/* * Copyright (c) 2015-2016 The Khronos Group Inc. * Copyright (c) 2015-2016 Valve Corporation * Copyright (c) 2015-2016 LunarG, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Courtney Goeltzenleuchter <courtney@LunarG.com> * Author: Tony Barbour <tony@LunarG.com> */ #include "test_common.h" // NOEXCEPT macro (must precede vktestbinding.h) #include "vktestbinding.h" // Left for clarity, no harm, already included via test_common.h #include "vk_typemap_helper.h" #include <algorithm> #include <assert.h> #include <iostream> #include <stdarg.h> #include <string.h> // memset(), memcmp() namespace { #define NON_DISPATCHABLE_HANDLE_INIT(create_func, dev, ...) \ do { \ handle_type handle; \ if (EXPECT(create_func(dev.handle(), __VA_ARGS__, NULL, &handle) == VK_SUCCESS)) \ NonDispHandle::init(dev.handle(), handle); \ } while (0) #define NON_DISPATCHABLE_HANDLE_DTOR(cls, destroy_func) \ cls::~cls() { \ if (initialized()) destroy_func(device(), handle(), NULL); \ } #define STRINGIFY(x) #x #define EXPECT(expr) ((expr) ? true : expect_failure(STRINGIFY(expr), __FILE__, __LINE__, __FUNCTION__)) vk_testing::ErrorCallback error_callback; bool expect_failure(const char *expr, const char *file, unsigned int line, const char *function) { if (error_callback) { error_callback(expr, file, line, function); } else { std::cerr << file << ":" << line << ": " << function << ": Expectation `" << expr << "' failed.\n"; } return false; } } // namespace namespace vk_testing { void set_error_callback(ErrorCallback callback) { error_callback = callback; } VkPhysicalDeviceProperties PhysicalDevice::properties() const { VkPhysicalDeviceProperties info; vkGetPhysicalDeviceProperties(handle(), &info); return info; } std::vector<VkQueueFamilyProperties> PhysicalDevice::queue_properties() const { std::vector<VkQueueFamilyProperties> info; uint32_t count; // Call once with NULL data to receive count vkGetPhysicalDeviceQueueFamilyProperties(handle(), &count, NULL); info.resize(count); vkGetPhysicalDeviceQueueFamilyProperties(handle(), &count, info.data()); return info; } VkPhysicalDeviceMemoryProperties PhysicalDevice::memory_properties() const { VkPhysicalDeviceMemoryProperties info; vkGetPhysicalDeviceMemoryProperties(handle(), &info); return info; } VkPhysicalDeviceFeatures PhysicalDevice::features() const { VkPhysicalDeviceFeatures features; vkGetPhysicalDeviceFeatures(handle(), &features); return features; } /* * Return list of Global layers available */ std::vector<VkLayerProperties> GetGlobalLayers() { VkResult err; std::vector<VkLayerProperties> layers; uint32_t layer_count; do { layer_count = 0; err = vkEnumerateInstanceLayerProperties(&layer_count, NULL); if (err == VK_SUCCESS) { layers.reserve(layer_count); err = vkEnumerateInstanceLayerProperties(&layer_count, layers.data()); } } while (err == VK_INCOMPLETE); assert(err == VK_SUCCESS); return layers; } /* * Return list of Global extensions provided by the ICD / Loader */ std::vector<VkExtensionProperties> GetGlobalExtensions() { return GetGlobalExtensions(NULL); } /* * Return list of Global extensions provided by the specified layer * If pLayerName is NULL, will return extensions implemented by the loader / * ICDs */ std::vector<VkExtensionProperties> GetGlobalExtensions(const char *pLayerName) { std::vector<VkExtensionProperties> exts; uint32_t ext_count; VkResult err; do { ext_count = 0; err = vkEnumerateInstanceExtensionProperties(pLayerName, &ext_count, NULL); if (err == VK_SUCCESS) { exts.resize(ext_count); err = vkEnumerateInstanceExtensionProperties(pLayerName, &ext_count, exts.data()); } } while (err == VK_INCOMPLETE); assert(err == VK_SUCCESS); return exts; } /* * Return list of PhysicalDevice extensions provided by the ICD / Loader */ std::vector<VkExtensionProperties> PhysicalDevice::extensions() const { return extensions(NULL); } /* * Return list of PhysicalDevice extensions provided by the specified layer * If pLayerName is NULL, will return extensions for ICD / loader. */ std::vector<VkExtensionProperties> PhysicalDevice::extensions(const char *pLayerName) const { std::vector<VkExtensionProperties> exts; VkResult err; do { uint32_t extCount = 0; err = vkEnumerateDeviceExtensionProperties(handle(), pLayerName, &extCount, NULL); if (err == VK_SUCCESS) { exts.resize(extCount); err = vkEnumerateDeviceExtensionProperties(handle(), pLayerName, &extCount, exts.data()); } } while (err == VK_INCOMPLETE); assert(err == VK_SUCCESS); return exts; } bool PhysicalDevice::set_memory_type(const uint32_t type_bits, VkMemoryAllocateInfo *info, const VkFlags properties, const VkFlags forbid) const { uint32_t type_mask = type_bits; // Search memtypes to find first index with those properties for (uint32_t i = 0; i < memory_properties_.memoryTypeCount; i++) { if ((type_mask & 1) == 1) { // Type is available, does it match user properties? if ((memory_properties_.memoryTypes[i].propertyFlags & properties) == properties && (memory_properties_.memoryTypes[i].propertyFlags & forbid) == 0) { info->memoryTypeIndex = i; return true; } } type_mask >>= 1; } // No memory types matched, return failure return false; } /* * Return list of PhysicalDevice layers */ std::vector<VkLayerProperties> PhysicalDevice::layers() const { std::vector<VkLayerProperties> layer_props; VkResult err; do { uint32_t layer_count = 0; err = vkEnumerateDeviceLayerProperties(handle(), &layer_count, NULL); if (err == VK_SUCCESS) { layer_props.reserve(layer_count); err = vkEnumerateDeviceLayerProperties(handle(), &layer_count, layer_props.data()); } } while (err == VK_INCOMPLETE); assert(err == VK_SUCCESS); return layer_props; } QueueCreateInfoArray::QueueCreateInfoArray(const std::vector<VkQueueFamilyProperties> &queue_props) : queue_info_(), queue_priorities_() { queue_info_.reserve(queue_props.size()); for (uint32_t i = 0; i < (uint32_t)queue_props.size(); ++i) { if (queue_props[i].queueCount > 0) { VkDeviceQueueCreateInfo qi = {}; qi.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; qi.pNext = NULL; qi.queueFamilyIndex = i; qi.queueCount = queue_props[i].queueCount; queue_priorities_.emplace_back(qi.queueCount, 0.0f); qi.pQueuePriorities = queue_priorities_[i].data(); queue_info_.push_back(qi); } } } Device::~Device() { if (!initialized()) return; vkDestroyDevice(handle(), NULL); } void Device::init(std::vector<const char *> &extensions, VkPhysicalDeviceFeatures *features, void *create_device_pnext) { // request all queues const std::vector<VkQueueFamilyProperties> queue_props = phy_.queue_properties(); QueueCreateInfoArray queue_info(phy_.queue_properties()); for (uint32_t i = 0; i < (uint32_t)queue_props.size(); i++) { if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { graphics_queue_node_index_ = i; break; } } // Only request creation with queuefamilies that have at least one queue std::vector<VkDeviceQueueCreateInfo> create_queue_infos; auto qci = queue_info.data(); for (uint32_t j = 0; j < queue_info.size(); ++j) { if (qci[j].queueCount) { create_queue_infos.push_back(qci[j]); } } enabled_extensions_ = extensions; VkDeviceCreateInfo