/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "BidirectionalSequenceLSTM.h" #include "CpuExecutor.h" #include "CpuOperationUtils.h" #include "HalInterfaces.h" #include "OperationsUtils.h" #include "Tracing.h" namespace android { namespace nn { namespace { template <typename T> inline T* GetBuffer(RunTimeOperandInfo* operand) { return reinterpret_cast<T*>(operand->buffer); } template <typename T> inline const T* GetBuffer(const RunTimeOperandInfo* operand) { return reinterpret_cast<const T*>(operand->buffer); } template <typename T> inline const T* GetOptionalBuffer(const RunTimeOperandInfo* operand) { return !IsNullInput(operand) ? reinterpret_cast<const T*>(operand->buffer) : nullptr; } } // anonymous namespace BidirectionalSequenceLSTM::BidirectionalSequenceLSTM(const Operation& operation, std::vector<RunTimeOperandInfo>& operands) { input_ = GetInput(operation, operands, kInputTensor); fw_input_to_input_weights_ = GetInput(operation, operands, kFwInputToInputWeightsTensor); // optional fw_input_to_forget_weights_ = GetInput(operation, operands, kFwInputToForgetWeightsTensor); fw_input_to_cell_weights_ = GetInput(operation, operands, kFwInputToCellWeightsTensor); fw_input_to_output_weights_ = GetInput(operation, operands, kFwInputToOutputWeightsTensor); fw_recurrent_to_input_weights_ = GetInput(operation, operands, kFwRecurrentToInputWeightsTensor); // optional fw_recurrent_to_forget_weights_ = GetInput(operation, operands, kFwRecurrentToForgetWeightsTensor); fw_recurrent_to_cell_weights_ = GetInput(operation, operands, kFwRecurrentToCellWeightsTensor); fw_recurrent_to_output_weights_ = GetInput(operation, operands, kFwRecurrentToOutputWeightsTensor); fw_cell_to_input_weights_ = GetInput(operation, operands, kFwCellToInputWeightsTensor); // optional fw_cell_to_forget_weights_ = GetInput(operation, operands, kFwCellToForgetWeightsTensor); // optional fw_cell_to_output_weights_ = GetInput(operation, operands, kFwCellToOutputWeightsTensor); // optional fw_input_gate_bias_ = GetInput(operation, operands, kFwInputGateBiasTensor); fw_forget_gate_bias_ = GetInput(operation, operands, kFwForgetGateBiasTensor); fw_cell_bias_ = GetInput(operation, operands, kFwCellGateBiasTensor); fw_output_gate_bias_ = GetInput(operation, operands, kFwOutputGateBiasTensor); fw_projection_weights_ = GetInput(operation, operands, kFwProjectionWeightsTensor); // optional fw_projection_bias_ = GetInput(operation, operands, kFwProjectionBiasTensor); // optional fw_activation_state_ = GetInput(operation, operands, kFwInputActivationStateTensor); fw_cell_state_ = GetInput(operation, operands, kFwInputCellStateTensor); bw_input_to_input_weights_ = GetInput(operation, operands, kBwInputToInputWeightsTensor); // optional bw_input_to_forget_weights_ = GetInput(operation, operands, kBwInputToForgetWeightsTensor); bw_input_to_cell_weights_ = GetInput(operation, operands, kBwInputToCellWeightsTensor); bw_input_to_output_weights_ = GetInput(operation, operands, kBwInputToOutputWeightsTensor); bw_recurrent_to_input_weights_ = GetInput(operation, operands, kBwRecurrentToInputWeightsTensor); // optional bw_recurrent_to_forget_weights_ = GetInput(operation, operands, kBwRecurrentToForgetWeightsTensor); bw_recurrent_to_cell_weights_ = GetInput(operation, operands, kBwRecurrentToCellWeightsTensor); bw_recurrent_to_output_weights_ = GetInput(operation, operands, kBwRecurrentToOutputWeightsTensor); bw_cell_to_input_weights_ = GetInput(operation, operands, kBwCellToInputWeightsTensor); // optional bw_cell_to_forget_weights_ = GetInput(operation, operands, kBwCellToForgetWeightsTensor); // optional bw_cell_to_output_weights_ = GetInput(operation, operands, kBwCellToOutputWeightsTensor); // optional bw_input_gate_bias_ = GetInput(operation, operands, kBwInputGateBiasTensor); bw_forget_gate_bias_ = GetInput(operation, operands, kBwForgetGateBiasTensor); bw_cell_bias_ = GetInput(operation, operands, kBwCellGateBiasTensor); bw_output_gate_bias_ = GetInput(operation, operands, kBwOutputGateBiasTensor); bw_projection_weights_ = GetInput(operation, operands, kBwProjectionWeightsTensor); // optional bw_projection_bias_ = GetInput(operation, operands, kBwProjectionBiasTensor); // optional bw_activation_state_ = GetInput(operation, operands, kBwInputActivationStateTensor); bw_cell_state_ = GetInput(operation, operands, kBwInputCellStateTensor); aux_input_ = GetInput(operation, operands, kAuxInputTensor); fw_aux_input_to_input_weights_ = GetInput(operation, operands, kFwAuxInputToInputWeightsTensor); fw_aux_input_to_forget_weights_ = GetInput(operation, operands, kFwAuxInputToForgetWeightsTensor); fw_aux_input_to_cell_weights_ = GetInput(operation, operands, kFwAuxInputToCellWeightsTensor); fw_aux_input_to_output_weights_ = GetInput(operation, operands, kFwAuxInputToOutputWeightsTensor); bw_aux_input_to_input_weights_ = GetInput(operation, operands, kBwAuxInputToInputWeightsTensor); bw_aux_input_to_forget_weights_ = GetInput(operation, operands, kBwAuxInputToForgetWeightsTensor); bw_aux_input_to_cell_weights_ = GetInput(operation, operands, kBwAuxInputToCellWeightsTensor); bw_aux_input_to_output_weights_ = GetInput(operation, operands, kBwAuxInputToOutputWeightsTensor); fw_input_layer_norm_weights_ = GetInput(operation, operands, kFwInputLayerNormWeightsTensor); fw_forget_layer_norm_weights_ = GetInput(operation, operands, kFwForgetLayerNormWeightsTensor); fw_cell_layer_norm_weights_ = GetInput(operation, operands, kFwCellLayerNormWeightsTensor); fw_output_layer_norm_weights_ = GetInput(operation, operands, kFwOutputLayerNormWeightsTensor); bw_input_layer_norm_weights_ = GetInput(operation, operands, kBwInputLayerNormWeightsTensor); bw_forget_layer_norm_weights_ = GetInput(operation, operands, kBwForgetLayerNormWeightsTensor); bw_cell_layer_norm_weights_ = GetInput(operation, operands, kBwCellLayerNormWeightsTensor); bw_output_layer_norm_weights_ = GetInput(operation, operands, kBwOutputLayerNormWeightsTensor); params_.activation = static_cast<TfLiteFusedActivation>( getScalarData<int32_t>(*GetInput(operation, operands, kActivationParam))); if (input_->type == OperandType::TENSOR_FLOAT32) { params_.cell_clip = getScalarData<float>(*GetInput(operation, operands, kCellClipParam)); params_.proj_clip = getScalarData<float>(*GetInput(operation, operands, kProjClipParam)); } else { params_.cell_clip = static_cast<float>( getScalarData<_Float16>(*GetInput(operation, operands, kCellClipParam))); params_.proj_clip = static_cast<float>( getScalarData<_Float16>(*GetInput(operation, operands, kProjClipParam))); } params_.merge_outputs = getScalarData<bool>(*GetInput(operation, operands, kMergeOutputsParam)); params_.time_major = getScalarData<bool>(*GetInput(operation, operands, kTimeMajorParam)); params_.use_layer_norm = !IsNullInput(fw_input_layer_norm_weights_); fw_output_ = GetOutput(operation, operands, kFwOutputTensor); if (!params_.merge_outputs) { bw_output_ = GetOutput(operation, operands, kBwOutputTensor); } } bool BidirectionalSequenceLSTM::Prepare(const Operation& operation, std::vector<RunTimeOperandInfo>& operands, Shape* fwOutputShape, Shape* bwOutputShape) { // Inferring batch size, number of outputs and number of cells from the // input tensors. NN_CHECK(NumDimensions(input_) == 3); const uint32_t max_time = SizeOfDimension(input_, params_.time_major ? 