/* * Simultaneous authentication of equals * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi> * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include "common.h" #include "utils/const_time.h" #include "crypto/crypto.h" #include "crypto/sha256.h" #include "crypto/random.h" #include "crypto/dh_groups.h" #include "ieee802_11_defs.h" #include "sae.h" static int sae_suitable_group(int group) { #ifdef CONFIG_TESTING_OPTIONS /* Allow all groups for testing purposes in non-production builds. */ return 1; #else /* CONFIG_TESTING_OPTIONS */ /* Enforce REVmd rules on which SAE groups are suitable for production * purposes: FFC groups whose prime is >= 3072 bits and ECC groups * defined over a prime field whose prime is >= 256 bits. Furthermore, * ECC groups defined over a characteristic 2 finite field and ECC * groups with a co-factor greater than 1 are not suitable. */ return group == 19 || group == 20 || group == 21 || group == 28 || group == 29 || group == 30 || group == 15 || group == 16 || group == 17 || group == 18; #endif /* CONFIG_TESTING_OPTIONS */ } int sae_set_group(struct sae_data *sae, int group) { struct sae_temporary_data *tmp; if (!sae_suitable_group(group)) { wpa_printf(MSG_DEBUG, "SAE: Reject unsuitable group %d", group); return -1; } sae_clear_data(sae); tmp = sae->tmp = os_zalloc(sizeof(*tmp)); if (tmp == NULL) return -1; /* First, check if this is an ECC group */ tmp->ec = crypto_ec_init(group); if (tmp->ec) { wpa_printf(MSG_DEBUG, "SAE: Selecting supported ECC group %d", group); sae->group = group; tmp->prime_len = crypto_ec_prime_len(tmp->ec); tmp->prime = crypto_ec_get_prime(tmp->ec); tmp->order = crypto_ec_get_order(tmp->ec); return 0; } /* Not an ECC group, check FFC */ tmp->dh = dh_groups_get(group); if (tmp->dh) { wpa_printf(MSG_DEBUG, "SAE: Selecting supported FFC group %d", group); sae->group = group; tmp->prime_len = tmp->dh->prime_len; if (tmp->prime_len > SAE_MAX_PRIME_LEN) { sae_clear_data(sae); return -1; } tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime, tmp->prime_len); if (tmp->prime_buf == NULL) { sae_clear_data(sae); return -1; } tmp->prime = tmp->prime_buf; tmp->order_buf = crypto_bignum_init_set(tmp->dh->order, tmp->dh->order_len); if (tmp->order_buf == NULL) { sae_clear_data(sae); return -1; } tmp->order = tmp->order_buf; return 0; } /* Unsupported group */ wpa_printf(MSG_DEBUG, "SAE: Group %d not supported by the crypto library", group); return -1; } void sae_clear_temp_data(struct sae_data *sae) { struct sae_temporary_data *tmp; if (sae == NULL || sae->tmp == NULL) return; tmp = sae->tmp; crypto_ec_deinit(tmp->ec); crypto_bignum_deinit(tmp->prime_buf, 0); crypto_bignum_deinit(tmp->order_buf, 0); crypto_bignum_deinit(tmp->sae_rand, 1); crypto_bignum_deinit(tmp->pwe_ffc, 1); crypto_bignum_deinit(tmp->own_commit_scalar, 0); crypto_bignum_deinit(tmp->own_commit_element_ffc, 0); crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0); crypto_ec_point_deinit(tmp->pwe_ecc, 1); crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0); crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0); wpabuf_free(tmp->anti_clogging_token); os_free(tmp->pw_id); bin_clear_free(tmp, sizeof(*tmp)); sae->tmp = NULL; } void sae_clear_data(struct sae_data *sae) { if (sae == NULL) return; sae_clear_temp_data(sae); crypto_bignum_deinit(sae->peer_commit_scalar, 0); os_memset(sae, 0, sizeof(*sae)); } static void buf_shift_right(u8 *buf, size_t len, size_t bits) { size_t i; for (i = len - 1; i > 0; i--) buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits); buf[0] >>= bits; } static struct crypto_bignum * sae_get_rand(struct sae_data *sae) { u8 val[SAE_MAX_PRIME_LEN]; int iter = 0; struct crypto_bignum *bn = NULL; int order_len_bits = crypto_bignum_bits(sae->tmp->order); size_t order_len = (order_len_bits + 7) / 8; if (order_len > sizeof(val)) return NULL; for (;;) { if (iter++ > 100 || random_get_bytes(val, order_len) < 0) return NULL; if (order_len_bits % 8) buf_shift_right(val, order_len, 8 - order_len_bits % 8); bn = crypto_bignum_init_set(val, order_len); if (bn == NULL) return NULL; if (crypto_bignum_is_zero(bn) || crypto_bignum_is_one(bn) || crypto_bignum_cmp(bn, sae->tmp->order) >= 0) { crypto_bignum_deinit(bn, 0); continue; } break; } os_memset(val, 0, order_len); return bn; } static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae) { crypto_bignum_deinit(sae->tmp->sae_rand, 1); sae->tmp->sae_rand = sae_get_rand(sae); if (sae->tmp->sae_rand == NULL) return NULL; return sae_get_rand(sae); } static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key) { wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2)); if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) { os_memcpy(key, addr1, ETH_ALEN); os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN); } else { os_memcpy(key, addr2, ETH_ALEN); os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN); } } static struct crypto_bignum * get_rand_1_to_p_1(const u8 *prime, size_t prime_len, size_t prime_bits, int *r_odd) { for (;;) { struct crypto_bignum *r; u8 tmp[SAE_MAX_ECC_PRIME_LEN]; if (random_get_bytes(tmp, prime_len) < 0) break; if (prime_bits % 8) buf_shift_right(tmp, prime_len, 8 - prime_bits % 8); if (os_memcmp(tmp, prime, prime_len) >= 0) continue; r = crypto_bignum_init_set(tmp, prime_len); if (!r) break; if (crypto_bignum_is_zero(r)) { crypto_bignum_deinit(r, 0); continue; } *r_odd = tmp[prime_len - 1] & 0x01; return r; } return NULL; } static int is_quadratic_residue_blind(struct sae_data *sae, const u8 *prime, size_t bits, const u8 *qr, const u8 *qnr, const struct crypto_bignum *y_sqr) { struct crypto_bignum *r, *num, *qr_or_qnr = NULL; int r_odd, check, res = -1; u8 qr_or_qnr_bin[SAE_MAX_ECC_PRIME_LEN]; size_t prime_len = sae->tmp->prime_len; unsigned int mask; /* * Use the blinding technique to mask y_sqr while determining * whether it is a quadratic residue modulo p to avoid leaking * timing information while determining the Legendre symbol. * * v = y_sqr * r = a random number between 1 and p-1, inclusive * num = (v * r * r) modulo p */ r = get_rand_1_to_p_1(prime, prime_len, bits, &r_odd); if (!r) return -1; num = crypto_bignum_init(); if (!num || crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 || crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0) goto fail; /* * Need to minimize differences in handling different cases, so try to * avoid branches and timing differences. * * If r_odd: * num = (num * qr) module p * LGR(num, p) = 1 ==> quadratic residue * else: * num = (num * qnr) module p * LGR(num, p) = -1 ==> quadratic residue */ mask = const_time_is_zero(r_odd); const_time_select_bin(mask, qnr, qr, prime_len, qr_or_qnr_bin); qr_or_qnr = crypto_bignum_init_set(qr_or_qnr_bin, prime_len); if (!qr_or_qnr || crypto_bignum_mulmod(num, qr_or_qnr, sae->tmp->prime, num) < 0) goto fail; /* r_odd is 0 or 1; branchless version of check = r_odd ? 1 : -1, */ check = const_time_select_int(mask, -1, 1); res = crypto_bignum_legendre(num, sae->tmp->prime); if (res == -2) { res = -1; goto fail; } /* branchless version of res = res == check * (res is -1, 0, or 1; check is -1 or 1) */ mask = const_time_eq(res, check); res = const_time_select_int(mask, 1, 0); fail: crypto_bignum_deinit(num, 1); crypto_bignum_deinit(r, 1); crypto_bignum_deinit(qr_or_qnr, 1); return res; } static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed, const u8 *prime, const u8 *qr, const u8 *qnr, u8 *pwd_value) { struct crypto_bignum *y_sqr, *x_cand; int res; size_t bits; wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN); /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */ bits = crypto_ec_prime_len_bits(sae->tmp->ec); if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking", prime, sae->tmp->prime_len, pwd_value, bits) < 0) return -1; if (bits % 8) buf_shift_right(pwd_value, sae->tmp->prime_len, 8 - bits % 8); wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value, sae->tmp->prime_len); if (const_time_memcmp(pwd_value, prime, sae->tmp->prime_len) >= 0) return 0; x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len); if (!x_cand) return -1; y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand); crypto_bignum_deinit(x_cand, 1); if (!y_sqr) return -1; res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr); crypto_bignum_deinit(y_sqr, 1); return res; } /* Returns -1 on fatal failure, 0 if PWE cannot be derived from the provided * pwd-seed, or 1 if a valid PWE was derived from pwd-seed. */ static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed, struct crypto_bignum *pwe) { u8 pwd_value[SAE_MAX_PRIME_LEN]; size_t bits = sae->tmp->prime_len * 8; u8 exp[1]; struct crypto_bignum *a, *b = NULL; int res, is_val; u8 pwd_value_valid; wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN); /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */ if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking", sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value, bits) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value, sae->tmp->prime_len); /* Check whether pwd-value < p */ res = const_time_memcmp(pwd_value, sae->tmp->dh->prime, sae->tmp->prime_len); /* pwd-value >= p is invalid, so res is < 0 for the valid cases and * the negative sign can be used to fill the mask for constant time * selection */ pwd_value_valid = const_time_fill_msb(res); /* If pwd-value >= p, force pwd-value to be < p and perform the * calculations anyway to hide timing difference. The derived PWE will * be ignored in that case. */ pwd_value[0] = const_time_select_u8(pwd_value_valid, pwd_value[0], 0); /* PWE = pwd-value^((p-1)/r) modulo p */ res = -1; a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len); if (!a) goto fail; /* This is an optimization based on the used group that does not depend * on the password in any way, so it is fine to use separate branches * for this step without constant time operations. */ if (sae->tmp->dh->safe_prime) { /* * r = (p-1)/2 for the group used here, so this becomes: * PWE = pwd-value^2 modulo p */ exp[0] = 2; b = crypto_bignum_init_set(exp, sizeof(exp)); } else { /* Calculate exponent: (p-1)/r */ exp[0] = 1; b = crypto_bignum_init_set(exp, sizeof(exp)); if (b == NULL || crypto_bignum_sub(sae->tmp->prime, b, b) < 0 || crypto_bignum_div(b, sae->tmp->order, b) < 0) goto fail; } if (!b) goto fail; res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe); if (res < 0) goto fail; /* There were no fatal errors in calculations, so determine the return * value using constant time operations. We get here for number of * invalid cases which are cleared here after having performed all the * computation. PWE is valid if pwd-value was less than prime and * PWE > 1. Start with pwd-value check first and then use constant time * operations to clear res to 0 if PWE is 0 or 1. */ res = const_time_select_u8(pwd_value_valid, 1, 0); is_val = crypto_bignum_is_zero(pwe); res = const_time_select_u8(const_time_is_zero(is_val), res, 0); is_val = crypto_bignum_is_one(pwe); res = const_time_select_u8(const_time_is_zero(is_val), res, 0); fail: crypto_bignum_deinit(a, 1); crypto_bignum_deinit(b, 1); return res; } static int get_random_qr_qnr(const u8 *prime, size_t prime_len, const struct crypto_bignum *prime_bn, size_t prime_bits, struct crypto_bignum **qr, struct crypto_bignum **qnr) { *qr = NULL; *qnr = NULL; while (!(*qr) || !(*qnr)) { u8 tmp[SAE_MAX_ECC_PRIME_LEN]; struct crypto_bignum *q; int res; if (random_get_bytes(tmp, prime_len) < 0) break; if (prime_bits % 8) buf_shift_right(tmp, prime_len, 8 - prime_bits % 8); if (os_memcmp(tmp, prime, prime_len) >= 0) continue; q = crypto_bignum_init_set(tmp, prime_len); if (!q) break; res = crypto_bignum_legendre(q, prime_bn); if (res == 1 && !(*qr)) *qr = q; else if (res == -1 && !(*qnr)) *qnr = q; else crypto_bignum_deinit(q, 0); } return (*qr && *qnr) ? 0 : -1; } static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1, const u8 *addr2, const u8 *password, size_t password_len, const char *identifier) { u8 counter, k = 40; u8 addrs[2 * ETH_ALEN]; const u8 *addr[3]; size_t len[3]; size_t num_elem; u8 *dummy_password, *tmp_password; int pwd_seed_odd = 0; u8 prime[SAE_MAX_ECC_PRIME_LEN]; size_t prime_len; struct crypto_bignum *x = NULL, *qr = NULL, *qnr = NULL; u8 x_bin[SAE_MAX_ECC_PRIME_LEN]; u8 x_cand_bin[SAE_MAX_ECC_PRIME_LEN]; u8 qr_bin[SAE_MAX_ECC_PRIME_LEN]; u8 qnr_bin[SAE_MAX_ECC_PRIME_LEN]; size_t bits; int res = -1; u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_* * mask */ os_memset(x_bin, 0, sizeof(x_bin)); dummy_password = os_malloc(password_len); tmp_password = os_malloc(password_len); if (!dummy_password || !tmp_password || random_get_bytes(dummy_password, password_len) < 0) goto fail; prime_len = sae->tmp->prime_len; if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime), prime_len) < 0) goto fail; bits = crypto_ec_prime_len_bits(sae->tmp->ec); /* * Create a random quadratic residue (qr) and quadratic non-residue * (qnr) modulo p for blinding purposes during the loop. */ if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits, &qr, &qnr) < 0 || crypto_bignum_to_bin(qr, qr_bin, sizeof(qr_bin), prime_len) < 0 || crypto_bignum_to_bin(qnr, qnr_bin, sizeof(qnr_bin), prime_len) < 0) goto fail; wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password", password, password_len); if (identifier) wpa_printf(MSG_DEBUG, "SAE: password identifier: %s", identifier); /* * H(salt, ikm) = HMAC-SHA256(salt, ikm) * base = password [|| identifier] * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC), * base || counter) */ sae_pwd_seed_key(addr1, addr2, addrs); addr[0] = tmp_password; len[0] = password_len; num_elem = 1; if (identifier) { addr[num_elem] = (const u8 *) identifier; len[num_elem] = os_strlen(identifier); num_elem++; } addr[num_elem] = &counter; len[num_elem] = sizeof(counter); num_elem++; /* * Continue for at least k iterations to protect against side-channel * attacks that attempt to determine the number of iterations required * in the loop. */ for (counter = 1; counter <= k || !found; counter++) { u8 pwd_seed[SHA256_MAC_LEN]; if (counter > 200) { /* This should not happen in practice */ wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE"); break; } wpa_printf(MSG_DEBUG, "SAE: counter = %03u", counter); const_time_select_bin(found, dummy_password, password, password_len, tmp_password); if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem, addr, len, pwd_seed) < 0) break; res = sae_test_pwd_seed_ecc(sae, pwd_seed, prime, qr_bin, qnr_bin, x_cand_bin); const_time_select_bin(found, x_bin, x_cand_bin, prime_len, x_bin); pwd_seed_odd = const_time_select_u8( found, pwd_seed_odd, pwd_seed[SHA256_MAC_LEN - 1] & 0x01); os_memset(pwd_seed, 0, sizeof(pwd_seed)); if (res < 0) goto fail; /* Need to minimize differences in handling res == 0 and 1 here * to avoid differences in timing and instruction cache access, * so use const_time_select_*() to make local copies of the * values based on whether this loop iteration was the one that * found the pwd-seed/x. */ /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them * (with res converted to 0/0xff) handles this in constant time. */ found |= res * 0xff; wpa_printf(MSG_DEBUG, "SAE: pwd-seed result %d found=0x%02x", res, found); } if (!found) { wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE"); res = -1; goto fail; } x = crypto_bignum_init_set(x_bin, prime_len); if (!x) { res = -1; goto fail; } if (!sae->tmp->pwe_ecc) sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec); if (!sae->tmp->pwe_ecc) res = -1; else res = crypto_ec_point_solve_y_coord(sae->tmp->ec, sae->tmp->pwe_ecc, x, pwd_seed_odd); if (res < 0) { /* * This should not happen since we already checked that there * is a result. */ wpa_printf(MSG_DEBUG, "SAE: Could not solve y"); } fail: crypto_bignum_deinit(qr, 0); crypto_bignum_deinit(qnr, 0); os_free(dummy_password); bin_clear_free(tmp_password, password_len); crypto_bignum_deinit(x, 1); os_memset(x_bin, 0, sizeof(x_bin)); os_memset(x_cand_bin, 0, sizeof(x_cand_bin)); return res; } static int sae_modp_group_require_masking(int group) { /* Groups for which pwd-value is likely to be >= p frequently */ return group == 22 || group == 23 || group == 24; } static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1, const u8 *addr2, const u8 *password, size_t password_len, const char *identifier) { u8 counter, k, sel_counter = 0; u8 addrs[2 * ETH_ALEN]; const u8 *addr[3]; size_t len[3]; size_t num_elem; u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_* * mask */ u8 mask; struct crypto_bignum *pwe; size_t prime_len = sae->tmp->prime_len * 8; u8 *pwe_buf; crypto_bignum_deinit(sae->tmp->pwe_ffc, 1); sae->tmp->pwe_ffc = NULL; /* Allocate a buffer to maintain selected and candidate PWE for constant * time selection. */ pwe_buf = os_zalloc(prime_len * 2); pwe = crypto_bignum_init(); if (!pwe_buf || !pwe) goto fail; wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password", password, password_len); /* * H(salt, ikm) = HMAC-SHA256(salt, ikm) * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC), * password [|| identifier] || counter) */ sae_pwd_seed_key(addr1, addr2, addrs); addr[0] = password; len[0] = password_len; num_elem = 1; if (identifier) { addr[num_elem] = (const u8 *) identifier; len[num_elem] = os_strlen(identifier); num_elem++; } addr[num_elem] = &counter; len[num_elem] = sizeof(counter); num_elem++; k = sae_modp_group_require_masking(sae->group) ? 40 : 1; for (counter = 1; counter <= k || !found; counter++) { u8 pwd_seed[SHA256_MAC_LEN]; int res; if (counter > 200) { /* This should not happen in practice */ wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE"); break; } wpa_printf(MSG_DEBUG, "SAE: counter = %02u", counter); if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem, addr, len, pwd_seed) < 0) break; res = sae_test_pwd_seed_ffc(sae, pwd_seed, pwe); /* res is -1 for fatal failure, 0 if a valid PWE was not found, * or 1 if a valid PWE was found. */ if (res < 0) break; /* Store the candidate PWE into the second half of pwe_buf and * the selected PWE in the beginning of pwe_buf using constant * time selection. */ if (crypto_bignum_to_bin(pwe, pwe_buf + prime_len, prime_len, prime_len) < 0) break; const_time_select_bin(found, pwe_buf, pwe_buf + prime_len, prime_len, pwe_buf); sel_counter = const_time_select_u8(found, sel_counter, counter); mask = const_time_eq_u8(res, 1); found = const_time_select_u8(found, found, mask); } if (!found) goto fail; wpa_printf(MSG_DEBUG, "SAE: Use PWE from counter = %02u", sel_counter); sae->tmp->pwe_ffc = crypto_bignum_init_set(pwe_buf, prime_len); fail: crypto_bignum_deinit(pwe, 1); bin_clear_free(pwe_buf, prime_len * 2); return sae->tmp->pwe_ffc ? 0 : -1; } static int sae_derive_commit_element_ecc(struct sae_data *sae, struct crypto_bignum *mask) { /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */ if (!sae->tmp->own_commit_element_ecc) { sae->tmp->own_commit_element_ecc = crypto_ec_point_init(sae->tmp->ec); if (!sae->tmp->own_commit_element_ecc) return -1; } if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask, sae->tmp->own_commit_element_ecc) < 0 || crypto_ec_point_invert(sae->tmp->ec, sae->tmp->own_commit_element_ecc) < 0) { wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element"); return -1; } return 0; } static int sae_derive_commit_element_ffc(struct sae_data *sae, struct crypto_bignum *mask) { /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */ if (!sae->tmp->own_commit_element_ffc) { sae->tmp->own_commit_element_ffc = crypto_bignum_init(); if (!sae->tmp->own_commit_element_ffc) return -1; } if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime, sae->tmp->own_commit_element_ffc) < 0 || crypto_bignum_inverse(sae->tmp->own_commit_element_ffc, sae->tmp->prime, sae->tmp->own_commit_element_ffc) < 0) { wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element"); return -1; } return 0; } static int sae_derive_commit(struct sae_data *sae) { struct crypto_bignum *mask; int ret = -1; unsigned int counter = 0; do { counter++; if (counter > 100) { /* * This cannot really happen in practice if the random * number generator is working. Anyway, to avoid even a * theoretical infinite loop, break out after 100 * attemps. */ return -1; } mask = sae_get_rand_and_mask(sae); if (mask == NULL) { wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask"); return -1; } /* commit-scalar = (rand + mask) modulo r */ if (!sae->tmp->own_commit_scalar) { sae->tmp->own_commit_scalar = crypto_bignum_init(); if (!sae->tmp->own_commit_scalar) goto fail; } crypto_bignum_add(sae->tmp->sae_rand, mask, sae->tmp->own_commit_scalar); crypto_bignum_mod(sae->tmp->own_commit_scalar, sae->tmp->order, sae->tmp->own_commit_scalar); } while (crypto_bignum_is_zero(sae->tmp->own_commit_scalar) || crypto_bignum_is_one(sae->tmp->own_commit_scalar)); if ((sae->tmp->ec && sae_derive_commit_element_ecc(sae, mask) < 0) || (sae->tmp->dh && sae_derive_commit_element_ffc(sae, mask) < 0)) goto fail; ret = 0; fail: crypto_bignum_deinit(mask, 1); return ret; } int sae_prepare_commit(const u8 *addr1, const u8 *addr2, const u8 *password, size_t password_len, const char *identifier, struct sae_data *sae) { if (sae->tmp == NULL || (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password, password_len, identifier) < 0) || (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password, password_len, identifier) < 0) || sae_derive_commit(sae) < 0) return -1; return 0; } static int sae_derive_k_ecc(struct sae_data *sae, u8 *k) { struct crypto_ec_point *K; int ret = -1; K = crypto_ec_point_init(sae->tmp->ec); if (K == NULL) goto fail; /* * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE), * PEER-COMMIT-ELEMENT))) * If K is identity element (point-at-infinity), reject * k = F(K) (= x coordinate) */ if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, sae->peer_commit_scalar, K) < 0 || crypto_ec_point_add(sae->tmp->ec, K, sae->tmp->peer_commit_element_ecc, K) < 0 || crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 || crypto_ec_point_is_at_infinity(sae->tmp->ec, K) || crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) { wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k"); goto fail; } wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len); ret = 0; fail: crypto_ec_point_deinit(K, 1); return ret; } static int sae_derive_k_ffc(struct sae_data *sae, u8 *k) { struct crypto_bignum *K; int ret = -1; K = crypto_bignum_init(); if (K == NULL) goto fail; /* * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE), * PEER-COMMIT-ELEMENT))) * If K is identity element (one), reject. * k = F(K) (= x coordinate) */ if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar, sae->tmp->prime, K) < 0 || crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc, sae->tmp->prime, K) < 0 || crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0 || crypto_bignum_is_one(K) || crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) < 0) { wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k"); goto fail; } wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len); ret = 0; fail: crypto_bignum_deinit(K, 1); return ret; } static int sae_derive_keys(struct sae_data *sae, const u8 *k) { u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN]; u8 keyseed[SHA256_MAC_LEN]; u8 keys[SAE_KCK_LEN + SAE_PMK_LEN]; struct crypto_bignum *tmp; int ret = -1; tmp = crypto_bignum_init(); if (tmp == NULL) goto fail; /* keyseed = H(<0>32, k) * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK", * (commit-scalar + peer-commit-scalar) modulo r) * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128) */ os_memset(null_key, 0, sizeof(null_key)); hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len, keyseed); wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed)); crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar, tmp); crypto_bignum_mod(tmp, sae->tmp->order, tmp); crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->prime_len); wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN); if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK", val, sae->tmp->prime_len, keys, sizeof(keys)) < 0) goto fail; os_memset(keyseed, 0, sizeof(keyseed)); os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN); os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN); os_memcpy(sae->pmkid, val, SAE_PMKID_LEN); os_memset(keys, 0, sizeof(keys)); wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN); wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN); ret = 0; fail: crypto_bignum_deinit(tmp, 0); return ret; } int sae_process_commit(struct sae_data *sae) { u8 k[SAE_MAX_PRIME_LEN]; if (sae->tmp == NULL || (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) || (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) || sae_derive_keys(sae, k) < 0) return -1; return 0; } void sae_write_commit(struct sae_data *sae, struct wpabuf *buf, const struct wpabuf *token, const char *identifier) { u8 *pos; if (sae->tmp == NULL) return; wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */ if (token) { wpabuf_put_buf(buf, token); wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token", wpabuf_head(token), wpabuf_len(token)); } pos = wpabuf_put(buf, sae->tmp->prime_len); crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos, sae->tmp->prime_len, sae->tmp->prime_len); wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar", pos, sae->tmp->prime_len); if (sae->tmp->ec) { pos = wpabuf_put(buf, 2 * sae->tmp->prime_len); crypto_ec_point_to_bin(sae->tmp->ec, sae->tmp->own_commit_element_ecc, pos, pos + sae->tmp->prime_len); wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)", pos, sae->tmp->prime_len); wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)", pos + sae->tmp->prime_len, sae->tmp->prime_len); } else { pos = wpabuf_put(buf, sae->tmp->prime_len); crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos, sae->tmp->prime_len, sae->tmp->prime_len); wpa_hexdump(MSG_DEBUG, "SAE: own commit-element", pos, sae->tmp->prime_len); } if (identifier) { /* Password Identifier element */ wpabuf_put_u8(buf, WLAN_EID_EXTENSION); wpabuf_put_u8(buf, 1 + os_strlen(identifier)); wpabuf_put_u8(buf, WLAN_EID_EXT_PASSWORD_IDENTIFIER); wpabuf_put_str(buf, identifier); wpa_printf(MSG_DEBUG, "SAE: own Password Identifier: %s", identifier); } } u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group) { if (allowed_groups) { int i; for (i = 0; allowed_groups[i] > 0; i++) { if (allowed_groups[i] == group) break; } if (allowed_groups[i] != group) { wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not " "enabled in the current configuration", group); return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED; } } if (sae->state == SAE_COMMITTED && group != sae->group) { wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed"); return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED; } if (group != sae->group && sae_set_group(sae, group) < 0) { wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u", group); return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED; } if (sae->tmp == NULL) { wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } if (sae->tmp->dh && !allowed_groups) { wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without " "explicit configuration enabling it", group); return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED; } return WLAN_STATUS_SUCCESS; } static int sae_is_password_id_elem(const u8 *pos, const u8 *end) { return end - pos >= 3 && pos[0] == WLAN_EID_EXTENSION && pos[1] >= 1 && end - pos - 2 >= pos[1] && pos[2] == WLAN_EID_EXT_PASSWORD_IDENTIFIER; } static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos, const u8 *end, const u8 **token, size_t *token_len) { size_t scalar_elem_len, tlen; const u8 *elem; if (token) *token = NULL; if (token_len) *token_len = 0; scalar_elem_len = (sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len; if (scalar_elem_len >= (size_t) (end - *pos)) return; /* No extra data beyond peer scalar and element */ /* It is a bit difficult to parse this now that there is an * optional variable length Anti-Clogging Token field and * optional variable length Password Identifier element in the * frame. We are sending out fixed length Anti-Clogging Token * fields, so use that length as a requirement for the received * token and check for the presence of possible Password * Identifier element based on the element header information. */ tlen = end - (*pos + scalar_elem_len); if (tlen < SHA256_MAC_LEN) { wpa_printf(MSG_DEBUG, "SAE: Too short optional data (%u octets) to include our Anti-Clogging Token", (unsigned int) tlen); return; } elem = *pos + scalar_elem_len; if (sae_is_password_id_elem(elem, end)) { /* Password Identifier element takes out all available * extra octets, so there can be no Anti-Clogging token in * this frame. */ return; } elem += SHA256_MAC_LEN; if (sae_is_password_id_elem(elem, end)) { /* Password Identifier element is included in the end, so * remove its length from the Anti-Clogging token field. */ tlen -= 2 + elem[1]; } wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen); if (token) *token = *pos; if (token_len) *token_len = tlen; *pos += tlen; } static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos, const u8 *end) { struct crypto_bignum *peer_scalar; if (sae->tmp->prime_len > end - *pos) { wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len); if (peer_scalar == NULL) return WLAN_STATUS_UNSPECIFIED_FAILURE; /* * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for * the peer and it is in Authenticated state, the new Commit Message * shall be dropped if the peer-scalar is identical to the one used in * the existing protocol instance. */ if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar && crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) { wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous " "peer-commit-scalar"); crypto_bignum_deinit(peer_scalar, 0); return WLAN_STATUS_UNSPECIFIED_FAILURE; } /* 1 < scalar < r */ if (crypto_bignum_is_zero(peer_scalar) || crypto_bignum_is_one(peer_scalar) || crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) { wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar"); crypto_bignum_deinit(peer_scalar, 0); return WLAN_STATUS_UNSPECIFIED_FAILURE; } crypto_bignum_deinit(sae->peer_commit_scalar, 0); sae->peer_commit_scalar = peer_scalar; wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar", *pos, sae->tmp->prime_len); *pos += sae->tmp->prime_len; return