width - padding_left; int32_t hInputOrigin = static_cast<int32_t>(h) * stride_height - padding_top; float sum = 0.0f; for (uint32_t i = 0; i < filterHeight; i++) { for (uint32_t j = 0; j < filterWidth; j++) { for (uint32_t k = 0; k < filterDepth; k++) { int32_t hInput = hInputOrigin + static_cast<int32_t>(i); int32_t wInput = wInputOrigin + static_cast<int32_t>(j); uint32_t dInput = filterDepth * g + k; if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { uint32_t filterIndex = i * filterWidth * filterDepth + j * filterDepth + k; uint32_t inputIndex = hInput * inputWidth * inputDepth + wInput * inputDepth + dInput; sum += filterBase[filterIndex] * inputBase[inputIndex]; } } } } sum += biasData[g * outputGroupDepth + d]; sum = std::max(std::min(sum, output_activation_max), output_activation_min); outPtr[d] = sum; filterBase += filterHeight * filterWidth * filterDepth; } outPtr += outputGroupDepth; } } } inputBase += inputHeight * inputWidth * inputDepth; } return true; } bool groupedConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData, const Shape& filterShape, const int32_t* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, int32_t activation, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("groupConvQuant8"); ANDROID_NN_GROUPED_CONV_PARAMETERS int32_t inputOffset = -inputShape.offset; int32_t filterOffset = -filterShape.offset; int32_t outputOffset = outputShape.offset; double realMultiplier = 0.0; int32_t outputMultiplier = 0; int32_t outputShift = 0; NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, filterShape, biasShape, outputShape, &realMultiplier)); int exponent; NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent)); outputShift = -exponent; int32_t output_activation_min = 0, output_activation_max = 0; CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, &output_activation_max); const uint8_t* inputBase = inputData; uint8_t* outPtr = outputData; for (uint32_t b = 0; b < numBatches; b++) { for (uint32_t h = 0; h < outputHeight; h++) { for (uint32_t w = 0; w < outputWidth; w++) { const uint8_t* filterBase = filterData; for (uint32_t g = 0; g < numGroups; g++) { for (uint32_t d = 0; d < outputGroupDepth; d++) { int32_t wInputOrigin = static_cast<int32_t>(w) * stride_width - padding_left; int32_t hInputOrigin = static_cast<int32_t>(h) * stride_height - padding_top; int32_t sum = 0.0f; for (uint32_t i = 0; i < filterHeight; i++) { for (uint32_t j = 0; j < filterWidth; j++) { for (uint32_t k = 0; k < filterDepth; k++) { int32_t hInput = hInputOrigin + static_cast<int32_t>(i); int32_t wInput = wInputOrigin + static_cast<int32_t>(j); uint32_t dInput = filterDepth * g + k; if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { uint32_t filterIndex = i * filterWidth * filterDepth + j * filterDepth + k; uint32_t inputIndex = hInput * inputWidth * inputDepth + wInput * inputDepth + dInput; sum += (static_cast<int32_t>(filterBase[filterIndex]) + filterOffset) * (static_cast<int32_t>(inputBase[inputIndex]) + inputOffset); } } } } sum += biasData[g * outputGroupDepth + d]; sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier, -outputShift); sum += outputOffset; sum = std::max(std::min(sum, output_activation_max), output_activation_min); outPtr[d] = static_cast<uint8_t>(sum); filterBase += filterHeight * filterWidth * filterDepth; } outPtr += outputGroupDepth; } } } inputBase += inputHeight * inputWidth * inputDepth; } return true; } bool groupedConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape, const int8_t* filterData, const Shape& filterShape, const float* filterScales, const int32_t* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, int32_t activation, uint8_t* outputData, const Shape& outputShape) { NNTRACE_TRANS("groupConvQuant8"); ANDROID_NN_GROUPED_CONV_PARAMETERS int32_t inputOffset = -inputShape.offset; int32_t outputOffset = outputShape.offset; auto realMultiplier = std::vector<double>(outputDepth, .0f); auto outputMultiplier = std::vector<int32_t>(outputDepth, 0); auto outputShift = std::vector<int32_t>(outputDepth, 0); for (int i = 0; i < outputDepth; ++i) { Shape filterChannelShape = filterShape; filterChannelShape.scale = filterScales[i]; Shape biasChannelShape = biasShape; biasChannelShape.scale = filterScales[i] * inputShape.scale; NN_RET_CHECK(GetQuantizedConvolutionMultipler( inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i])); int exponent; NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent)); outputShift[i] = -exponent; } int32_t output_activation_min = 0, output_activation_max = 0; CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, &output_activation_max); const uint8_t* inputBase = inputData; uint8_t* outPtr = outputData; for (uint32_t b = 0; b < numBatches; b++) { for (uint32_t h = 0; h < outputHeight; h++) { for (uint32_t w = 0; w < outputWidth; w++) { const int8_t* filterBase = filterData; for (uint32_t g = 0; g < numGroups; g++) { for (uint32_t d = 0; d < outputGroupDepth; d++) { int32_t wInputOrigin = static_cast<int32_t>(w) * stride_width - padding_left; int32_t hInputOrigin = static_cast<int32_t>(h) * stride_height - padding_top; int32_t sum = 0.0f; for (uint32_t i = 0; i < filterHeight; i++) { for (uint32_t j = 0; j < filterWidth; j++) { for (uint32_t k = 0; k < filterDepth; k++) { int32_t hInput = hInputOrigin + static_cast<int32_t>(i); int32_t wInput = wInputOrigin + static_cast<int32_t>(j); uint32_t dInput = filterDepth * g + k; if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) && wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) { uint32_t filterIndex = i * filterWidth * filterDepth + j * filterDepth + k; uint32_t inputIndex = hInput * inputWidth * inputDepth + wInput * inputDepth + dInput; sum += (static_cast<int32_t>(filterBase[filterIndex])) * (static_cast<int32_t>(inputBase[inputIndex]) + inputOffset); } } } } int channelIndex = g * outputGroupDepth + d; sum += biasData[channelIndex]; sum = tflite::MultiplyByQuantizedMultiplier( sum, outputMultiplier[channelIndex], -outputShift[channelIndex]); sum += outputOffset; sum = std::max(std::min(sum, output_activation_max), output_activation_min); outPtr[d] = static_cast<uint8_t>(sum); filterBase += filterHeight * filterWidth * filterDepth; } outPtr += outputGroupDepth; } } } inputBase += inputHeight * inputWidth * inputDepth; } return true; } bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape, const _Float16* filterData, const Shape& filterShape, const _Float16* biasData, const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top, int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups, int32_t activation, _Float16* outputData, const Shape& outputShape) { NNTRACE_TRANS("groupConvFloat16"); std::vector<float> inputData_float32(getNumberOfElements(inputShape)); std::vector<float> filterData_float32(getNumberOfElements(filterShape)); std::vector<float> biasData_float32(getNumberOfElements(biasShape)); std::vector<float> outputData_float32(getNumberOfElements(outputShape)); convertFloat16ToFloat32(inputData, &inputData_float32); convertFloat16ToFloat32(filterData, &filterData_float32); convertFloat16ToFloat32(biasData, &biasData_float32); groupedConvFloat32(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape, biasData_float32.data(), biasShape, padding_left, padding_right, padding_top, padding_bottom, stride_width, stride_height, numGroups, activation, outputData_float32.data(), outputShape); convertFloat32ToFloat16(outputData_float32, outputData); return true; } #undef ANDROID_NN_GROUPED_CONV_PARAMETERS } // namespace nn } // namespace android