0 : 1); const uint32_t n_batch = SizeOfDimension(input_, params_.time_major ? 1 : 0); const uint32_t n_input = SizeOfDimension(input_, 2); const uint32_t n_fw_cell = SizeOfDimension(fw_input_to_output_weights_, 0); NN_CHECK_EQ(NumDimensions(fw_input_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(fw_input_to_output_weights_, 1), n_input); NN_CHECK_EQ(NumDimensions(fw_recurrent_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(fw_recurrent_to_output_weights_, 0), n_fw_cell); const uint32_t n_fw_output = SizeOfDimension(fw_recurrent_to_output_weights_, 1); // Check that input tensor dimensions matches with each other. if (!LSTMCell::CheckInputTensorDimensions( input_, fw_input_to_input_weights_, fw_input_to_forget_weights_, fw_input_to_cell_weights_, fw_input_to_output_weights_, fw_recurrent_to_input_weights_, fw_recurrent_to_forget_weights_, fw_recurrent_to_cell_weights_, fw_recurrent_to_output_weights_, fw_cell_to_input_weights_, fw_cell_to_forget_weights_, fw_cell_to_output_weights_, fw_input_gate_bias_, fw_forget_gate_bias_, fw_cell_bias_, fw_output_gate_bias_, fw_projection_weights_, fw_projection_bias_, fw_input_layer_norm_weights_, fw_forget_layer_norm_weights_, fw_cell_layer_norm_weights_, fw_output_layer_norm_weights_, n_input, n_fw_output, n_fw_cell, ¶ms_)) { return false; } const bool aux_inputs_all_or_none = (!IsNullInput(aux_input_) && !IsNullInput(fw_aux_input_to_cell_weights_) && !IsNullInput(fw_aux_input_to_forget_weights_) && !IsNullInput(fw_aux_input_to_output_weights_) && !IsNullInput(bw_aux_input_to_cell_weights_) && !IsNullInput(bw_aux_input_to_forget_weights_) && !IsNullInput(bw_aux_input_to_output_weights_)) || (IsNullInput(fw_aux_input_to_cell_weights_) && IsNullInput(fw_aux_input_to_forget_weights_) && IsNullInput(fw_aux_input_to_output_weights_) && IsNullInput(bw_aux_input_to_cell_weights_) && IsNullInput(bw_aux_input_to_forget_weights_) && IsNullInput(bw_aux_input_to_output_weights_)); NN_CHECK(aux_inputs_all_or_none); if (!IsNullInput(aux_input_)) { // Check that aux_input has the same dimensions (except last) as the input. NN_CHECK_EQ(aux_input_->shape().dimensions[0], input_->shape().dimensions[0]); NN_CHECK_EQ(aux_input_->shape().dimensions[1], input_->shape().dimensions[1]); } const uint32_t n_bw_cell = SizeOfDimension(bw_input_to_output_weights_, 0); NN_CHECK_EQ(NumDimensions(bw_input_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(bw_input_to_output_weights_, 1), n_input); NN_CHECK_EQ(NumDimensions(bw_recurrent_to_output_weights_), 2); NN_CHECK_EQ(SizeOfDimension(bw_recurrent_to_output_weights_, 0), n_bw_cell); const uint32_t n_bw_output = SizeOfDimension(bw_recurrent_to_output_weights_, 1); const Shape& inputShape = input_->shape(); fwOutputShape->type = inputShape.type; fwOutputShape->offset = inputShape.offset; fwOutputShape->scale = inputShape.scale; fwOutputShape->dimensions.resize(3); fwOutputShape->dimensions[0] = params_.time_major ? max_time : n_batch; fwOutputShape->dimensions[1] = params_.time_major ? n_batch : max_time; fwOutputShape->dimensions[2] = params_.merge_outputs ? n_fw_output + n_bw_output : n_fw_output; // Check that input tensor dimensions matches with each other. if (!LSTMCell::CheckInputTensorDimensions( input_, bw_input_to_input_weights_, bw_input_to_forget_weights_, bw_input_to_cell_weights_, bw_input_to_output_weights_, bw_recurrent_to_input_weights_, bw_recurrent_to_forget_weights_, bw_recurrent_to_cell_weights_, bw_recurrent_to_output_weights_, bw_cell_to_input_weights_, bw_cell_to_forget_weights_, bw_cell_to_output_weights_, bw_input_gate_bias_, bw_forget_gate_bias_, bw_cell_bias_, bw_output_gate_bias_, bw_projection_weights_, bw_projection_bias_, bw_input_layer_norm_weights_, bw_forget_layer_norm_weights_, bw_cell_layer_norm_weights_, bw_output_layer_norm_weights_, n_input, n_bw_output, n_bw_cell, ¶ms_)) { return