// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // YUV->RGB conversion functions // // Author: Skal (pascal.massimino@gmail.com) #include "src/dsp/yuv.h" #if defined(WEBP_USE_SSE41) #include "src/dsp/common_sse41.h" #include <stdlib.h> #include <smmintrin.h> //----------------------------------------------------------------------------- // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. // These constants are 14b fixed-point version of ITU-R BT.601 constants. // R = (19077 * y + 26149 * v - 14234) >> 6 // G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6 // B = (19077 * y + 33050 * u - 17685) >> 6 static void ConvertYUV444ToRGB_SSE41(const __m128i* const Y0, const __m128i* const U0, const __m128i* const V0, __m128i* const R, __m128i* const G, __m128i* const B) { const __m128i k19077 = _mm_set1_epi16(19077); const __m128i k26149 = _mm_set1_epi16(26149); const __m128i k14234 = _mm_set1_epi16(14234); // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic const __m128i k33050 = _mm_set1_epi16((short)33050); const __m128i k17685 = _mm_set1_epi16(17685); const __m128i k6419 = _mm_set1_epi16(6419); const __m128i k13320 = _mm_set1_epi16(13320); const __m128i k8708 = _mm_set1_epi16(8708); const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077); const __m128i R0 = _mm_mulhi_epu16(*V0, k26149); const __m128i R1 = _mm_sub_epi16(Y1, k14234); const __m128i R2 = _mm_add_epi16(R1, R0); const __m128i G0 = _mm_mulhi_epu16(*U0, k6419); const __m128i G1 = _mm_mulhi_epu16(*V0, k13320); const __m128i G2 = _mm_add_epi16(Y1, k8708); const __m128i G3 = _mm_add_epi16(G0, G1); const __m128i G4 = _mm_sub_epi16(G2, G3); // be careful with the saturated *unsigned* arithmetic here! const __m128i B0 = _mm_mulhi_epu16(*U0, k33050); const __m128i B1 = _mm_adds_epu16(B0, Y1); const __m128i B2 = _mm_subs_epu16(B1, k17685); // use logical shift for B2, which can be larger than 32767 *R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815] *G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710] *B = _mm_srli_epi16(B2, 6); // range: [0, 34238] } // Load the bytes into the *upper* part of 16b words. That's "<< 8", basically. static WEBP_INLINE __m128i Load_HI_16_SSE41(const uint8_t* src) { const __m128i zero = _mm_setzero_si128(); return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src)); } // Load and replicate the U/V samples static WEBP_INLINE __m128i Load_UV_HI_8_SSE41(const uint8_t* src) { const __m128i zero = _mm_setzero_si128(); const __m128i tmp0 = _mm_cvtsi32_si128(*(const uint32_t*)src); const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0); return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples } // Convert 32 samples of YUV444 to R/G/B static void YUV444ToRGB_SSE41(const uint8_t* const y, const uint8_t* const u, const uint8_t* const v, __m128i* const R, __m128i* const G, __m128i* const B) { const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_HI_16_SSE41(u), V0 = Load_HI_16_SSE41(v); ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); } // Convert 32 samples of YUV420 to R/G/B static void YUV420ToRGB_SSE41(const uint8_t* const y, const uint8_t* const u, const uint8_t* const v, __m128i* const R, __m128i* const G, __m128i* const B) { const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_UV_HI_8_SSE41(u), V0 = Load_UV_HI_8_SSE41(v); ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); } // Pack the planar buffers // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... // triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... static WEBP_INLINE void PlanarTo24b_SSE41( __m128i* const in0, __m128i* const in1, __m128i* const in2, __m128i* const in3, __m128i* const in4, __m128i* const in5, uint8_t* const rgb) { // The input is 6 registers of sixteen 8b but for the sake of explanation, // let's take 6 registers of four 8b values. // To pack, we will keep taking one every two 8b integer and move it // around as follows: // Input: // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 // Split the 6 registers in two sets of 3 registers: the first set as the even // 8b bytes, the second the odd ones: // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 // Repeat the same permutations twice more: // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 VP8PlanarTo24b_SSE41(in0, in1, in2, in3, in4, in5); _mm_storeu_si128((__m128i*)(rgb + 