/* * Wrapper functions for crypto libraries * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi> * * This software may be distributed under the terms of the BSD license. * See README for more details. * * This file defines the cryptographic functions that need to be implemented * for wpa_supplicant and hostapd. When TLS is not used, internal * implementation of MD5, SHA1, and AES is used and no external libraries are * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the * crypto library used by the TLS implementation is expected to be used for * non-TLS needs, too, in order to save space by not implementing these * functions twice. * * Wrapper code for using each crypto library is in its own file (crypto*.c) * and one of these files is build and linked in to provide the functions * defined here. */ #ifndef CRYPTO_H #define CRYPTO_H /** * md4_vector - MD4 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 on failure */ int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); /** * md5_vector - MD5 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 on failure */ int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); /** * sha1_vector - SHA-1 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 on failure */ int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); /** * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF * @seed: Seed/key for the PRF * @seed_len: Seed length in bytes * @x: Buffer for PRF output * @xlen: Output length in bytes * Returns: 0 on success, -1 on failure * * This function implements random number generation specified in NIST FIPS * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to * SHA-1, but has different message padding. */ int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen); /** * sha256_vector - SHA256 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 on failure */ int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); /** * sha384_vector - SHA384 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 on failure */ int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); /** * sha512_vector - SHA512 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 on failure */ int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); /** * des_encrypt - Encrypt one block with DES * @clear: 8 octets (in) * @key: 7 octets (in) (no parity bits included) * @cypher: 8 octets (out) * Returns: 0 on success, -1 on failure */ int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); /** * aes_encrypt_init - Initialize AES for encryption * @key: Encryption key * @len: Key length in bytes (usually 16, i.e., 128 bits) * Returns: Pointer to context data or %NULL on failure */ void * aes_encrypt_init(const u8 *key, size_t len); /** * aes_encrypt - Encrypt one AES block * @ctx: Context pointer from aes_encrypt_init() * @plain: Plaintext data to be encrypted (16 bytes) * @crypt: Buffer for the encrypted data (16 bytes) * Returns: 0 on success, -1 on failure */ int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); /** * aes_encrypt_deinit - Deinitialize AES encryption * @ctx: Context pointer from aes_encrypt_init() */ void aes_encrypt_deinit(void *ctx); /** * aes_decrypt_init - Initialize AES for decryption * @key: Decryption key * @len: Key length in bytes (usually 16, i.e., 128 bits) * Returns: Pointer to context data or %NULL on failure */ void * aes_decrypt_init(const u8 *key, size_t len); /** * aes_decrypt - Decrypt one AES block * @ctx: Context pointer from aes_encrypt_init() * @crypt: Encrypted data (16 bytes) * @plain: Buffer for the decrypted data (16 bytes) * Returns: 0 on success, -1 on failure */ int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); /** * aes_decrypt_deinit - Deinitialize AES decryption * @ctx: Context pointer from aes_encrypt_init() */ void aes_decrypt_deinit(void *ctx); enum crypto_hash_alg { CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256, CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512 }; struct crypto_hash; /** * crypto_hash_init - Initialize hash/HMAC function * @alg: Hash algorithm * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed * @key_len: Length of the key in bytes * Returns: Pointer to hash context to use with other hash functions or %NULL * on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, size_t key_len); /** * crypto_hash_update - Add data to hash calculation * @ctx: Context pointer from crypto_hash_init() * @data: Data buffer to add * @len: Length of the buffer * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); /** * crypto_hash_finish - Complete hash calculation * @ctx: Context pointer from crypto_hash_init() * @hash: Buffer for hash value or %NULL if caller is just freeing the hash * context * @len: Pointer to length