false; } if (!params_.merge_outputs) { bwOutputShape->type = inputShape.type; bwOutputShape->offset = inputShape.offset; bwOutputShape->scale = inputShape.scale; bwOutputShape->dimensions.resize(3); bwOutputShape->dimensions[0] = params_.time_major ? max_time : n_batch; bwOutputShape->dimensions[1] = params_.time_major ? n_batch : max_time; bwOutputShape->dimensions[2] = n_bw_output; } if (params_.use_cifg) { fw_scratch_shape_.dimensions = {n_batch, n_fw_cell * 3}; bw_scratch_shape_.dimensions = {n_batch, n_bw_cell * 3}; } else { fw_scratch_shape_.dimensions = {n_batch, n_fw_cell * 4}; bw_scratch_shape_.dimensions = {n_batch, n_bw_cell * 4}; } fw_scratch_shape_.type = bw_scratch_shape_.type = inputShape.type; fw_scratch_shape_.offset = bw_scratch_shape_.offset = inputShape.offset; fw_scratch_shape_.scale = bw_scratch_shape_.scale = inputShape.scale; return true; } bool BidirectionalSequenceLSTM::Eval() { const uint32_t n_fw_output = SizeOfDimension(fw_recurrent_to_output_weights_, 1); const uint32_t n_bw_output = SizeOfDimension(bw_recurrent_to_output_weights_, 1); std::vector<uint32_t> fw_output_dims = input_->shape().dimensions; fw_output_dims[2] = n_fw_output; std::vector<uint32_t> bw_output_dims = fw_output_dims; bw_output_dims[2] = n_bw_output; const uint32_t n_fw_output_elements = fw_output_dims[0] * fw_output_dims[1] * fw_output_dims[2]; const uint32_t n_output_elements = fw_output_dims[0] * fw_output_dims[1] * (fw_output_dims[2] + bw_output_dims[2]); switch (input_->type) { case OperandType::TENSOR_FLOAT32: { std::vector<float> fw_scratch_buffer(getNumberOfElements(fw_scratch_shape_)); const bool kForwardSequence = true; LSTMCell::LSTMEvalFloat32( params_, GetBuffer<const float>(input_), input_->shape(), GetBuffer<const float>(fw_input_to_input_weights_), GetBuffer<const float>(fw_input_to_forget_weights_), GetBuffer<const float>(fw_input_to_cell_weights_), GetBuffer<const float>(fw_input_to_output_weights_), fw_input_to_output_weights_->shape(), GetBuffer<const float>(fw_recurrent_to_input_weights_), GetBuffer<const float>(fw_recurrent_to_forget_weights_), GetBuffer<const float>(fw_recurrent_to_cell_weights_), GetBuffer<const float>(fw_recurrent_to_output_weights_), fw_recurrent_to_output_weights_->shape(), GetBuffer<const float>(fw_cell_to_input_weights_), GetBuffer<const float>(fw_cell_to_forget_weights_), GetBuffer<const float>(fw_cell_to_output_weights_), GetOptionalBuffer<const float>(aux_input_), GetOptionalBuffer<const float>(fw_aux_input_to_input_weights_), GetOptionalBuffer<const float>(fw_aux_input_to_forget_weights_), GetOptionalBuffer<const float>(fw_aux_input_to_cell_weights_), GetOptionalBuffer<const float>(fw_aux_input_to_output_weights_), GetBuffer<const float>(fw_input_gate_bias_), GetBuffer<const float>(fw_forget_gate_bias_), GetBuffer<const float>(fw_cell_bias_), GetBuffer<const float>(fw_output_gate_bias_), GetBuffer<const float>(fw_projection_weights_), GetBuffer<const float>(fw_projection_bias_), GetBuffer<const float>(fw_activation_state_), GetBuffer<const float>(fw_cell_state_), GetOptionalBuffer<const float>(fw_input_layer_norm_weights_), GetOptionalBuffer<const float>(fw_forget_layer_norm_weights_), GetOptionalBuffer<const float>(fw_cell_layer_norm_weights_), GetOptionalBuffer<const