0), *in0); _mm_storeu_si128((__m128i*)(rgb + 16), *in1); _mm_storeu_si128((__m128i*)(rgb + 32), *in2); _mm_storeu_si128((__m128i*)(rgb + 48), *in3); _mm_storeu_si128((__m128i*)(rgb + 64), *in4); _mm_storeu_si128((__m128i*)(rgb + 80), *in5); } void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); // Cast to 8b and store as RRRRGGGGBBBB. rgb0 = _mm_packus_epi16(R0, R1); rgb1 = _mm_packus_epi16(R2, R3); rgb2 = _mm_packus_epi16(G0, G1); rgb3 = _mm_packus_epi16(G2, G3); rgb4 = _mm_packus_epi16(B0, B1); rgb5 = _mm_packus_epi16(B2, B3); // Pack as RGBRGBRGBRGB. PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); } void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); // Cast to 8b and store as BBBBGGGGRRRR. bgr0 = _mm_packus_epi16(B0, B1); bgr1 = _mm_packus_epi16(B2, B3); bgr2 = _mm_packus_epi16(G0, G1); bgr3 = _mm_packus_epi16(G2, G3); bgr4 = _mm_packus_epi16(R0, R1); bgr5= _mm_packus_epi16(R2, R3); // Pack as BGRBGRBGRBGR. PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); } //----------------------------------------------------------------------------- // Arbitrary-length row conversion functions static void YuvToRgbRow_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); // Cast to 8b and store as RRRRGGGGBBBB. rgb0 = _mm_packus_epi16(R0, R1); rgb1 = _mm_packus_epi16(R2, R3); rgb2 = _mm_packus_epi16(G0, G1); rgb3 = _mm_packus_epi16(G2, G3); rgb4 = _mm_packus_epi16(B0, B1); rgb5 = _mm_packus_epi16(B2, B3); // Pack as RGBRGBRGBRGB. PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); y += 32; u += 16; v += 16; } for (; n < len; ++n) { // Finish off VP8YuvToRgb(y[0], u[0], v[0], dst); dst += 3; y += 1; u += (n & 1); v += (n & 1); } } static void YuvToBgrRow_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); // Cast to 8b and store as BBBBGGGGRRRR. bgr0 = _mm_packus_epi16(B0, B1); bgr1 = _mm_packus_epi16(B2, B3); bgr2 = _mm_packus_epi16(G0, G1); bgr3 = _mm_packus_epi16(G2, G3); bgr4 = _mm_packus_epi16(R0, R1); bgr5 = _mm_packus_epi16(R2, R3); // Pack as BGRBGRBGRBGR. PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); y += 32; u += 16; v += 16; } for (; n < len; ++n) { // Finish off VP8YuvToBgr(y[0], u[0], v[0], dst); dst += 3; y += 1; u += (n & 1); v += (n & 1); } } //------------------------------------------------------------------------------ // Entry point extern void WebPInitSamplersSSE41(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE41(void) { WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE41; WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE41; } //------------------------------------------------------------------------------ // RGB24/32 -> YUV converters // Load eight 16b-words from *src. #define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) // Store either 16b-words into *dst #define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) #define WEBP_SSE41_SHUFF(OUT) do { \ const __m128i tmp0 = _mm_shuffle_epi8(A0, shuff0); \ const __m128i tmp1 = _mm_shuffle_epi8(A1, shuff1); \ const __m128i tmp2 = _mm_shuffle_epi8(A2, shuff2); \ const __m128i tmp3 = _mm_shuffle_epi8(A3, shuff0); \ const __m128i tmp4 = _mm_shuffle_epi8(A4, shuff1); \ const __m128i tmp5 = _mm_shuffle_epi8(A5, shuff2); \ \ /* OR everything to get one channel */ \ const __m128i tmp6 = _mm_or_si128(tmp0, tmp1); \ const __m128i tmp7 = _mm_or_si128(tmp3, tmp4); \ out[OUT + 0] = _mm_or_si128(tmp6, tmp2); \ out[OUT + 1] = _mm_or_si128(tmp7, tmp5); \ } while (0); // Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers: // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... // Similar to PlanarTo24bHelper(), but in reverse order. static WEBP_INLINE void RGB24PackedToPlanar_SSE41( const uint8_t* const rgb, __m128i* const out /*out[6]*/) { const __m128i A0 = _mm_loadu_si128((const __m128i*)(rgb + 0)); const __m128i A1 = _mm_loadu_si128((const __m128i*)(rgb + 16)); const __m128i A2 = _mm_loadu_si128((const __m128i*)(rgb + 32)); const __m128i A3 = _mm_loadu_si128((const __m128i*)(rgb + 48)); const __m128i A4 = _mm_loadu_si128((const __m128i*)(rgb + 64)); const __m128i A5 = _mm_loadu_si128((const __m128i*)(rgb + 80)); // Compute RR. { const __m128i shuff0 = _mm_set_epi8( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0); const __m128i shuff1 = _mm_set_epi8( -1, -1, -1, -1, -1, 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1); const __m128i shuff2 = _mm_set_epi8( 13, 10, 7, 4, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); WEBP_SSE41_SHUFF(0) } // Compute GG. { const __m128i shuff0 = _mm_set_epi8( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1); const __m128i shuff1 = _mm_set_epi8( -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1); const __m128i shuff2 = _mm_set_epi8( 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); WEBP_SSE41_SHUFF(2) } // Compute BB. { const __m128i shuff0 = _mm_set_epi8( -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, 11, 8, 5, 2); const __m128i shuff1 = _mm_set_epi8( -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1, -1, -1, -1, -1, -1); const __m128i shuff2 = _mm_set_epi8( 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); WEBP_SSE41_SHUFF(4) } } #undef WEBP_SSE41_SHUFF // Convert 8 packed ARGB to r[], g[], b[] static WEBP_INLINE void RGB32PackedToPlanar_SSE41( const uint32_t* const argb, __m128i* const rgb /*in[6]*/) { const __m128i zero = _mm_setzero_si128(); __m128i a0 = LOAD_16(argb + 0); __m128i a1 = LOAD_16(argb + 4); __m128i a2 = LOAD_16(argb + 8); __m128i a3 = LOAD_16(argb + 12); VP8L32bToPlanar_SSE41(&a0, &a1, &a2, &a3); rgb[0] = _mm_unpacklo_epi8(a1, zero); rgb[1] = _mm_unpackhi_epi8(a1, zero); rgb[2] = _mm_unpacklo_epi8(a2, zero); rgb[3] = _mm_unpackhi_epi8(a2, zero); rgb[4] = _mm_unpacklo_epi8(a3, zero); rgb[5] = _mm_unpackhi_epi8(a3, zero); } // This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX // It's a macro and not a function because we need to use immediate values with // srai_epi32, e.g. #define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ ROUNDER, DESCALE_FIX, OUT) do { \ const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ } while (0) #define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) static WEBP_INLINE void ConvertRGBToY_SSE41(const __m128i* const R, const __m128i* const G, const __m128i* const B, __m128i* const Y) { const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); const __m128i kGB_y = MK_CST_16(16384, 6420); const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); } static WEBP_INLINE void ConvertRGBToUV_SSE41(const __m128i* const R, const __m128i* const G, const __m128i* const B, __m128i* const U, __m128i* const V) { const __m128i kRG_u = MK_CST_16(-9719, -19081); const __m128i kGB_u = MK_CST_16(0, 28800); const __m128i kRG_v = MK_CST_16(28800, 0); const __m128i kGB_v = MK_CST_16(-24116, -4684); const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, kHALF_UV, YUV_FIX + 2, *U); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, kHALF_UV, YUV_FIX + 2, *V); } #undef MK_CST_16 #undef TRANSFORM static void ConvertRGB24ToY_SSE41(const uint8_t* rgb, uint8_t* y, int width) { const int max_width = width & ~31; int i; for (i = 0; i < max_width; rgb += 3 * 16 * 2) { __m128i rgb_plane[6]; int j; RGB24PackedToPlanar_SSE41(rgb, rgb_plane); for (j = 0; j < 2; ++j, i += 16) { const __m128i zero = _mm_setzero_si128(); __m128i r, g, b, Y0, Y1; // Convert to 16-bit Y. r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero); g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero); b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero); ConvertRGBToY_SSE41(&r, &g, &b, &Y0); // Convert to 16-bit Y. r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero); g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero); b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero); ConvertRGBToY_SSE41(&r, &g, &b, &Y1); // Cast to 8-bit and store. STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } } for (; i < width; ++i, rgb += 3) { // left-over y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); } } static void ConvertBGR24ToY_SSE41(const uint8_t* bgr, uint8_t* y, int width) { const int max_width = width & ~31; int i; for (i = 0; i < max_width; bgr += 3 * 16 * 2) { __m128i bgr_plane[6]; int j; RGB24PackedToPlanar_SSE41(bgr, bgr_plane); for (j = 0; j < 2; ++j, i += 16) { const __m128i zero = _mm_setzero_si128(); __m128i r, g, b, Y0, Y1; // Convert to 16-bit Y. b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero); g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero); r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero); ConvertRGBToY_SSE41(&r, &g, &b, &Y0); // Convert to 16-bit Y. b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero); g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero); r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero); ConvertRGBToY_SSE41(&r, &g, &b, &Y1); // Cast