/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Play silence and recover from dead servers or disconnected devices. #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <aaudio/AAudio.h> #include <aaudio/AAudioTesting.h> #include "AAudioExampleUtils.h" // Arbitrary period for glitches, once per second at 48000 Hz. #define FORCED_UNDERRUN_PERIOD_FRAMES 48000 // How long to sleep in a callback to cause an intentional glitch. For testing. #define FORCED_UNDERRUN_SLEEP_MICROS (10 * 1000) #define MAX_TIMESTAMPS 1000 #define DEFAULT_TIMEOUT_NANOS ((int64_t)1000000000) #define NUM_SECONDS 1 #define NUM_LOOPS 4 #define MAX_TESTS 20 typedef struct TimestampInfo { int64_t framesTotal; int64_t appPosition; // frames int64_t appNanoseconds; int64_t timestampPosition; // frames int64_t timestampNanos; aaudio_result_t result; } TimestampInfo; typedef struct TimestampCallbackData_s { TimestampInfo timestamps[MAX_TIMESTAMPS]; int64_t framesTotal = 0; int64_t nextFrameToGlitch = FORCED_UNDERRUN_PERIOD_FRAMES; int32_t timestampCount = 0; // in timestamps bool forceUnderruns = false; } TimestampCallbackData_t; struct TimeStampTestLog { aaudio_policy_t isMmap; aaudio_sharing_mode_t sharingMode; aaudio_performance_mode_t performanceMode; aaudio_direction_t direction; aaudio_result_t result; }; static int s_numTests = 0; // Use a plain old array because we reference this from the callback and do not want any // automatic memory allocation. static TimeStampTestLog s_testLogs[MAX_TESTS]{}; static void logTestResult(bool isMmap, aaudio_sharing_mode_t sharingMode, aaudio_performance_mode_t performanceMode, aaudio_direction_t direction, aaudio_result_t result) { if(s_numTests >= MAX_TESTS) { printf("ERROR - MAX_TESTS too small = %d\n", MAX_TESTS); return; } s_testLogs[s_numTests].isMmap = isMmap; s_testLogs[s_numTests].sharingMode = sharingMode; s_testLogs[s_numTests].performanceMode = performanceMode; s_testLogs[s_numTests].direction = direction; s_testLogs[s_numTests].result = result; s_numTests++; } static void printTestResults() { for (int i = 0; i < s_numTests; i++) { TimeStampTestLog *log = &s_testLogs[i]; printf("%2d: mmap = %3s, sharing = %9s, perf = %11s, dir = %6s ---- %4s\n", i, log->isMmap ? "yes" : "no", getSharingModeText(log->sharingMode), getPerformanceModeText(log->performanceMode), getDirectionText(log->direction), log->result ? "FAIL" : "pass"); } } // Callback function that fills the audio output buffer. aaudio_data_callback_result_t timestampDataCallbackProc( AAudioStream *stream, void *userData, void *audioData __unused, int32_t numFrames ) { // should not happen but just in case... if (userData == nullptr) { printf("ERROR - SimplePlayerDataCallbackProc needs userData\n"); return AAUDIO_CALLBACK_RESULT_STOP; } TimestampCallbackData_t *timestampData = (TimestampCallbackData_t *) userData; aaudio_direction_t direction = AAudioStream_getDirection(stream); if (direction == AAUDIO_DIRECTION_INPUT) { timestampData->framesTotal += numFrames; } if (timestampData->forceUnderruns) { if (timestampData->framesTotal > timestampData->nextFrameToGlitch) { usleep(FORCED_UNDERRUN_SLEEP_MICROS); printf("Simulate glitch at %lld\n", (long long) timestampData->framesTotal); timestampData->nextFrameToGlitch += FORCED_UNDERRUN_PERIOD_FRAMES; } } if (timestampData->timestampCount < MAX_TIMESTAMPS) { TimestampInfo *timestamp = ×tampData->timestamps[timestampData->timestampCount]; timestamp->result = AAudioStream_getTimestamp(stream, CLOCK_MONOTONIC, ×tamp->timestampPosition, ×tamp->timestampNanos); timestamp->framesTotal = timestampData->framesTotal; timestamp->appPosition = (direction == AAUDIO_DIRECTION_OUTPUT) ? AAudioStream_getFramesWritten(stream) : AAudioStream_getFramesRead(stream); timestamp->appNanoseconds = getNanoseconds(); timestampData->timestampCount++; } if (direction == AAUDIO_DIRECTION_OUTPUT) { timestampData->framesTotal += numFrames; } return AAUDIO_CALLBACK_RESULT_CONTINUE; } static TimestampCallbackData_t sTimestampData; static aaudio_result_t testTimeStamps(aaudio_policy_t mmapPolicy, aaudio_sharing_mode_t sharingMode, aaudio_performance_mode_t performanceMode, aaudio_direction_t direction) { aaudio_result_t