WLAN_STATUS_SUCCESS; } static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 **pos, const u8 *end) { u8 prime[SAE_MAX_ECC_PRIME_LEN]; if (2 * sae->tmp->prime_len > end - *pos) { wpa_printf(MSG_DEBUG, "SAE: Not enough data for " "commit-element"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime), sae->tmp->prime_len) < 0) return WLAN_STATUS_UNSPECIFIED_FAILURE; /* element x and y coordinates < p */ if (os_memcmp(*pos, prime, sae->tmp->prime_len) >= 0 || os_memcmp(*pos + sae->tmp->prime_len, prime, sae->tmp->prime_len) >= 0) { wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer " "element"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)", *pos, sae->tmp->prime_len); wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)", *pos + sae->tmp->prime_len, sae->tmp->prime_len); crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0); sae->tmp->peer_commit_element_ecc = crypto_ec_point_from_bin(sae->tmp->ec, *pos); if (sae->tmp->peer_commit_element_ecc == NULL) return WLAN_STATUS_UNSPECIFIED_FAILURE; if (!crypto_ec_point_is_on_curve(sae->tmp->ec, sae->tmp->peer_commit_element_ecc)) { wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } *pos += 2 * sae->tmp->prime_len; return WLAN_STATUS_SUCCESS; } static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 **pos, const u8 *end) { struct crypto_bignum *res, *one; const u8 one_bin[1] = { 0x01 }; if (sae->tmp->prime_len > end - *pos) { wpa_printf(MSG_DEBUG, "SAE: Not enough data for " "commit-element"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", *pos, sae->tmp->prime_len); crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0); sae->tmp->peer_commit_element_ffc = crypto_bignum_init_set(*pos, sae->tmp->prime_len); if (sae->tmp->peer_commit_element_ffc == NULL) return WLAN_STATUS_UNSPECIFIED_FAILURE; /* 1 < element < p - 1 */ res = crypto_bignum_init(); one = crypto_bignum_init_set(one_bin, sizeof(one_bin)); if (!res || !one || crypto_bignum_sub(sae->tmp->prime, one, res) || crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) || crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) || crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) { crypto_bignum_deinit(res, 0); crypto_bignum_deinit(one, 0); wpa_printf(MSG_DEBUG, "SAE: Invalid peer element"); return WLAN_STATUS_UNSPECIFIED_FAILURE; } crypto_bignum_deinit(one, 0); /* scalar-op(r, ELEMENT) = 1 modulo p */ if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc, sae->tmp->order, sae->tmp->prime, res) < 0 || !crypto_bignum_is_one(res)) { wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)"); crypto_bignum_deinit(res, 0); return WLAN_STATUS_UNSPECIFIED_FAILURE; } crypto_bignum_deinit(res, 0); *pos += sae->tmp->prime_len; return WLAN_STATUS_SUCCESS; } static u16 sae_parse_commit_element(struct sae_data *sae, const u8 **pos, const u8 *end) { if (sae->tmp->dh) return sae_parse_commit_element_ffc(sae, pos, end); return sae_parse_commit_element_ecc(sae, pos, end); } static int sae_parse_password_identifier(struct sae_data *sae, const u8 *pos, const u8 *end) { wpa_hexdump(MSG_DEBUG, "SAE: Possible elements at the end of the frame", pos, end - pos); if (!sae_is_password_id_elem(pos, end)) { if (sae->tmp->pw_id) { wpa_printf(MSG_DEBUG, "SAE: No Password Identifier included, but expected one (%s)", sae->tmp->pw_id); return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER; } os_free(sae->tmp->pw_id); sae->tmp->pw_id = NULL; return WLAN_STATUS_SUCCESS; /* No Password Identifier */ } if (sae->tmp->pw_id && (pos[1] - 1 != (int) os_strlen(sae->tmp->pw_id) || os_memcmp(sae->tmp->pw_id, pos + 3, pos[1] - 1) != 0)) { wpa_printf(MSG_DEBUG, "SAE: The included Password Identifier does not match the expected one (%s)", sae->tmp->pw_id); return WLAN_STATUS_UNKNOWN_PASSWORD_IDENTIFIER; } os_free(sae->tmp->pw_id); sae->tmp->pw_id = os_malloc(pos[1]); if (!sae->tmp->pw_id) return WLAN_STATUS_UNSPECIFIED_FAILURE; os_memcpy(sae->tmp->pw_id, pos + 3, pos[1] - 1); sae->tmp->pw_id[pos[1] - 1] = '\0'; wpa_hexdump_ascii(MSG_DEBUG, "SAE: Received Password Identifier", sae->tmp->pw_id, pos[1] - 1); return WLAN_STATUS_SUCCESS; } u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len, const u8 **token, size_t *token_len, int *allowed_groups) { const u8 *pos = data, *end = data + len; u16 res; /* Check Finite Cyclic Group */ if (end - pos < 2) return WLAN_STATUS_UNSPECIFIED_FAILURE; res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos)); if (res != WLAN_STATUS_SUCCESS) return res; pos += 2; /* Optional Anti-Clogging Token */ sae_parse_commit_token(sae, &pos, end, token, token_len); /* commit-scalar */ res = sae_parse_commit_scalar(sae, &pos, end); if (res != WLAN_STATUS_SUCCESS) return res; /* commit-element */ res = sae_parse_commit_element(sae, &pos, end); if (res != WLAN_STATUS_SUCCESS) return res; /* Optional Password Identifier element */ res = sae_parse_password_identifier(sae, pos, end); if (res != WLAN_STATUS_SUCCESS) return res; /* * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as * the values we sent which would be evidence of a reflection attack. */ if (!sae->tmp->own_commit_scalar || crypto_bignum_cmp(sae->tmp->own_commit_scalar, sae->peer_commit_scalar) != 0 || (sae->tmp->dh && (!sae->tmp->own_commit_element_ffc || crypto_bignum_cmp(sae->tmp->own_commit_element_ffc, sae->tmp->peer_commit_element_ffc) != 0)) || (sae->tmp->ec && (!sae->tmp->own_commit_element_ecc || crypto_ec_point_cmp(sae->tmp->ec, sae->tmp->own_commit_element_ecc, sae->tmp->peer_commit_element_ecc) != 0))) return WLAN_STATUS_SUCCESS; /* scalars/elements are different */ /* * This is a reflection attack - return special value to trigger caller * to silently discard the frame instead of replying with a specific * status code. */ return SAE_SILENTLY_DISCARD; } static void sae_cn_confirm(struct sae_data *sae, const u8 *sc, const struct crypto_bignum *scalar1, const u8 *element1, size_t element1_len, const struct crypto_bignum *scalar2, const u8 *element2, size_t element2_len, u8 *confirm) { const u8 *addr[5]; size_t len[5]; u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN]; /* Confirm * CN(key, X, Y, Z, ...) = * HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...) * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT, * peer-commit-scalar, PEER-COMMIT-ELEMENT) * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar, * PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT) */ addr[0] = sc; len[0] = 2; crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1), sae->tmp->prime_len); addr[1] = scalar_b1; len[1] = sae->tmp->prime_len; addr[2] = element1; len[2] = element1_len; crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2), sae->tmp->prime_len); addr[3] = scalar_b2; len[3] = sae->tmp->prime_len; addr[4] = element2; len[4] = element2_len; hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len, confirm); } static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc, const struct crypto_bignum *scalar1, const struct crypto_ec_point *element1, const struct crypto_bignum *scalar2, const struct crypto_ec_point *element2, u8 *confirm) { u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN]; u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN]; crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1, element_b1 + sae->tmp->prime_len); crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2, element_b2 + sae->tmp->prime_len); sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len, scalar2, element_b2, 2 * sae->tmp->prime_len, confirm); } static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc, const struct crypto_bignum *scalar1, const struct crypto_bignum *element1, const struct crypto_bignum *scalar2, const struct crypto_bignum *element2, u8 *confirm) { u8 element_b1[SAE_MAX_PRIME_LEN]; u8 element_b2[SAE_MAX_PRIME_LEN]; crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1), sae->tmp->prime_len); crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2), sae->tmp->prime_len); sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len, scalar2, element_b2, sae->tmp->prime_len, confirm); } void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf) { const u8 *sc; if (sae->tmp == NULL) return; /* Send-Confirm */ sc = wpabuf_put(buf, 0); wpabuf_put_le16(buf, sae->send_confirm); if (sae->send_confirm < 0xffff) sae->send_confirm++; if (sae->tmp->ec) sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar, sae->tmp->own_commit_element_ecc, sae->peer_commit_scalar, sae->tmp->peer_commit_element_ecc, wpabuf_put(buf, SHA256_MAC_LEN)); else sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar, sae->tmp->own_commit_element_ffc, sae->peer_commit_scalar, sae->tmp->peer_commit_element_ffc, wpabuf_put(buf, SHA256_MAC_LEN)); } int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len) { u8 verifier[SHA256_MAC_LEN]; if (len < 2 + SHA256_MAC_LEN) { wpa_printf(MSG_DEBUG, "SAE: Too short confirm message"); return -1; } wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data)); if (!sae->tmp || !sae->peer_commit_scalar || !sae->tmp->own_commit_scalar) { wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available"); return -1; } if (sae->tmp->ec) { if (!sae->tmp->peer_commit_element_ecc || !sae->tmp->own_commit_element_ecc) return -1; sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar, sae->tmp->peer_commit_element_ecc, sae->tmp->own_commit_scalar, sae->tmp->own_commit_element_ecc, verifier); } else { if (!sae->tmp->peer_commit_element_ffc || !sae->tmp->own_commit_element_ffc) return -1; sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar, sae->tmp->peer_commit_element_ffc, sae->tmp->own_commit_scalar, sae->tmp->own_commit_element_ffc, verifier); } if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) { wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch"); wpa_hexdump(MSG_DEBUG, "SAE: Received confirm", data + 2, SHA256_MAC_LEN); wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier", verifier, SHA256_MAC_LEN); return -1; } return 0; } const char * sae_state_txt(enum sae_state state) { switch (state) { case SAE_NOTHING: return "Nothing"; case SAE_COMMITTED: return "Committed"; case SAE_CONFIRMED: return "Confirmed"; case SAE_ACCEPTED: return "Accepted"; } return "?"; }