/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "ValidateHal" #include "ValidateHal.h" #include "NeuralNetworks.h" #include "OperationsUtils.h" #include "Tracing.h" #include "Utils.h" #include <android-base/logging.h> namespace android { namespace nn { template <class T_Model> struct ModelToHalVersion; template <> struct ModelToHalVersion<V1_0::Model> { static constexpr HalVersion version = HalVersion::V1_0; }; template <> struct ModelToHalVersion<V1_1::Model> { static constexpr HalVersion version = HalVersion::V1_1; }; template <> struct ModelToHalVersion<V1_2::Model> { static constexpr HalVersion version = HalVersion::V1_2; }; class MemoryAccessVerifier { public: MemoryAccessVerifier(const hidl_vec<hidl_memory>& pools) : mPoolCount(pools.size()), mPoolSizes(mPoolCount) { for (size_t i = 0; i < mPoolCount; i++) { mPoolSizes[i] = pools[i].size(); } } bool validate(const DataLocation& location) { if (location.poolIndex >= mPoolCount) { LOG(ERROR) << "Invalid poolIndex " << location.poolIndex << "/" << mPoolCount; return false; } const size_t size = mPoolSizes[location.poolIndex]; // Do the addition using size_t to avoid potential wrap-around problems. if (static_cast<size_t>(location.offset) + location.length > size) { LOG(ERROR) << "Reference to pool " << location.poolIndex << " with offset " << location.offset << " and length " << location.length << " exceeds pool size of " << size; return false; } return true; } private: size_t mPoolCount; std::vector<size_t> mPoolSizes; }; static bool validateOperandExtraParams(const V1_2::Operand& operand, uint32_t index) { switch (operand.type) { case OperandType::FLOAT32: case OperandType::INT32: case OperandType::UINT32: case OperandType::BOOL: case OperandType::TENSOR_FLOAT32: case OperandType::TENSOR_FLOAT16: case OperandType::TENSOR_INT32: case OperandType::TENSOR_QUANT8_ASYMM: case OperandType::TENSOR_QUANT8_SYMM: case OperandType::TENSOR_QUANT16_ASYMM: case OperandType::TENSOR_QUANT16_SYMM: case OperandType::TENSOR_BOOL8: { NN_RET_CHECK(operand.extraParams.getDiscriminator() == V1_2::Operand::ExtraParams::hidl_discriminator::none) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " has incorrect extraParams: " << toString(operand.extraParams); } break; case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: { NN_RET_CHECK(operand.extraParams.getDiscriminator() == V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " without a Channel Quantization params"; auto& channelQuant = operand.extraParams.channelQuant(); size_t count = operand.dimensions.size(); NN_RET_CHECK_LT(channelQuant.channelDim, count) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with an invalid channelQuant.channelDim " << channelQuant.channelDim << ", must be valid dimension index in range [0, " << count << ")"; uint32_t expected = operand.dimensions[channelQuant.channelDim]; NN_RET_CHECK_EQ(channelQuant.scales.size(), expected) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a wrong-sized scales, " << "expected " << expected << " was " << channelQuant.scales.size(); NN_RET_CHECK_NE(expected, 0) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " channel dimension " << channelQuant.channelDim << " is underspecified (can't be 0)"; for (uint32_t i = 0; i < expected; ++i) { NN_RET_CHECK_GT(channelQuant.scales[i], .0f) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a negative value in scales[" << i << "]=" << channelQuant.scales[i]; } } break; default: { if (isExtensionOperandType(operand.type)) { NN_RET_CHECK(operand.extraParams.getDiscriminator() == V1_2::Operand::ExtraParams::hidl_discriminator::extension || operand.extraParams.getDiscriminator() == V1_2::Operand::ExtraParams::hidl_discriminator::none) << "Operand " << index << ": Extension operand of type " << getOperandTypeName(operand.type) << " has incorrect extraParams: " << toString(operand.extraParams); } // No validation for OEM types. } break; } return true; } template <typename VersionedOperand> static bool validateOperands(const hidl_vec<VersionedOperand>& operands, const hidl_vec<uint8_t>& operandValues, const hidl_vec<hidl_memory>& pools, bool allowUnspecifiedRank) { uint32_t index = 0; MemoryAccessVerifier poolVerifier(pools); for (auto& versionedOperand : operands) { if (!validOperandType(versionedOperand.type)) { LOG(ERROR) << "Operand is not supported by this version: " << toString(versionedOperand.type); return false; } // Once we are sure the operand is supported by its version, it is safe // to convert it to the latest version for the rest of the validations. V1_2::Operand operand = convertToV1_2(versionedOperand); // Validate type and dimensions. switch (operand.type) { case OperandType::FLOAT16: case OperandType::FLOAT32: case OperandType::INT32: case OperandType::UINT32: case OperandType::BOOL: case OperandType::OEM: { size_t count = operand.dimensions.size(); if (count != 0) { LOG(ERROR) << "Operand " << index << ": Scalar data has dimensions of rank " << count; return false; } break; } case OperandType::TENSOR_FLOAT16: case OperandType::TENSOR_FLOAT32: case OperandType::TENSOR_INT32: case OperandType::TENSOR_QUANT8_ASYMM: case OperandType::TENSOR_QUANT8_SYMM: case OperandType::TENSOR_QUANT16_ASYMM: case OperandType::TENSOR_QUANT16_SYMM: case OperandType::TENSOR_BOOL8: case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: case OperandType::TENSOR_OEM_BYTE: { if ((!allowUnspecifiedRank || operand.lifetime == OperandLifeTime::CONSTANT_COPY || operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE) && operand.dimensions.size() == 0) { LOG(ERROR) << "Operand " << index << ": Tensor has dimensions of rank 0"; return false; } break; } default: { if (!isExtensionOperandType(operand.type)) { LOG(ERROR) << "Operand " << index << ": Invalid operand type " << toString(operand.type); return false; } } break; } // TODO Validate the numberOfConsumers. // TODO Since we have to validate it, there was no point in including it. For the next // release, consider removing unless we have an additional process in system space // that creates this value. In that case, it would not have to be validated. // Validate the scale. switch (operand.type) { case OperandType::FLOAT16: case OperandType::FLOAT32: case OperandType::INT32: case OperandType::UINT32: case OperandType::BOOL: case OperandType::TENSOR_FLOAT16: case OperandType::TENSOR_FLOAT32: case OperandType::TENSOR_BOOL8: case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: if (operand.scale != 0.f) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a non-zero scale (" << operand.scale << ")"; return false; } break; case OperandType::TENSOR_INT32: // TENSOR_INT32 may be used with or without scale, depending on the operation. if (operand.scale < 0.f) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a negative scale"; return false; } break; case OperandType::TENSOR_QUANT8_ASYMM: case OperandType::TENSOR_QUANT8_SYMM: case OperandType::TENSOR_QUANT16_ASYMM: case OperandType::TENSOR_QUANT16_SYMM: if (operand.scale <= 0.f) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a non-positive scale"; return false; } break; default: if (isExtensionOperandType(operand.type) && operand.scale != 0.f) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a non-zero scale (" << operand.scale << ")"; return false; } // No validation for OEM types. // TODO(b/119869082) We should have a separate type for TENSOR_INT32 with a scale. break; } // Validate the zeroPoint. switch (operand.type) { case OperandType::FLOAT16: case OperandType::FLOAT32: case OperandType::INT32: case OperandType::UINT32: case OperandType::BOOL: case OperandType::TENSOR_FLOAT16: case OperandType::TENSOR_FLOAT32: case OperandType::TENSOR_INT32: case OperandType::TENSOR_BOOL8: case OperandType::TENSOR_QUANT8_SYMM: case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: if (operand.zeroPoint != 0) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a non-zero zeroPoint " << operand.zeroPoint; return false; } break; case OperandType::TENSOR_QUANT8_ASYMM: if (operand.zeroPoint < 0 || operand.zeroPoint > 255) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with an invalid zeroPoint " << operand.zeroPoint << ", must be in range [0, 255]"; return false; } break; case OperandType::TENSOR_QUANT16_ASYMM: if (operand.zeroPoint < 0 || operand.zeroPoint > 65535) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with an invalid zeroPoint " << operand.zeroPoint << ", must be in range [0, 65535]"; return false; } break; case OperandType::TENSOR_QUANT16_SYMM: if (operand.zeroPoint != 0) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a non-zero zeroPoint " << operand.zeroPoint; return false; } break; default: if (isExtensionOperandType(operand.type) && operand.zeroPoint != 0) { LOG(ERROR) << "Operand " << index << ": Operand of type " << getOperandTypeName(operand.type) << " with a non-zero zeroPoint " << operand.zeroPoint; return false; } // No validation for OEM types. break; } NN_RET_CHECK(validateOperandExtraParams(operand, index)); // Validate the lifetime and the location. const DataLocation& location = operand.location; switch (operand.lifetime) { case OperandLifeTime::CONSTANT_COPY: if (location.poolIndex != 0) { LOG(ERROR) << "Operand " << index << ": CONSTANT_COPY with a non-zero poolIndex " << location.poolIndex; return false; } // Do the addition using size_t to avoid potential wrap-around problems. if (static_cast<size_t>(location.offset) + location.length > operandValues.size()) { LOG(ERROR) << "Operand " << index << ": OperandValue location out of range. Starts at " << location.offset << ", length " << location.length << ", max " << operandValues.size(); return false; } break; case OperandLifeTime::CONSTANT_REFERENCE: if (!poolVerifier.validate(location)) { return false; } break; case OperandLifeTime::TEMPORARY_VARIABLE: case OperandLifeTime::MODEL_INPUT: case OperandLifeTime::MODEL_OUTPUT: case OperandLifeTime::NO_VALUE: if (location.poolIndex != 0 || location.offset != 0 || location.length != 0) { LOG(ERROR) << "Operand " << index << ": Unexpected poolIndex " << location.poolIndex << ", offset " << location.offset << ", or length " << location.length << " for operand of lifetime " << toString(operand.lifetime); return false; } break; default: LOG(ERROR) << "Operand " << index << ": Invalid lifetime " << toString(operand.lifetime); return false; } // For constants, validate that the length is as expected. The other lifetimes // expect the length to be 0. Don't validate for OEM types. if (operand.lifetime == OperandLifeTime::CONSTANT_REFERENCE || operand.lifetime == OperandLifeTime::CONSTANT_COPY) { if (!isExtensionOperandType(operand.type) && operand.type != OperandType::OEM && operand.type != OperandType::TENSOR_OEM_BYTE) { uint32_t expectedLength = nonExtensionOperandSizeOfData(operand); if (location.length != expectedLength) { LOG(ERROR) << "Operand " << index << ": For operand " << toString(operand) << " expected a size of " << expectedLength << " but got " << location.length; return false; } } } index++; } return true; } static HalVersion getHalVersion(const V1_0::Operation&) { return HalVersion::V1_0; } static HalVersion getHalVersion(const V1_1::Operation&) { return HalVersion::V1_1; } static HalVersion getHalVersion(const V1_2::Operation&) { return HalVersion::V1_2; } template <typename VersionedOperation> static bool validateOperations(const hidl_vec<VersionedOperation>& operations, const hidl_vec<Operand>& operands) { const size_t operandCount = operands.size(); // This vector keeps track of whether there's an operation that writes to // each operand. It is used to validate that temporary variables and // model outputs will be written to. std::vector<bool> writtenTo(operandCount, false); for (auto& op : operations) { // TODO Validate the shapes and any known values. This is currently // done in CpuExecutor but should be done here for all drivers. int error = validateOperation( static_cast<int32_t>(op.type), op.inputs.size(), op.inputs.size() > 0 ? op.inputs.data() : nullptr, op.outputs.size(), op.outputs.size() > 0 ? op.outputs.data() : nullptr, operands, getHalVersion(op)); if (error != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Invalid operation " << toString(op.type); return false; } for (uint32_t i : op.outputs) { const Operand& operand = operands[i]; if (operand.lifetime != OperandLifeTime::TEMPORARY_VARIABLE && operand.lifetime != OperandLifeTime::MODEL_OUTPUT) { LOG(ERROR) << "Writing to an operand with incompatible lifetime " << toString(operand.lifetime); return false; } // Check that we only write once to an operand. if (writtenTo[i]) { LOG(ERROR) << "Operand " << i << " written a second time"; return false; } writtenTo[i] = true; } } for (size_t i = 0; i < operandCount; i++) { if (!writtenTo[i]) { const Operand& operand = operands[i]; if (operand.lifetime == OperandLifeTime::TEMPORARY_VARIABLE || operand.lifetime == OperandLifeTime::MODEL_OUTPUT) { LOG(ERROR) << "Operand " << i << " with lifetime " << toString(operand.lifetime) << " is not being written to."; return false; } } } // TODO More whole graph verifications are possible, for example that an // operand is not use as input & output for the same op, and more // generally that it is acyclic. return true; } bool validatePool(const hidl_memory& pool, HalVersion ver) { const auto& name = pool.name(); if (name != "ashmem" && name != "mmap_fd" && ((ver < HalVersion::V1_2) || (name != "hardware_buffer_blob" && name != "hardware_buffer"))) { LOG(ERROR) << "Unsupported memory type " << name; return false; } if (pool.handle() == nullptr) { LOG(ERROR) << "Memory of type " << name << " is null"; return false; } return true; } static bool validatePools(const hidl_vec<hidl_memory>& pools, HalVersion ver) { return std::all_of(pools.begin(), pools.end(), [ver](const hidl_memory& pool) { return validatePool(pool, ver); }); } static bool validateModelInputOutputs(const hidl_vec<uint32_t> indexes, const hidl_vec<Operand>& operands, OperandLifeTime lifetime) { const size_t operandCount = operands.size(); for (uint32_t i : indexes) { if (i >= operandCount) { LOG(ERROR) << "Model input or output index out of range: " << i << "/" << operandCount; return false; } const Operand& operand = operands[i]; if (operand.lifetime != lifetime) { LOG(ERROR) << "Model input or output has lifetime of " << toString(operand.lifetime) << " instead of the expected " << toString(lifetime); return false; } } std::vector<uint32_t> sortedIndexes = indexes; std::sort(sortedIndexes.begin(), sortedIndexes.end()); auto adjacentI = std::adjacent_find(sortedIndexes.begin(), sortedIndexes.end()); if (adjacentI != sortedIndexes.end()) { LOG(ERROR) << "Model input or output occurs multiple times: " << *adjacentI; return false; } return true; } template <class T_Model> bool validateModel(const T_Model& model) { NNTRACE_FULL(NNTRACE_LAYER_UTILITY, NNTRACE_PHASE_UNSPECIFIED, "validateModel"); HalVersion version = ModelToHalVersion<T_Model>::version; if (model.operations.size() == 0 || model.operands.size() == 0) { LOG(ERROR) << "Invalid empty model."; return false; } // We only need versioned operands for their validation. For all the other // validations we can use operands upcasted to the latest version. const hidl_vec<Operand> latestVersionOperands = convertToV1_2(model.operands); return (validateOperands(model.operands, model.operandValues, model.pools, /*allowUnspecifiedRank=*/version >= HalVersion::V1_2) && validateOperations(model.operations, latestVersionOperands) && validateModelInputOutputs(model.inputIndexes, latestVersionOperands, OperandLifeTime::MODEL_INPUT) && validateModelInputOutputs(model.outputIndexes, latestVersionOperands, OperandLifeTime::MODEL_OUTPUT) && validatePools(model.pools, version)); } template bool validateModel<V1_0::Model>(const V1_0::Model& model); template bool validateModel<V1_1::Model>(const V1_1::Model& model); template bool validateModel<V1_2::Model>(const V1_2::Model& model); // Validates the arguments of a request. type is either "input" or "output" and is used // for printing error messages. The operandIndexes is the appropriate array of input // or output operand indexes that was passed to the ANeuralNetworksModel_identifyInputsAndOutputs. static bool validateRequestArguments(const hidl_vec<RequestArgument>& requestArguments, const hidl_vec<uint32_t>& operandIndexes, const hidl_vec<Operand>& operands, const hidl_vec<hidl_memory>& pools, bool allowUnspecified, const char* type) { MemoryAccessVerifier poolVerifier(pools); // The request should specify as many arguments as were described in the model. const size_t requestArgumentCount = requestArguments.size(); if (requestArgumentCount != operandIndexes.size()) { LOG(ERROR) << "Request specifies " << requestArgumentCount << " " << type << "s but the model has " << operandIndexes.size(); return false; } for (size_t requestArgumentIndex = 0; requestArgumentIndex < requestArgumentCount; requestArgumentIndex++) { const RequestArgument& requestArgument = requestArguments[requestArgumentIndex]; const DataLocation& location = requestArgument.location; // Get the operand index for this argument. We extract it from the list // that was provided in the call to ANeuralNetworksModel_identifyInputsAndOutputs. // We assume in this function that the model has been validated already. const uint32_t operandIndex = operandIndexes[requestArgumentIndex]; const Operand& operand = operands[operandIndex]; if (requestArgument.hasNoValue) { if (location.poolIndex != 0 || location.offset != 0 || location.length != 0 || requestArgument.dimensions.size() != 0) { LOG(ERROR) << "Request " << type << " " << requestArgumentIndex << " has no value yet has details."; return false; } } else { // Validate the location. if (!poolVerifier.validate(location)) { return false; } // If the argument specified a dimension, validate it. uint32_t rank = requestArgument.dimensions.size(); if (rank == 0) { if (!allowUnspecified) { // Validate that all the dimensions are specified in the model. for (size_t i = 0; i < operand.dimensions.size(); i++) { if (operand.dimensions[i] == 0) { LOG(ERROR) << "Model has dimension " << i << " set to 0 but the request does specify the dimension."; return false; } } } } else { if (rank != operand.dimensions.size()) { LOG(ERROR) << "Request " << type << " " << requestArgumentIndex << " has number of dimensions (" << rank << ") different than the model's (" << operand.dimensions.size() << ")"; return false; } for (size_t i = 0; i < rank; i++) { if (requestArgument.dimensions[i] != operand.dimensions[i] && operand.dimensions[i] != 0) { LOG(ERROR) << "Request " << type << " " << requestArgumentIndex << " has dimension " << i << " of " << requestArgument.dimensions[i] << " different than the model's " << operand.dimensions[i]; return false; } if (requestArgument.dimensions[i] == 0 && !allowUnspecified) { LOG(ERROR) << "Request " << type << " " << requestArgumentIndex << " has dimension " << i << " of zero"; return false; } } } } } return true; } template <class T_Model> bool validateRequest(const Request& request, const T_Model& model) { HalVersion version = ModelToHalVersion<T_Model>::version; return (validateRequestArguments(request.inputs, model.inputIndexes, convertToV1_2(model.operands), request.pools, /*allowUnspecified=*/false, "input") && validateRequestArguments(request.outputs, model.outputIndexes, convertToV1_2(model.operands), request.pools, /*allowUnspecified=*/version >= HalVersion::V1_2, "output") && validatePools(request.pools, version)); } template bool validateRequest<V1_0::Model>(const Request& request, const V1_0::Model& model); template bool validateRequest<V1_1::Model>(const Request& request, const V1_1::Model& model); template bool validateRequest<V1_2::Model>(const Request& request, const V1_2::Model& model); bool validateExecutionPreference(ExecutionPreference preference) { return preference == ExecutionPreference::LOW_POWER || preference == ExecutionPreference::FAST_SINGLE_ANSWER || preference == ExecutionPreference::SUSTAINED_SPEED; } bool validOperandType(V1_0::OperandType operandType) { switch (operandType) { case V1_0::OperandType::FLOAT32: case V1_0::OperandType::INT32: case V1_0::OperandType::UINT32: case V1_0::OperandType::TENSOR_FLOAT32: case V1_0::OperandType::TENSOR_INT32: case V1_0::OperandType::TENSOR_QUANT8_ASYMM: case V1_0::OperandType::OEM: case V1_0::OperandType::TENSOR_OEM_BYTE: return true; default: return false; } } bool validOperandType(V1_2::OperandType operandType) { switch (operandType) { case V1_2::OperandType::FLOAT16: case V1_2::OperandType::FLOAT32: case V1_2::OperandType::INT32: case V1_2::OperandType::UINT32: case V1_2::OperandType::BOOL: case V1_2::OperandType::TENSOR_FLOAT16: case V1_2::OperandType::TENSOR_FLOAT32: case V1_2::OperandType::TENSOR_INT32: case V1_2::OperandType::TENSOR_QUANT8_ASYMM: case V1_2::OperandType::TENSOR_QUANT8_SYMM: case V1_2::OperandType::TENSOR_QUANT16_ASYMM: case V1_2::OperandType::TENSOR_QUANT16_SYMM: case V1_2::OperandType::TENSOR_BOOL8: case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: case V1_2::OperandType::OEM: case V1_2::OperandType::TENSOR_OEM_BYTE: return true; default: return isExtensionOperandType(operandType); } } } // namespace nn } // namespace android