dev_info = {}; dev_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; dev_info.pNext = create_device_pnext; dev_info.queueCreateInfoCount = create_queue_infos.size(); dev_info.pQueueCreateInfos = create_queue_infos.data(); dev_info.enabledLayerCount = 0; dev_info.ppEnabledLayerNames = NULL; dev_info.enabledExtensionCount = extensions.size(); dev_info.ppEnabledExtensionNames = extensions.data(); VkPhysicalDeviceFeatures all_features; // Let VkPhysicalDeviceFeatures2 take priority over VkPhysicalDeviceFeatures, // since it supports extensions if (!(lvl_find_in_chain<VkPhysicalDeviceFeatures2>(dev_info.pNext))) { if (features) { dev_info.pEnabledFeatures = features; } else { // request all supportable features enabled all_features = phy().features(); dev_info.pEnabledFeatures = &all_features; } } init(dev_info); } void Device::init(const VkDeviceCreateInfo &info) { VkDevice dev; if (EXPECT(vkCreateDevice(phy_.handle(), &info, NULL, &dev) == VK_SUCCESS)) Handle::init(dev); init_queues(); init_formats(); } void Device::init_queues() { uint32_t queue_node_count; // Call with NULL data to get count vkGetPhysicalDeviceQueueFamilyProperties(phy_.handle(), &queue_node_count, NULL); EXPECT(queue_node_count >= 1); VkQueueFamilyProperties *queue_props = new VkQueueFamilyProperties[queue_node_count]; vkGetPhysicalDeviceQueueFamilyProperties(phy_.handle(), &queue_node_count, queue_props); queue_families_.resize(queue_node_count); for (uint32_t i = 0; i < queue_node_count; i++) { VkQueue queue; QueueFamilyQueues &queue_storage = queue_families_[i]; queue_storage.reserve(queue_props[i].queueCount); for (uint32_t j = 0; j < queue_props[i].queueCount; j++) { // TODO: Need to add support for separate MEMMGR and work queues, // including synchronization vkGetDeviceQueue(handle(), i, j, &queue); // Store single copy of the queue object that will self destruct queue_storage.emplace_back(new Queue(queue, i)); if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { queues_[GRAPHICS].push_back(queue_storage.back().get()); } if (queue_props[i].queueFlags & VK_QUEUE_COMPUTE_BIT) { queues_[COMPUTE].push_back(queue_storage.back().get()); } if (queue_props[i].queueFlags & VK_QUEUE_TRANSFER_BIT) { queues_[DMA].push_back(queue_storage.back().get()); } } } delete[] queue_props; EXPECT(!queues_[GRAPHICS].empty() || !queues_[COMPUTE].empty()); } const Device::QueueFamilyQueues &Device::queue_family_queues(uint32_t queue_family) const { assert(queue_family < queue_families_.size()); return queue_families_[queue_family]; } void Device::init_formats() { for (int f = VK_FORMAT_BEGIN_RANGE; f <= VK_FORMAT_END_RANGE; f++) { const VkFormat fmt = static_cast<VkFormat>(f); const VkFormatProperties props = format_properties(fmt); if (props.linearTilingFeatures) { const Format tmp = {fmt, VK_IMAGE_TILING_LINEAR, props.linearTilingFeatures}; formats_.push_back(tmp); } if (props.optimalTilingFeatures) { const Format tmp = {fmt, VK_IMAGE_TILING_OPTIMAL, props.optimalTilingFeatures}; formats_.push_back(tmp); } } EXPECT(!formats_.empty()); } bool Device::IsEnabledExtension(const char *extension) { const auto is_x = [&extension](const char *enabled_extension) { return strcmp(extension, enabled_extension) == 0; }; return std::any_of(enabled_extensions_.begin(), enabled_extensions_.end(), is_x); } VkFormatProperties Device::format_properties(VkFormat format) { VkFormatProperties data; vkGetPhysicalDeviceFormatProperties(phy().handle(), format, &data); return data; } void Device::wait() { EXPECT(vkDeviceWaitIdle(handle()) == VK_SUCCESS); } VkResult