of the buffer or %NULL if caller is just freeing the * hash context; on return, this is set to the actual length of the hash value * Returns: 0 on success, -1 if buffer is too small (len set to needed length), * or -2 on other failures (including failed crypto_hash_update() operations) * * This function calculates the hash value and frees the context buffer that * was used for hash calculation. * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); enum crypto_cipher_alg { CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 }; struct crypto_cipher; /** * crypto_cipher_init - Initialize block/stream cipher function * @alg: Cipher algorithm * @iv: Initialization vector for block ciphers or %NULL for stream ciphers * @key: Cipher key * @key_len: Length of key in bytes * Returns: Pointer to cipher context to use with other cipher functions or * %NULL on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, const u8 *iv, const u8 *key, size_t key_len); /** * crypto_cipher_encrypt - Cipher encrypt * @ctx: Context pointer from crypto_cipher_init() * @plain: Plaintext to cipher * @crypt: Resulting ciphertext * @len: Length of the plaintext * Returns: 0 on success, -1 on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, u8 *crypt, size_t len); /** * crypto_cipher_decrypt - Cipher decrypt * @ctx: Context pointer from crypto_cipher_init() * @crypt: Ciphertext to decrypt * @plain: Resulting plaintext * @len: Length of the cipher text * Returns: 0 on success, -1 on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, u8 *plain, size_t len); /** * crypto_cipher_decrypt - Free cipher context * @ctx: Context pointer from crypto_cipher_init() * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ void crypto_cipher_deinit(struct crypto_cipher *ctx); struct crypto_public_key; struct crypto_private_key; /** * crypto_public_key_import - Import an RSA public key * @key: Key buffer (DER encoded RSA public key) * @len: Key buffer length in bytes * Returns: Pointer to the public key or %NULL on failure * * This function can just return %NULL if the crypto library supports X.509 * parsing. In that case, crypto_public_key_from_cert() is used to import the * public key from a certificate. * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); struct crypto_public_key * crypto_public_key_import_parts(const u8 *n, size_t n_len, const u8 *e, size_t e_len); /** * crypto_private_key_import - Import an RSA private key * @key: Key buffer (DER encoded RSA private key) * @len: Key buffer length in bytes * @passwd: Key encryption password or %NULL if key is not encrypted * Returns: Pointer to the private key or %NULL on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ struct crypto_private_key * crypto_private_key_import(const u8 *key, size_t len, const char *passwd); /** * crypto_public_key_from_cert - Import an RSA public key from a certificate * @buf: DER encoded X.509 certificate * @len: Certificate buffer length in bytes * Returns: Pointer to public key or %NULL on failure * * This function can just return %NULL if the crypto library does not support * X.509 parsing. In that case, internal code will be used to parse the * certificate and public key is imported using crypto_public_key_import(). * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, size_t len); /** * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) * @key: Public key * @in: Plaintext buffer * @inlen: Length of plaintext buffer in bytes * @out: Output buffer for encrypted data * @outlen: Length of output buffer in bytes; set to used length on success * Returns: 0 on success, -1 on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_public_key_encrypt_pkcs1_v15( struct crypto_public_key *key, const u8 *in, size_t inlen, u8 *out, size_t *outlen); /** * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) * @key: Private key * @in: Encrypted buffer * @inlen: Length of encrypted buffer in bytes * @out: Output buffer for encrypted data * @outlen: Length of output buffer in bytes; set to used length on success * Returns: 0 on success, -1 on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_private_key_decrypt_pkcs1_v15( struct crypto_private_key *key, const u8 *in, size_t inlen, u8 *out, size_t *outlen); /** * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) * @key: Private key from crypto_private_key_import() * @in: Plaintext buffer * @inlen: Length of plaintext buffer in bytes * @out: Output buffer for encrypted (signed) data * @outlen: Length of output buffer in bytes; set to used length on success * Returns: 0 on success, -1 on failure * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, const u8 *in, size_t inlen, u8 *out, size_t *outlen); /** * crypto_public_key_free - Free public key * @key: Public key * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ void crypto_public_key_free(struct crypto_public_key *key); /** * crypto_private_key_free - Free private key * @key: Private key from crypto_private_key_import() * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ void crypto_private_key_free(struct crypto_private_key *key); /** * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature * @key: Public key * @crypt: Encrypted signature data (using the private key) * @crypt_len: Encrypted signature data length * @plain: Buffer for plaintext (at least crypt_len bytes) * @plain_len: Plaintext length (max buffer size on input, real len on output); * Returns: 0 on success, -1 on failure */ int __must_check crypto_public_key_decrypt_pkcs1( struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, u8 *plain, size_t *plain_len); int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, u8 *pubkey); int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, const u8 *order, size_t order_len, const u8 *privkey, size_t privkey_len, const u8 *pubkey, size_t pubkey_len, u8 *secret, size_t *len); /** * crypto_global_init - Initialize crypto wrapper * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_global_init(void); /** * crypto_global_deinit - Deinitialize crypto wrapper * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ void crypto_global_deinit(void); /** * crypto_mod_exp - Modular exponentiation of large integers * @base: Base integer (big endian byte array) * @base_len: Length of base integer in bytes * @power: Power integer (big endian byte array) * @power_len: Length of power integer in bytes * @modulus: Modulus integer (big endian byte array) * @modulus_len: Length of modulus integer in bytes * @result: Buffer for the result * @result_len: Result length (max buffer size on input, real len on output) * Returns: 0 on success, -1 on failure * * This function calculates result = base ^ power mod modulus. modules_len is * used as the maximum size of modulus buffer. It is set to the used size on * success. * * This function is only used with internal TLSv1 implementation * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need * to implement this. */ int __must_check crypto_mod_exp(const u8 *base, size_t base_len, const u8 *power, size_t power_len, const u8 *modulus, size_t modulus_len, u8 *result, size_t *result_len); /** * rc4_skip - XOR RC4 stream to given data with skip-stream-start * @key: RC4 key * @keylen: RC4 key length * @skip: number of bytes to skip from the beginning of the RC4 stream * @data: data to be XOR'ed with RC4 stream * @data_len: buf length * Returns: 0 on success, -1 on failure * * Generate RC4 pseudo random stream for the given key, skip beginning of the * stream, and XOR the end result with the data buffer to perform RC4 * encryption/decryption. */ int rc4_skip(const u8 *key, size_t keylen, size_t skip, u8 *data, size_t data_len); /** * crypto_get_random - Generate cryptographically strong pseudy-random bytes * @buf: Buffer for data * @len: Number of bytes to generate * Returns: 0 on success, -1 on failure * * If the PRNG does not have enough entropy to ensure unpredictable byte * sequence, this functions must return -1. */ int crypto_get_random(void *buf, size_t len); /** * struct crypto_bignum - bignum * * Internal data structure for bignum implementation. The contents is specific * to the used crypto library. */ struct crypto_bignum; /** * crypto_bignum_init - Allocate memory for bignum * Returns: Pointer to allocated bignum or %NULL on failure */ struct crypto_bignum * crypto_bignum_init(void); /** * crypto_bignum_init_set - Allocate memory for bignum and set the value * @buf: Buffer with unsigned binary value * @len: Length of buf in octets * Returns: Pointer to allocated bignum or %NULL on failure */ struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); /** * crypto_bignum_deinit - Free bignum * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() * @clear: Whether to clear the value from memory */ void crypto_bignum_deinit(struct crypto_bignum *n, int clear); /** * crypto_bignum_to_bin - Set binary buffer to unsigned bignum * @a: Bignum * @buf: Buffer for the binary number * @len: Length of @buf in octets * @padlen: Length in octets to pad the result to or 0 to indicate no padding * Returns: Number of octets written on success, -1 on failure */ int crypto_bignum_to_bin(const struct crypto_bignum *a, u8 *buf, size_t buflen, size_t padlen); /** * crypto_bignum_rand - Create a random number in range of modulus * @r: Bignum; set to a random value * @m: Bignum; modulus * Returns: 0 on success, -1 on failure */ int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m); /** * crypto_bignum_add - c = a + b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a + b * Returns: 0 on success, -1 on failure */ int crypto_bignum_add(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c); /** * crypto_bignum_mod - c = a % b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a % b * Returns: 0 on success, -1 on failure */ int crypto_bignum_mod(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c); /** * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) * @a: Bignum; base * @b: Bignum; exponent * @c: Bignum; modulus * @d: Bignum; used to store the result of a^b (mod c) * Returns: 0 on success, -1 on failure */ int crypto_bignum_exptmod(const struct crypto_bignum *a, const struct crypto_bignum *b, const struct crypto_bignum *c, struct crypto_bignum *d); /** * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result * Returns: 0 on success, -1 on failure */ int crypto_bignum_inverse(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c); /** * crypto_bignum_sub - c = a - b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a - b * Returns: 0 on success, -1 on failure */ int crypto_bignum_sub(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c); /** * crypto_bignum_div - c = a / b * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a / b * Returns: 0 on success, -1 on failure */ int crypto_bignum_div(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c); /** * crypto_bignum_mulmod - d = a * b (mod c) * @a: Bignum * @b: Bignum * @c: Bignum * @d: Bignum; used to store the result of (a * b) % c * Returns: 0 on success, -1 on failure */ int crypto_bignum_mulmod(const struct crypto_bignum *a, const struct crypto_bignum *b, const struct crypto_bignum *c, struct crypto_bignum *d); /** * crypto_bignum_rshift - r = a >> n * @a: Bignum * @n: Number of bits * @r: Bignum; used to store the result of a >> n * Returns: 0 on success, -1 on failure */ int crypto_bignum_rshift(const struct crypto_bignum *a, int n, struct crypto_bignum *r); /** * crypto_bignum_cmp - Compare two bignums * @a: Bignum * @b: Bignum * Returns: -1 if a < b, 0 if a == b, or 1 if a > b */ int crypto_bignum_cmp(const struct crypto_bignum *a, const struct crypto_bignum *b); /** * crypto_bignum_bits - Get size of a bignum in bits * @a: Bignum * Returns: Number of bits in the bignum */ int crypto_bignum_bits(const struct crypto_bignum *a); /** * crypto_bignum_is_zero - Is the given bignum zero * @a: Bignum * Returns: 1 if @a is zero or 0 if not */ int crypto_bignum_is_zero(const struct crypto_bignum *a); /** * crypto_bignum_is_one - Is the given bignum one * @a: Bignum * Returns: 1 if @a is one or 0 if not */ int crypto_bignum_is_one(const struct crypto_bignum *a); /** * crypto_bignum_is_odd - Is the given bignum odd * @a: Bignum * Returns: 1 if @a is odd or 0 if not */ int crypto_bignum_is_odd(const struct crypto_bignum *a); /** * crypto_bignum_legendre - Compute the Legendre symbol (a/p) * @a: Bignum * @p: Bignum * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure */ int crypto_bignum_legendre(const struct crypto_bignum *a, const struct crypto_bignum *p); /** * struct crypto_ec - Elliptic curve context * * Internal data structure for EC implementation. The contents is specific * to the used crypto library. */ struct crypto_ec; /** * crypto_ec_init - Initialize elliptic curve context * @group: Identifying number for the ECC group (IANA "Group Description" * attribute registrty for RFC 2409) * Returns: Pointer to EC context or %NULL on failure */ struct crypto_ec * crypto_ec_init(int group); /** * crypto_ec_deinit - Deinitialize elliptic curve context * @e: EC context from crypto_ec_init() */ void crypto_ec_deinit(struct crypto_ec *e); /** * crypto_ec_prime_len - Get length of the prime in octets * @e: EC context from crypto_ec_init() * Returns: Length of the prime defining the group */ size_t crypto_ec_prime_len(struct crypto_ec *e); /** * crypto_ec_prime_len_bits - Get length of the prime in bits * @e: EC context from crypto_ec_init() * Returns: Length of the prime defining the group in bits */ size_t crypto_ec_prime_len_bits(struct crypto_ec *e); /** * crypto_ec_order_len - Get length of the order in octets * @e: EC context from crypto_ec_init() * Returns: Length of the order defining the group */ size_t crypto_ec_order_len(struct crypto_ec *e); /** * crypto_ec_get_prime - Get prime defining an EC group * @e: EC context from crypto_ec_init() * Returns: Prime (bignum) defining the group */ const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); /** * crypto_ec_get_order - Get order of an EC group * @e: EC context from crypto_ec_init() * Returns: Order (bignum) of the group */ const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); /** * struct crypto_ec_point - Elliptic curve point * * Internal