float>(fw_output_layer_norm_weights_), GetBuffer<float>(fw_activation_state_), GetBuffer<float>(fw_cell_state_), GetBuffer<float>(fw_output_), fw_scratch_buffer.data(), params_.time_major, kForwardSequence); std::vector<float> bw_scratch_buffer(getNumberOfElements(bw_scratch_shape_)); const bool kBackwardSequence = false; LSTMCell::LSTMEvalFloat32( params_, GetBuffer<const float>(input_), input_->shape(), GetBuffer<const float>(bw_input_to_input_weights_), GetBuffer<const float>(bw_input_to_forget_weights_), GetBuffer<const float>(bw_input_to_cell_weights_), GetBuffer<const float>(bw_input_to_output_weights_), bw_input_to_output_weights_->shape(), GetBuffer<const float>(bw_recurrent_to_input_weights_), GetBuffer<const float>(bw_recurrent_to_forget_weights_), GetBuffer<const float>(bw_recurrent_to_cell_weights_), GetBuffer<const float>(bw_recurrent_to_output_weights_), bw_recurrent_to_output_weights_->shape(), GetBuffer<const float>(bw_cell_to_input_weights_), GetBuffer<const float>(bw_cell_to_forget_weights_), GetBuffer<const float>(bw_cell_to_output_weights_), GetOptionalBuffer<const float>(aux_input_), GetOptionalBuffer<const float>(bw_aux_input_to_input_weights_), GetOptionalBuffer<const float>(bw_aux_input_to_forget_weights_), GetOptionalBuffer<const float>(bw_aux_input_to_cell_weights_), GetOptionalBuffer<const float>(bw_aux_input_to_output_weights_), GetBuffer<const float>(bw_input_gate_bias_), GetBuffer<const float>(bw_forget_gate_bias_), GetBuffer<const float>(bw_cell_bias_), GetBuffer<const float>(bw_output_gate_bias_), GetBuffer<const float>(bw_projection_weights_), GetBuffer<const float>(bw_projection_bias_), GetBuffer<const float>(bw_activation_state_), GetBuffer<const float>(bw_cell_state_), GetOptionalBuffer<const float>(bw_input_layer_norm_weights_), GetOptionalBuffer<const float>(bw_forget_layer_norm_weights_), GetOptionalBuffer<const float>(bw_cell_layer_norm_weights_), GetOptionalBuffer<const float>(bw_output_layer_norm_weights_), GetBuffer<float>(bw_activation_state_), GetBuffer<float>(bw_cell_state_), params_.merge_outputs ? GetBuffer<float>(fw_output_) + n_fw_output_elements : GetBuffer<float>(bw_output_), bw_scratch_buffer.data(), params_.time_major, kBackwardSequence); if (params_.merge_outputs) { std::vector<float> temp(n_output_elements); mergeThirdDimension(GetBuffer<float>(fw_output_), fw_output_dims, GetBuffer<float>(fw_output_) + n_fw_output_elements, bw_output_dims, temp.data()); std::copy(temp.data(), temp.data() + n_output_elements, GetBuffer<float>(fw_output_)); } } break; case OperandType::TENSOR_FLOAT16: { std::vector<_Float16> fw_scratch_buffer(getNumberOfElements(fw_scratch_shape_)); const bool kForwardSequence = true; LSTMCell::LSTMEvalFloat16( params_, GetBuffer<const _Float16>(input_), input_->shape(), GetOptionalBuffer<const _Float16>(fw_input_to_input_weights_), GetBuffer<const _Float16>(fw_input_to_forget_weights_), GetBuffer<const _Float16>(fw_input_to_cell_weights_), GetBuffer<const _Float16>(fw_input_to_output_weights_), fw_input_to_output_weights_->shape(), GetOptionalBuffer<const _Float16>(fw_recurrent_to_input_weights_), GetBuffer<const _Float16>(fw_recurrent_to_forget_weights_), GetBuffer<const _Float16>(fw_recurrent_to_cell_weights_), GetBuffer<const _Float16>(fw_recurrent_to_output_weights_), fw_recurrent_to_output_weights_->shape(), GetOptionalBuffer<const _Float16>(fw_cell_to_input_weights_), GetOptionalBuffer<const _Float16>(fw_cell_to_forget_weights_), GetOptionalBuffer<const _Float16>(fw_cell_to_output_weights_), GetOptionalBuffer<const _Float16>(aux_input_), GetOptionalBuffer<const _Float16>(fw_aux_input_to_input_weights_), GetOptionalBuffer<const _Float16>(fw_aux_input_to_forget_weights_), GetOptionalBuffer<const _Float16>(fw_aux_input_to_cell_weights_), GetOptionalBuffer<const _Float16>(fw_aux_input_to_output_weights_), GetOptionalBuffer<const _Float16>(fw_input_gate_bias_), GetBuffer<const _Float16>(fw_forget_gate_bias_), GetBuffer<const _Float16>(fw_cell_bias_), GetBuffer<const _Float16>(fw_output_gate_bias_), GetOptionalBuffer<const _Float16>(fw_projection_weights_), GetOptionalBuffer<const _Float16>(fw_projection_bias_), GetBuffer<const _Float16>(fw_activation_state_), GetBuffer<const _Float16>(fw_cell_state_), GetOptionalBuffer<const _Float16>(fw_input_layer_norm_weights_), GetOptionalBuffer<const _Float16>(fw_forget_layer_norm_weights_), GetOptionalBuffer<const _Float16>(fw_cell_layer_norm_weights_), GetOptionalBuffer<const _Float16>(fw_output_layer_norm_weights_), GetBuffer<_Float16>(fw_activation_state_), GetBuffer<_Float16>(fw_cell_state_), GetBuffer<_Float16>(fw_output_), fw_scratch_buffer.data(), params_.time_major, kForwardSequence); std::vector<_Float16> bw_scratch_buffer(getNumberOfElements(bw_scratch_shape_)); const bool kBackwardSequence = false; LSTMCell::LSTMEvalFloat16( params_, GetBuffer<const _Float16>(input_), input_->shape(), GetOptionalBuffer<const _Float16>(bw_input_to_input_weights_), GetBuffer<const _Float16>(bw_input_to_forget_weights_), GetBuffer<const _Float16>(bw_input_to_cell_weights_), GetBuffer<const _Float16>(bw_input_to_output_weights_), bw_input_to_output_weights_->shape(), GetOptionalBuffer<const _Float16>(bw_recurrent_to_input_weights_), GetBuffer<const _Float16>(bw_recurrent_to_forget_weights_), GetBuffer<const _Float16>(bw_recurrent_to_cell_weights_), GetBuffer<const _Float16>(bw_recurrent_to_output_weights_), bw_recurrent_to_output_weights_->shape(), GetOptionalBuffer<const _Float16>(bw_cell_to_input_weights_), GetOptionalBuffer<const _Float16>(bw_cell_to_forget_weights_), GetOptionalBuffer<const _Float16>(bw_cell_to_output_weights_), GetOptionalBuffer<const _Float16>(aux_input_), GetOptionalBuffer<const _Float16>(bw_aux_input_to_input_weights_), GetOptionalBuffer<const _Float16>(bw_aux_input_to_forget_weights_), GetOptionalBuffer<const _Float16>(bw_aux_input_to_cell_weights_), GetOptionalBuffer<const _Float16>(bw_aux_input_to_output_weights_), GetOptionalBuffer<const _Float16>(bw_input_gate_bias_), GetBuffer<const _Float16>(bw_forget_gate_bias_), GetBuffer<const _Float16>(bw_cell_bias_), GetBuffer<const _Float16>(bw_output_gate_bias_), GetOptionalBuffer<const _Float16>(bw_projection_weights_), GetOptionalBuffer<const _Float16>(bw_projection_bias_), GetBuffer<const _Float16>(bw_activation_state_), GetBuffer<const _Float16>(bw_cell_state_), GetOptionalBuffer<const _Float16>(bw_input_layer_norm_weights_), GetOptionalBuffer<const _Float16>(bw_forget_layer_norm_weights_), GetOptionalBuffer<const _Float16>(bw_cell_layer_norm_weights_), GetOptionalBuffer<const _Float16>(bw_output_layer_norm_weights_), GetBuffer<_Float16>(bw_activation_state_), GetBuffer<_Float16>(bw_cell_state_), params_.merge_outputs ? GetBuffer<_Float16>(fw_output_) + n_fw_output_elements : GetBuffer<_Float16>(bw_output_), bw_scratch_buffer.data(), params_.time_major, kBackwardSequence); if (params_.merge_outputs) { std::vector<_Float16> temp(n_output_elements); mergeThirdDimension(GetBuffer<_Float16>(fw_output_), fw_output_dims, GetBuffer<_Float16>(fw_output_) + n_fw_output_elements, bw_output_dims, temp.data()); std::copy(temp.data(), temp.data() + n_output_elements, GetBuffer<_Float16>(fw_output_)); } } break; default: { LOG(ERROR) << "Unsupported data type: " << static_cast<int>(input_->type); return false; } } return true; } } // namespace nn } // namespace android