Device::wait(const std::vector<const Fence *> &fences, bool wait_all, uint64_t timeout) { const std::vector<VkFence> fence_handles = MakeVkHandles<VkFence>(fences); VkResult err = vkWaitForFences(handle(), fence_handles.size(), fence_handles.data(), wait_all, timeout); EXPECT(err == VK_SUCCESS || err == VK_TIMEOUT); return err; } void Device::update_descriptor_sets(const std::vector<VkWriteDescriptorSet> &writes, const std::vector<VkCopyDescriptorSet> &copies) { vkUpdateDescriptorSets(handle(), writes.size(), writes.data(), copies.size(), copies.data()); } VkResult Queue::submit(const std::vector<const CommandBuffer *> &cmds, const Fence &fence, bool expect_success) { const std::vector<VkCommandBuffer> cmd_handles = MakeVkHandles<VkCommandBuffer>(cmds); VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = NULL; submit_info.pWaitDstStageMask = NULL; submit_info.commandBufferCount = (uint32_t)cmd_handles.size(); submit_info.pCommandBuffers = cmd_handles.data(); submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = NULL; VkResult result = vkQueueSubmit(handle(), 1, &submit_info, fence.handle()); if (expect_success) EXPECT(result == VK_SUCCESS); return result; } VkResult Queue::submit(const CommandBuffer &cmd, const Fence &fence, bool expect_success) { return submit(std::vector<const CommandBuffer *>(1, &cmd), fence, expect_success); } VkResult Queue::submit(const CommandBuffer &cmd, bool expect_success) { Fence fence; return submit(cmd, fence); } VkResult Queue::wait() { VkResult result = vkQueueWaitIdle(handle()); EXPECT(result == VK_SUCCESS); return result; } DeviceMemory::~DeviceMemory() { if (initialized()) vkFreeMemory(device(), handle(), NULL); } void DeviceMemory::init(const Device &dev, const VkMemoryAllocateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkAllocateMemory, dev, &info); } const void *DeviceMemory::map(VkFlags flags) const { void *data; if (!EXPECT(vkMapMemory(device(), handle(), 0, VK_WHOLE_SIZE, flags, &data) == VK_SUCCESS)) data = NULL; return data; } void *DeviceMemory::map(VkFlags flags) { void *data; if (!EXPECT(vkMapMemory(device(), handle(), 0, VK_WHOLE_SIZE, flags, &data) == VK_SUCCESS)) data = NULL; return data; } void DeviceMemory::unmap() const { vkUnmapMemory(device(), handle()); } VkMemoryAllocateInfo DeviceMemory::get_resource_alloc_info(const Device &dev, const VkMemoryRequirements &reqs, VkMemoryPropertyFlags mem_props) { // Find appropriate memory type for given reqs VkPhysicalDeviceMemoryProperties dev_mem_props = dev.phy().memory_properties(); uint32_t mem_type_index = 0; for (mem_type_index = 0; mem_type_index < dev_mem_props.memoryTypeCount; ++mem_type_index) { if (mem_props == (mem_props & dev_mem_props.memoryTypes[mem_type_index].propertyFlags)) break; } // If we exceeded types, then this device doesn't have the memory we need assert(mem_type_index < dev_mem_props.memoryTypeCount); VkMemoryAllocateInfo info = alloc_info(reqs.size, mem_type_index); EXPECT(dev.phy().set_memory_type(reqs.memoryTypeBits, &info, mem_props)); return info; } NON_DISPATCHABLE_HANDLE_DTOR(Fence, vkDestroyFence) void Fence::init(const Device &dev, const VkFenceCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateFence, dev, &info); } VkResult Fence::wait(VkBool32 wait_all, uint64_t timeout) const { VkFence fence = handle(); return vkWaitForFences(device(), 1, &fence, wait_all, timeout); } NON_DISPATCHABLE_HANDLE_DTOR(Semaphore, vkDestroySemaphore) void Semaphore::init(const Device &dev, const VkSemaphoreCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateSemaphore, dev, &info); } NON_DISPATCHABLE_HANDLE_DTOR(Event, vkDestroyEvent) void Event::init(const Device &dev, const VkEventCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateEvent, dev, &info); } void Event::set() { EXPECT(vkSetEvent(device(), handle()) == VK_SUCCESS); } void Event::reset() { EXPECT(vkResetEvent(device(), handle()) == VK_SUCCESS); } NON_DISPATCHABLE_HANDLE_DTOR(QueryPool, vkDestroyQueryPool) void QueryPool::init(const Device &dev, const VkQueryPoolCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateQueryPool, dev, &info); } VkResult QueryPool::results(uint32_t first, uint32_t count, size_t size, void *data, size_t stride) { VkResult err = vkGetQueryPoolResults(device(), handle(), first, count, size, data, stride, 0); EXPECT(err == VK_SUCCESS || err == VK_NOT_READY); return err; } NON_DISPATCHABLE_HANDLE_DTOR(Buffer, vkDestroyBuffer) void Buffer::init(const Device &dev, const VkBufferCreateInfo &info, VkMemoryPropertyFlags mem_props) { init_no_mem(dev, info); internal_mem_.init(dev, DeviceMemory::get_resource_alloc_info(dev, memory_requirements(), mem_props)); bind_memory(internal_mem_, 0); } void Buffer::init_no_mem(const Device &dev, const VkBufferCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateBuffer, dev, &info); create_info_ = info; } VkMemoryRequirements Buffer::memory_requirements() const { VkMemoryRequirements reqs; vkGetBufferMemoryRequirements(device(), handle(), &reqs); return reqs; } void Buffer::bind_memory(const DeviceMemory &mem, VkDeviceSize mem_offset) { EXPECT(vkBindBufferMemory(device(), handle(), mem.handle(), mem_offset) == VK_SUCCESS); } NON_DISPATCHABLE_HANDLE_DTOR(BufferView, vkDestroyBufferView) void BufferView::init(const Device &dev, const VkBufferViewCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateBufferView, dev, &info); } NON_DISPATCHABLE_HANDLE_DTOR(Image, vkDestroyImage) void Image::init(const Device &dev, const VkImageCreateInfo &info, VkMemoryPropertyFlags mem_props) { init_no_mem(dev, info); if (initialized()) { internal_mem_.init(dev, DeviceMemory::get_resource_alloc_info(dev, memory_requirements(), mem_props)); bind_memory(internal_mem_, 0); } } void Image::init_no_mem(const Device &dev, const VkImageCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateImage, dev, &info); if (initialized()) { init_info(dev, info); } } void Image::init_info(const Device &dev, const VkImageCreateInfo &info) { create_info_ = info; for (std::vector<Device::Format>::const_iterator it = dev.formats().begin(); it != dev.formats().end(); it++) { if (memcmp(&it->format, &create_info_.format, sizeof(it->format)) == 0 && it->tiling == create_info_.tiling) { format_features_ = it->features; break; } } } VkMemoryRequirements Image::memory_requirements() const { VkMemoryRequirements reqs; vkGetImageMemoryRequirements(device(), handle(), &reqs); return reqs; } void Image::bind_memory(const DeviceMemory &mem, VkDeviceSize mem_offset) { EXPECT(vkBindImageMemory(device(), handle(), mem.handle(), mem_offset) == VK_SUCCESS); } VkSubresourceLayout Image::subresource_layout(const VkImageSubresource &subres) const { VkSubresourceLayout data; size_t size = sizeof(data); vkGetImageSubresourceLayout(device(), handle(), &subres, &data); if (size != sizeof(data)) memset(&data, 0, sizeof(data)); return data; } VkSubresourceLayout Image::subresource_layout(const VkImageSubresourceLayers &subrescopy) const { VkSubresourceLayout data; VkImageSubresource subres = subresource(subrescopy.aspectMask, subrescopy.mipLevel, subrescopy.baseArrayLayer); size_t size = sizeof(data); vkGetImageSubresourceLayout(device(), handle(), &subres, &data); if (size != sizeof(data)) memset(&data, 0, sizeof(data)); return data; } bool Image::transparent() const { return (create_info_.tiling == VK_IMAGE_TILING_LINEAR && create_info_.samples == VK_SAMPLE_COUNT_1_BIT && !