to 8-bit and store. STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } } for (; i < width; ++i, bgr += 3) { // left-over y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); } } static void ConvertARGBToY_SSE41(const uint32_t* argb, uint8_t* y, int width) { const int max_width = width & ~15; int i; for (i = 0; i < max_width; i += 16) { __m128i Y0, Y1, rgb[6]; RGB32PackedToPlanar_SSE41(&argb[i], rgb); ConvertRGBToY_SSE41(&rgb[0], &rgb[2], &rgb[4], &Y0); ConvertRGBToY_SSE41(&rgb[1], &rgb[3], &rgb[5], &Y1); STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } for (; i < width; ++i) { // left-over const uint32_t p = argb[i]; y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, YUV_HALF); } } // Horizontal add (doubled) of two 16b values, result is 16b. // in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... static void HorizontalAddPack_SSE41(const __m128i* const A, const __m128i* const B, __m128i* const out) { const __m128i k2 = _mm_set1_epi16(2); const __m128i C = _mm_madd_epi16(*A, k2); const __m128i D = _mm_madd_epi16(*B, k2); *out = _mm_packs_epi32(C, D); } static void ConvertARGBToUV_SSE41(const uint32_t* argb, uint8_t* u, uint8_t* v, int src_width, int do_store) { const int max_width = src_width & ~31; int i; for (i = 0; i < max_width; i += 32, u += 16, v += 16) { __m128i rgb[6], U0, V0, U1, V1; RGB32PackedToPlanar_SSE41(&argb[i], rgb); HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U0, &V0); RGB32PackedToPlanar_SSE41(&argb[i + 16], rgb); HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U1, &V1); U0 = _mm_packus_epi16(U0, U1); V0 = _mm_packus_epi16(V0, V1); if (!do_store) { const __m128i prev_u = LOAD_16(u); const __m128i prev_v = LOAD_16(v); U0 = _mm_avg_epu8(U0, prev_u); V0 = _mm_avg_epu8(V0, prev_v); } STORE_16(U0, u); STORE_16(V0, v); } if (i < src_width) { // left-over WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); } } // Convert 16 packed ARGB 16b-values to r[], g[], b[] static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE41( const uint16_t* const rgbx, __m128i* const r, __m128i* const g, __m128i* const b) { const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... // aarrggbb as 16-bit. const __m128i shuff0 = _mm_set_epi8(-1, -1, -1, -1, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0); const __m128i shuff1 = _mm_set_epi8(13, 12, 5, 4, -1, -1, -1, -1, 11, 10, 3, 2, 9, 8, 1, 0); const __m128i A0 = _mm_shuffle_epi8(in0, shuff0); const __m128i A1 = _mm_shuffle_epi8(in1, shuff1); const __m128i A2 = _mm_shuffle_epi8(in2, shuff0); const __m128i A3 = _mm_shuffle_epi8(in3, shuff1); // R0R1G0G1 // B0B1**** // R2R3G2G3 // B2B3**** // (OR is used to free port 5 for the unpack) const __m128i B0 = _mm_unpacklo_epi32(A0, A1); const __m128i B1 = _mm_or_si128(A0, A1); const __m128i B2 = _mm_unpacklo_epi32(A2, A3); const __m128i B3 = _mm_or_si128(A2, A3); // Gather the channels. *r = _mm_unpacklo_epi64(B0, B2); *g = _mm_unpackhi_epi64(B0, B2); *b = _mm_unpackhi_epi64(B1, B3); } static void ConvertRGBA32ToUV_SSE41(const uint16_t* rgb, uint8_t* u, uint8_t* v, int width) { const int max_width = width & ~15; const uint16_t* const last_rgb = rgb + 4 * max_width; while (rgb < last_rgb) { __m128i r, g, b, U0, V0, U1, V1; RGBA32PackedToPlanar_16b_SSE41(rgb + 0, &r, &g, &b); ConvertRGBToUV_SSE41(&r, &g, &b, &U0, &V0); RGBA32PackedToPlanar_16b_SSE41(rgb + 32, &r, &g, &b); ConvertRGBToUV_SSE41(&r, &g, &b, &U1, &V1); STORE_16(_mm_packus_epi16(U0, U1), u); STORE_16(_mm_packus_epi16(V0, V1), v); u += 16; v += 16; rgb += 2 * 32; } if (max_width < width) { // left-over WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); } } //------------------------------------------------------------------------------ extern void WebPInitConvertARGBToYUVSSE41(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE41(void) { WebPConvertARGBToY = ConvertARGBToY_SSE41; WebPConvertARGBToUV = ConvertARGBToUV_SSE41; WebPConvertRGB24ToY = ConvertRGB24ToY_SSE41; WebPConvertBGR24ToY = ConvertBGR24ToY_SSE41; WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE41; } //------------------------------------------------------------------------------ #else // !WEBP_USE_SSE41 WEBP_DSP_INIT_STUB(WebPInitSamplersSSE41) WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE41) #endif // WEBP_USE_SSE41