result = AAUDIO_OK; int32_t framesPerBurst = 0; int32_t actualChannelCount = 0; int32_t actualSampleRate = 0; int32_t originalBufferSize = 0; int32_t requestedBufferSize = 0; int32_t finalBufferSize = 0; bool isMmap = false; aaudio_format_t actualDataFormat = AAUDIO_FORMAT_PCM_FLOAT; aaudio_sharing_mode_t actualSharingMode = AAUDIO_SHARING_MODE_SHARED; aaudio_sharing_mode_t actualPerformanceMode = AAUDIO_PERFORMANCE_MODE_NONE; AAudioStreamBuilder *aaudioBuilder = nullptr; AAudioStream *aaudioStream = nullptr; memset(&sTimestampData, 0, sizeof(sTimestampData)); printf("\n=================================================================================\n"); printf("--------- testTimeStamps(policy = %d, sharing = %s, perf = %s, dir = %s) --------\n", mmapPolicy, getSharingModeText(sharingMode), getPerformanceModeText(performanceMode), getDirectionText(direction)); AAudio_setMMapPolicy(mmapPolicy); // Use an AAudioStreamBuilder to contain requested parameters. result = AAudio_createStreamBuilder(&aaudioBuilder); if (result != AAUDIO_OK) { printf("AAudio_createStreamBuilder returned %s", AAudio_convertResultToText(result)); goto finish; } // Request stream properties. AAudioStreamBuilder_setFormat(aaudioBuilder, AAUDIO_FORMAT_PCM_I16); AAudioStreamBuilder_setSharingMode(aaudioBuilder, sharingMode); AAudioStreamBuilder_setPerformanceMode(aaudioBuilder, performanceMode); AAudioStreamBuilder_setDirection(aaudioBuilder, direction); AAudioStreamBuilder_setDataCallback(aaudioBuilder, timestampDataCallbackProc, &sTimestampData); // Create an AAudioStream using the Builder. result = AAudioStreamBuilder_openStream(aaudioBuilder, &aaudioStream); if (result != AAUDIO_OK) { printf("AAudioStreamBuilder_openStream returned %s", AAudio_convertResultToText(result)); goto finish; } // Check to see what kind of stream we actually got. actualSampleRate = AAudioStream_getSampleRate(aaudioStream); actualChannelCount = AAudioStream_getChannelCount(aaudioStream); actualDataFormat = AAudioStream_getFormat(aaudioStream); actualSharingMode = AAudioStream_getSharingMode(aaudioStream); if (actualSharingMode != sharingMode) { printf("did not get expected sharingMode, got %3d, skipping test\n", actualSharingMode); result = AAUDIO_OK; goto finish; } actualPerformanceMode = AAudioStream_getPerformanceMode(aaudioStream); if (actualPerformanceMode != performanceMode) { printf("did not get expected performanceMode, got %3d, skipping test\n", actualPerformanceMode); result = AAUDIO_OK; goto finish; } printf(" chans = %3d, rate = %6d format = %d\n", actualChannelCount, actualSampleRate, actualDataFormat); isMmap = AAudioStream_isMMapUsed(aaudioStream); printf(" Is MMAP used? %s\n", isMmap ? "yes" : "no"); // This is the number of frames that are read in one chunk by a DMA controller // or a DSP or a mixer. framesPerBurst = AAudioStream_getFramesPerBurst(aaudioStream); printf(" framesPerBurst = %3d\n", framesPerBurst); originalBufferSize = AAudioStream_getBufferSizeInFrames(aaudioStream); requestedBufferSize = 4 * framesPerBurst; finalBufferSize = AAudioStream_setBufferSizeInFrames(aaudioStream, requestedBufferSize); printf(" BufferSize: original = %4d, requested = %4d, final = %4d\n", originalBufferSize, requestedBufferSize, finalBufferSize); { int64_t position; int64_t nanoseconds; result = AAudioStream_getTimestamp(aaudioStream, CLOCK_MONOTONIC, &position, &nanoseconds); printf("before start, AAudioStream_getTimestamp() returns %s\n", AAudio_convertResultToText(result)); } for (int runs = 0; runs < NUM_LOOPS; runs++) { printf("------------------ loop #%d\n", runs); int64_t temp = sTimestampData.framesTotal; memset(&sTimestampData, 0, sizeof(sTimestampData)); sTimestampData.framesTotal = temp; sTimestampData.forceUnderruns = false; result = AAudioStream_requestStart(aaudioStream); if (result != AAUDIO_OK) { printf("AAudioStream_requestStart returned %s", AAudio_convertResultToText(result)); goto finish; } for (int second = 0; second < NUM_SECONDS; second++) { // Give AAudio callback time to run in the background. usleep(200 * 1000); // Periodically print the progress so we know it hasn't died. printf("framesWritten = %d, XRuns = %d\n", (int) AAudioStream_getFramesWritten(aaudioStream), (int) AAudioStream_getXRunCount(aaudioStream) ); } result = AAudioStream_requestStop(aaudioStream); if (result != AAUDIO_OK) { printf("AAudioStream_requestStop returned %s\n", AAudio_convertResultToText(result)); } printf("timestampCount = %d\n", sTimestampData.timestampCount); int printedGood = 0; int printedBad = 0; for (int i = 1; i < sTimestampData.timestampCount; i++) { TimestampInfo *timestamp = &sTimestampData.timestamps[i]; if (timestamp->result != AAUDIO_OK) { if (printedBad < 5) { printf(" %3d : frames %8lld, xferd %8lld, result = %s\n", i, (long long) timestamp->framesTotal, (long long) timestamp->appPosition, AAudio_convertResultToText(timestamp->result)); printedBad++; } } else { const bool posChanged = (timestamp->timestampPosition != (timestamp - 1)->timestampPosition); const bool timeChanged = (timestamp->timestampNanos != (timestamp - 1)->timestampNanos); if ((printedGood < 20) && (posChanged || timeChanged)) { bool negative = timestamp->timestampPosition < 0; bool retro = (i > 0 && (timestamp->timestampPosition < (timestamp - 1)->timestampPosition)); const char *message = negative ? " <=NEGATIVE!" : (retro ? " <= RETROGRADE!" : ""); double latency = calculateLatencyMillis(timestamp->timestampPosition, timestamp->timestampNanos, timestamp->appPosition, timestamp->appNanoseconds, actualSampleRate); printf(" %3d : frames %8lld, xferd %8lld", i, (long long) timestamp->framesTotal, (long long) timestamp->appPosition); printf(" STAMP: pos = %8lld, nanos = %8lld, lat = %7.1f msec %s\n", (long long) timestamp->timestampPosition, (long long) timestamp->timestampNanos, latency, message); printedGood++; } } } if (printedGood == 0) { printf("ERROR - AAudioStream_getTimestamp() never gave us a valid timestamp\n"); result = AAUDIO_ERROR_INTERNAL; } else { // Make sure we do not get timestamps when stopped. int64_t position; int64_t time; aaudio_result_t tempResult = AAudioStream_getTimestamp(aaudioStream, CLOCK_MONOTONIC, &position, &time); if (tempResult != AAUDIO_ERROR_INVALID_STATE) { printf("ERROR - AAudioStream_getTimestamp() should return" " INVALID_STATE when stopped! %s\n", AAudio_convertResultToText(tempResult)); result = AAUDIO_ERROR_INTERNAL; } } // Avoid race conditions in AudioFlinger. // There is normally a delay between a real user stopping and restarting a stream. sleep(1); } finish: logTestResult(isMmap, sharingMode, performanceMode, direction, result); if (aaudioStream != nullptr) { AAudioStream_close(aaudioStream); } AAudioStreamBuilder_delete(aaudioBuilder); printf("result = %d = %s\n", result, AAudio_convertResultToText(result)); return result; } int main(int argc, char **argv) { (void) argc; (void) argv; aaudio_result_t result = AAUDIO_OK; // Make printf print immediately so that debug info is not stuck // in a buffer if we hang or crash. setvbuf(stdout, nullptr, _IONBF, (size_t) 0); printf("Test Timestamps V0.1.4\n"); // Legacy aaudio_policy_t policy = AAUDIO_POLICY_NEVER; result = testTimeStamps(policy, AAUDIO_SHARING_MODE_SHARED, AAUDIO_PERFORMANCE_MODE_NONE, AAUDIO_DIRECTION_INPUT); result = testTimeStamps(policy, AAUDIO_SHARING_MODE_SHARED, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY, AAUDIO_DIRECTION_INPUT); result = testTimeStamps(policy, AAUDIO_SHARING_MODE_SHARED, AAUDIO_PERFORMANCE_MODE_NONE, AAUDIO_DIRECTION_OUTPUT); result = testTimeStamps(policy, AAUDIO_SHARING_MODE_SHARED, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY, AAUDIO_DIRECTION_OUTPUT); // MMAP policy = AAUDIO_POLICY_ALWAYS; result = testTimeStamps(policy, AAUDIO_SHARING_MODE_EXCLUSIVE, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY, AAUDIO_DIRECTION_INPUT); result = testTimeStamps(policy, AAUDIO_SHARING_MODE_EXCLUSIVE, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY, AAUDIO_DIRECTION_OUTPUT); result = testTimeStamps(policy, AAUDIO_SHARING_MODE_SHARED, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY, AAUDIO_DIRECTION_INPUT); result = testTimeStamps(policy, AAUDIO_SHARING_MODE_SHARED, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY, AAUDIO_DIRECTION_OUTPUT); printTestResults(); return (result == AAUDIO_OK) ? EXIT_SUCCESS : EXIT_FAILURE; }