(create_info_.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT))); } NON_DISPATCHABLE_HANDLE_DTOR(ImageView, vkDestroyImageView) void ImageView::init(const Device &dev, const VkImageViewCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateImageView, dev, &info); } NON_DISPATCHABLE_HANDLE_DTOR(ShaderModule, vkDestroyShaderModule) void ShaderModule::init(const Device &dev, const VkShaderModuleCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateShaderModule, dev, &info); } VkResult ShaderModule::init_try(const Device &dev, const VkShaderModuleCreateInfo &info) { VkShaderModule mod; VkResult err = vkCreateShaderModule(dev.handle(), &info, NULL, &mod); if (err == VK_SUCCESS) NonDispHandle::init(dev.handle(), mod); return err; } NON_DISPATCHABLE_HANDLE_DTOR(Pipeline, vkDestroyPipeline) void Pipeline::init(const Device &dev, const VkGraphicsPipelineCreateInfo &info) { VkPipelineCache cache; VkPipelineCacheCreateInfo ci; memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo)); ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache); if (err == VK_SUCCESS) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateGraphicsPipelines, dev, cache, 1, &info); vkDestroyPipelineCache(dev.handle(), cache, NULL); } } VkResult Pipeline::init_try(const Device &dev, const VkGraphicsPipelineCreateInfo &info) { VkPipeline pipe; VkPipelineCache cache; VkPipelineCacheCreateInfo ci; memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo)); ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache); EXPECT(err == VK_SUCCESS); if (err == VK_SUCCESS) { err = vkCreateGraphicsPipelines(dev.handle(), cache, 1, &info, NULL, &pipe); if (err == VK_SUCCESS) { NonDispHandle::init(dev.handle(), pipe); } vkDestroyPipelineCache(dev.handle(), cache, NULL); } return err; } void Pipeline::init(const Device &dev, const VkComputePipelineCreateInfo &info) { VkPipelineCache cache; VkPipelineCacheCreateInfo ci; memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo)); ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache); if (err == VK_SUCCESS) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateComputePipelines, dev, cache, 1, &info); vkDestroyPipelineCache(dev.handle(), cache, NULL); } } NON_DISPATCHABLE_HANDLE_DTOR(PipelineLayout, vkDestroyPipelineLayout) void PipelineLayout::init(const Device &dev, VkPipelineLayoutCreateInfo &info, const std::vector<const DescriptorSetLayout *> &layouts) { const std::vector<VkDescriptorSetLayout> layout_handles = MakeVkHandles<VkDescriptorSetLayout>(layouts); info.setLayoutCount = layout_handles.size(); info.pSetLayouts = layout_handles.data(); NON_DISPATCHABLE_HANDLE_INIT(vkCreatePipelineLayout, dev, &info); } NON_DISPATCHABLE_HANDLE_DTOR(Sampler, vkDestroySampler) void Sampler::init(const Device &dev, const VkSamplerCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateSampler, dev, &info); } NON_DISPATCHABLE_HANDLE_DTOR(DescriptorSetLayout, vkDestroyDescriptorSetLayout) void DescriptorSetLayout::init(const Device &dev, const VkDescriptorSetLayoutCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateDescriptorSetLayout, dev, &info); } NON_DISPATCHABLE_HANDLE_DTOR(DescriptorPool, vkDestroyDescriptorPool) void