<?xml version='1.0' encoding='utf-8' ?> <!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [ <!ENTITY % BOOK_ENTITIES SYSTEM "Wayland.ent"> <!ENTITY doxygen SYSTEM "ClientAPI.xml"> %BOOK_ENTITIES; ]> <appendix id="sect-Library-Client"> <title>Client API</title> <section><title>Introduction</title> <para> The open-source reference implementation of Wayland protocol is split in two C libraries, libwayland-client and <link linkend="sect-Library-Server">libwayland-server</link>. Their main responsibility is to handle the Inter-process communication (<emphasis>IPC</emphasis>) with each other, therefore guaranteeing the protocol objects marshaling and messages synchronization. </para> <para> A client uses libwayland-client to communicate with one or more wayland servers. A <link linkend="Client-classwl__display">wl_display</link> object is created and manages each open connection to a server. At least one <link linkend="Client-classwl__event__queue">wl_event_queue</link> object is created for each wl_display, this holds events as they are received from the server until they can be processed. Multi-threading is supported by creating an additional wl_event_queue for each additional thread, each object can have it's events placed in a particular queue, so potentially a different thread could be made to handle the events for each object created. </para> <para> Though some conveinence functions are provided, libwayland-client is designed to allow the calling code to wait for events, so that different polling mechanisms can be used. A file descriptor is provided, when it becomes ready for reading the calling code can ask libwayland-client to read the available events from it into the wl_event_queue objects. </para> <para> The library only provides low-level access to the wayland objects. Each object created by the client is represented by a <link linkend="Client-classwl__proxy">wl_proxy</link> object that this library creates. This includes the id that is actually communicated over the socket to the server, a void* data pointer that is intended to point at a client's representation of the object, and a pointer to a static <link linkend="Client-structwl__interface">wl_interface</link> object, which is generated from the xml and identifies the object's class and can be used for introspection into the messages and events. </para> <para> Messages are sent by calling wl_proxy_marshal. This will write a message to the socket, by using the message id and the wl_interface to identify the types of each argument and convert them into stream format. Most software will call type-safe wrappers generated from the xml description of the <link linkend="appe-Wayland-Protocol">Wayland protocols</link>. For instance the C header file generated from the xml defines the following inline function to transmit the <link linkend="protocol-spec-wl_surface-request-attach">wl_surface::attach</link> message: </para> <programlisting>static inline void wl_surface_attach(struct wl_surface *wl_surface, struct wl_buffer *buffer, int32_t x, int32_t y) { wl_proxy_marshal((struct wl_proxy *) wl_surface, WL_SURFACE_ATTACH, buffer, x, y); }</programlisting> <para> Events (messages from the server) are handled by calling a "dispatcher" callback the client stores in the wl_proxy for each event. A language binding for a string-based interpreter, such as CPython, might have a dispatcher that uses the event name from the wl_interface to identify the function to call. The default dispatcher uses the message id number to index an array of functions pointers, called a wl_listener, and the wl_interface to convert data from the stream into arguments to the function. The C header file generated from the xml defines a per-class structure that forces the function pointers to be of the correct type, for instance the <link linkend="protocol-spec-wl_surface-event-enter">wl_surface::enter</link> event defines this pointer in the wl_surface_listener object: </para> <programlisting>struct wl_surface_listener { void (*enter)(void *data, struct wl_surface *, struct wl_output *); ... }</programlisting> <para> </para> </section> &doxygen; </appendix>