data structure for EC implementation to represent a point. The * contents is specific to the used crypto library. */ struct crypto_ec_point; /** * crypto_ec_point_init - Initialize data for an EC point * @e: EC context from crypto_ec_init() * Returns: Pointer to EC point data or %NULL on failure */ struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); /** * crypto_ec_point_deinit - Deinitialize EC point data * @p: EC point data from crypto_ec_point_init() * @clear: Whether to clear the EC point value from memory */ void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); /** * crypto_ec_point_x - Copies the x-ordinate point into big number * @e: EC context from crypto_ec_init() * @p: EC point data * @x: Big number to set to the copy of x-ordinate * Returns: 0 on success, -1 on failure */ int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p, struct crypto_bignum *x); /** * crypto_ec_point_to_bin - Write EC point value as binary data * @e: EC context from crypto_ec_init() * @p: EC point data from crypto_ec_point_init() * @x: Buffer for writing the binary data for x coordinate or %NULL if not used * @y: Buffer for writing the binary data for y coordinate or %NULL if not used * Returns: 0 on success, -1 on failure * * This function can be used to write an EC point as binary data in a format * that has the x and y coordinates in big endian byte order fields padded to * the length of the prime defining the group. */ int crypto_ec_point_to_bin(struct crypto_ec *e, const struct crypto_ec_point *point, u8 *x, u8 *y); /** * crypto_ec_point_from_bin - Create EC point from binary data * @e: EC context from crypto_ec_init() * @val: Binary data to read the EC point from * Returns: Pointer to EC point data or %NULL on failure * * This function readers x and y coordinates of the EC point from the provided * buffer assuming the values are in big endian byte order with fields padded to * the length of the prime defining the group. */ struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, const u8 *val); /** * crypto_ec_point_add - c = a + b * @e: EC context from crypto_ec_init() * @a: Bignum * @b: Bignum * @c: Bignum; used to store the result of a + b * Returns: 0 on success, -1 on failure */ int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, const struct crypto_ec_point *b, struct crypto_ec_point *c); /** * crypto_ec_point_mul - res = b * p * @e: EC context from crypto_ec_init() * @p: EC point * @b: Bignum * @res: EC point; used to store the result of b * p * Returns: 0 on success, -1 on failure */ int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, const struct crypto_bignum *b, struct crypto_ec_point *res); /** * crypto_ec_point_invert - Compute inverse of an EC point * @e: EC context from crypto_ec_init() * @p: EC point to invert (and result of the operation) * Returns: 0 on success, -1 on failure */ int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); /** * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate * @e: EC context from crypto_ec_init() * @p: EC point to use for the returning the result * @x: x coordinate * @y_bit: y-bit (0 or 1) for selecting the y value to use * Returns: 0 on success, -1 on failure */ int crypto_ec_point_solve_y_coord(struct crypto_ec *e, struct crypto_ec_point *p, const struct crypto_bignum *x, int y_bit); /** * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b * @e: EC context from crypto_ec_init() * @x: x coordinate * Returns: y^2 on success, %NULL failure */ struct crypto_bignum * crypto_ec_point_compute_y_sqr(struct crypto_ec *e, const struct crypto_bignum *x); /** * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element * @e: EC context from crypto_ec_init() * @p: EC point * Returns: 1 if the specified EC point is the neutral element of the group or * 0 if not */ int crypto_ec_point_is_at_infinity(struct crypto_ec *e, const struct crypto_ec_point *p); /** * crypto_ec_point_is_on_curve - Check whether EC point is on curve * @e: EC context from crypto_ec_init() * @p: EC point * Returns: 1 if the specified EC point is on the curve or 0 if not */ int crypto_ec_point_is_on_curve(struct crypto_ec *e, const struct crypto_ec_point *p); /** * crypto_ec_point_cmp - Compare two EC points * @e: EC context from crypto_ec_init() * @a: EC point * @b: EC point * Returns: 0 on equal, non-zero otherwise */ int crypto_ec_point_cmp(const struct crypto_ec *e, const struct crypto_ec_point *a, const struct crypto_ec_point *b); struct crypto_ecdh; struct crypto_ecdh * crypto_ecdh_init(int group); struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y); struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y, const u8 *key, size_t len); void crypto_ecdh_deinit(struct crypto_ecdh *ecdh); #endif /* CRYPTO_H */