DescriptorPool::init(const Device &dev, const VkDescriptorPoolCreateInfo &info) { setDynamicUsage(info.flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT); NON_DISPATCHABLE_HANDLE_INIT(vkCreateDescriptorPool, dev, &info); } void DescriptorPool::reset() { EXPECT(vkResetDescriptorPool(device(), handle(), 0) == VK_SUCCESS); } std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev, const std::vector<const DescriptorSetLayout *> &layouts) { const std::vector<VkDescriptorSetLayout> layout_handles = MakeVkHandles<VkDescriptorSetLayout>(layouts); std::vector<VkDescriptorSet> set_handles; set_handles.resize(layout_handles.size()); VkDescriptorSetAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; alloc_info.descriptorSetCount = layout_handles.size(); alloc_info.descriptorPool = handle(); alloc_info.pSetLayouts = layout_handles.data(); VkResult err = vkAllocateDescriptorSets(device(), &alloc_info, set_handles.data()); EXPECT(err == VK_SUCCESS); std::vector<DescriptorSet *> sets; for (std::vector<VkDescriptorSet>::const_iterator it = set_handles.begin(); it != set_handles.end(); it++) { // do descriptor sets need memories bound? DescriptorSet *descriptorSet = new DescriptorSet(dev, this, *it); sets.push_back(descriptorSet); } return sets; } std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev, const DescriptorSetLayout &layout, uint32_t count) { return alloc_sets(dev, std::vector<const DescriptorSetLayout *>(count, &layout)); } DescriptorSet *DescriptorPool::alloc_sets(const Device &dev, const DescriptorSetLayout &layout) { std::vector<DescriptorSet *> set = alloc_sets(dev, layout, 1); return (set.empty()) ? NULL : set[0]; } DescriptorSet::~DescriptorSet() { if (initialized()) { // Only call vkFree* on sets allocated from pool with usage *_DYNAMIC if (containing_pool_->getDynamicUsage()) { VkDescriptorSet sets[1] = {handle()}; EXPECT(vkFreeDescriptorSets(device(), containing_pool_->GetObj(), 1, sets) == VK_SUCCESS); } } } NON_DISPATCHABLE_HANDLE_DTOR(CommandPool, vkDestroyCommandPool) void CommandPool::init(const Device &dev, const VkCommandPoolCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateCommandPool, dev, &info); } CommandBuffer::~CommandBuffer() { if (initialized()) { VkCommandBuffer cmds[] = {handle()}; vkFreeCommandBuffers(dev_handle_, cmd_pool_, 1, cmds); } } void CommandBuffer::init(const Device &dev, const VkCommandBufferAllocateInfo &info) { VkCommandBuffer cmd; // Make sure commandPool is set assert(info.commandPool); if (EXPECT(vkAllocateCommandBuffers(dev.handle(), &info, &cmd) == VK_SUCCESS)) { Handle::init(cmd); dev_handle_ = dev.handle(); cmd_pool_ = info.commandPool; } } void CommandBuffer::begin(const VkCommandBufferBeginInfo *info) { EXPECT(vkBeginCommandBuffer(handle(), info) == VK_SUCCESS); } void CommandBuffer::begin() { VkCommandBufferBeginInfo info = {}; VkCommandBufferInheritanceInfo hinfo = {}; info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; info.pInheritanceInfo = &hinfo; hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO; hinfo.pNext = NULL; hinfo.renderPass = VK_NULL_HANDLE; hinfo.subpass = 0; hinfo.framebuffer = VK_NULL_HANDLE; hinfo.occlusionQueryEnable = VK_FALSE; hinfo.queryFlags = 0; hinfo.pipelineStatistics = 0; begin(&info); } void CommandBuffer::end() { EXPECT(vkEndCommandBuffer(handle()) == VK_SUCCESS); } void CommandBuffer::reset(VkCommandBufferResetFlags flags) { EXPECT(vkResetCommandBuffer(handle(), flags) == VK_SUCCESS); } } // namespace vk_testing