/* Copyright (c) 2015-2019 The Khronos Group Inc. * Copyright (c) 2015-2019 Valve Corporation * Copyright (c) 2015-2019 LunarG, Inc. * Copyright (C) 2015-2019 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Chris Forbes <chrisf@ijw.co.nz> * Author: Dave Houlton <daveh@lunarg.com> */ #include <cinttypes> #include <cassert> #include <chrono> #include <vector> #include <unordered_map> #include <string> #include <sstream> #include <SPIRV/spirv.hpp> #include "vk_loader_platform.h" #include "vk_enum_string_helper.h" #include "vk_layer_data.h" #include "vk_layer_extension_utils.h" #include "vk_layer_utils.h" #include "chassis.h" #include "core_validation.h" #include "shader_validation.h" #include "spirv-tools/libspirv.h" #include "xxhash.h" enum FORMAT_TYPE { FORMAT_TYPE_FLOAT = 1, // UNORM, SNORM, FLOAT, USCALED, SSCALED, SRGB -- anything we consider float in the shader FORMAT_TYPE_SINT = 2, FORMAT_TYPE_UINT = 4, }; typedef std::pair<unsigned, unsigned> location_t; struct interface_var { uint32_t id; uint32_t type_id; uint32_t offset; bool is_patch; bool is_block_member; bool is_relaxed_precision; // TODO: collect the name, too? Isn't required to be present. }; struct shader_stage_attributes { char const *const name; bool arrayed_input; bool arrayed_output; }; static shader_stage_attributes shader_stage_attribs[] = { {"vertex shader", false, false}, {"tessellation control shader", true, true}, {"tessellation evaluation shader", true, false}, {"geometry shader", true, false}, {"fragment shader", false, false}, }; // SPIRV utility functions void shader_module::BuildDefIndex() { for (auto insn : *this) { switch (insn.opcode()) { // Types case spv::OpTypeVoid: case spv::OpTypeBool: case spv::OpTypeInt: case spv::OpTypeFloat: case spv::OpTypeVector: case spv::OpTypeMatrix: case spv::OpTypeImage: case spv::OpTypeSampler: case spv::OpTypeSampledImage: case spv::OpTypeArray: case spv::OpTypeRuntimeArray: case spv::OpTypeStruct: case spv::OpTypeOpaque: case spv::OpTypePointer: case spv::OpTypeFunction: case spv::OpTypeEvent: case spv::OpTypeDeviceEvent: case spv::OpTypeReserveId: case spv::OpTypeQueue: case spv::OpTypePipe: case spv::OpTypeAccelerationStructureNV: def_index[insn.word(1)] = insn.offset(); break; // Fixed constants case spv::OpConstantTrue: case spv::OpConstantFalse: case spv::OpConstant: case spv::OpConstantComposite: case spv::OpConstantSampler: case spv::OpConstantNull: def_index[insn.word(2)] = insn.offset(); break; // Specialization constants case spv::OpSpecConstantTrue: case spv::OpSpecConstantFalse: case spv::OpSpecConstant: case spv::OpSpecConstantComposite: case spv::OpSpecConstantOp: def_index[insn.word(2)] = insn.offset(); break; // Variables case spv::OpVariable: def_index[insn.word(2)] = insn.offset(); break; // Functions case spv::OpFunction: def_index[insn.word(2)] = insn.offset(); break; default: // We don't care about any other defs for now. break; } } } unsigned ExecutionModelToShaderStageFlagBits(unsigned mode) { switch (mode) { case spv::ExecutionModelVertex: return VK_SHADER_STAGE_VERTEX_BIT; case spv::ExecutionModelTessellationControl: return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT; case spv::ExecutionModelTessellationEvaluation: return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; case spv::ExecutionModelGeometry: return VK_SHADER_STAGE_GEOMETRY_BIT; case spv::ExecutionModelFragment: return VK_SHADER_STAGE_FRAGMENT_BIT; case spv::ExecutionModelGLCompute: return VK_SHADER_STAGE_COMPUTE_BIT; case spv::ExecutionModelRayGenerationNV: return VK_SHADER_STAGE_RAYGEN_BIT_NV; case spv::ExecutionModelAnyHitNV: return VK_SHADER_STAGE_ANY_HIT_BIT_NV; case spv::ExecutionModelClosestHitNV: return VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV; case spv::ExecutionModelMissNV: return VK_SHADER_STAGE_MISS_BIT_NV; case spv::ExecutionModelIntersectionNV: return VK_SHADER_STAGE_INTERSECTION_BIT_NV; case spv::ExecutionModelCallableNV: return VK_SHADER_STAGE_CALLABLE_BIT_NV; case spv::ExecutionModelTaskNV: return VK_SHADER_STAGE_TASK_BIT_NV; case spv::ExecutionModelMeshNV: return VK_SHADER_STAGE_MESH_BIT_NV; default: return 0; } } static spirv_inst_iter FindEntrypoint(shader_module const *src, char const *name, VkShaderStageFlagBits stageBits) { for (auto insn : *src) { if (insn.opcode() == spv::OpEntryPoint) { auto entrypointName = (char const *)&insn.word(3); auto executionModel = insn.word(1); auto entrypointStageBits = ExecutionModelToShaderStageFlagBits(executionModel); if (!strcmp(entrypointName, name) && (entrypointStageBits & stageBits)) { return insn; } } } return src->end(); } static char const *StorageClassName(unsigned sc) { switch (sc) { case spv::StorageClassInput: return "input"; case spv::StorageClassOutput: return "output"; case spv::StorageClassUniformConstant: return "const uniform"; case spv::StorageClassUniform: return "uniform"; case spv::StorageClassWorkgroup: return "workgroup local"; case spv::StorageClassCrossWorkgroup: return "workgroup global"; case spv::StorageClassPrivate: return "private global"; case spv::StorageClassFunction: return "function"; case spv::StorageClassGeneric: return "generic"; case spv::StorageClassAtomicCounter: return "atomic counter"; case spv::StorageClassImage: return "image"; case spv::StorageClassPushConstant: return "push constant"; case spv::StorageClassStorageBuffer: return "storage buffer"; default: return "unknown"; } } // Get the value of an integral constant unsigned GetConstantValue(shader_module const *src, unsigned id) { auto value = src->get_def(id); assert(value != src->end()); if (value.opcode() != spv::OpConstant) { // TODO: Either ensure that the specialization transform is already performed on a module we're // considering here, OR -- specialize on the fly now. return 1; } return value.word(3); } static void DescribeTypeInner(std::ostringstream &ss, shader_module const *src, unsigned type) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypeBool: ss << "bool"; break; case spv::OpTypeInt: ss << (insn.word(3) ? 's' : 'u') << "int" << insn.word(2); break; case spv::OpTypeFloat: ss << "float" << insn.word(2); break; case spv::OpTypeVector: ss << "vec" << insn.word(3) << " of "; DescribeTypeInner(ss, src, insn.word(2)); break; case spv::OpTypeMatrix: ss << "mat" << insn.word(3) << " of "; DescribeTypeInner(ss, src, insn.word(2)); break; case spv::OpTypeArray: ss << "arr[" << GetConstantValue(src, insn.word(3)) << "] of "; DescribeTypeInner(ss, src, insn.word(2)); break; case spv::OpTypeRuntimeArray: ss << "runtime arr[] of "; DescribeTypeInner(ss, src, insn.word(2)); break; case spv::OpTypePointer: ss << "ptr to " << StorageClassName(insn.word(2)) << " "; DescribeTypeInner(ss, src, insn.word(3)); break; case spv::OpTypeStruct: { ss << "struct of ("; for (unsigned i = 2; i < insn.len(); i++) { DescribeTypeInner(ss, src, insn.word(i)); if (i == insn.len() - 1) { ss << ")"; } else { ss << ", "; } } break; } case spv::OpTypeSampler: ss << "sampler"; break; case spv::OpTypeSampledImage: ss << "sampler+"; DescribeTypeInner(ss, src, insn.word(2)); break; case spv::OpTypeImage: ss << "image(dim=" << insn.word(3) << ", sampled=" << insn.word(7) << ")"; break; case spv::OpTypeAccelerationStructureNV: ss << "accelerationStruture"; break; default: ss << "oddtype"; break; } } static std::string DescribeType(shader_module const *src, unsigned type) { std::ostringstream ss; DescribeTypeInner(ss, src, type); return ss.str(); } static bool IsNarrowNumericType(spirv_inst_iter type) { if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat) return false; return type.word(2) < 64; } static bool TypesMatch(shader_module const *a, shader_module const *b, unsigned a_type, unsigned b_type, bool a_arrayed, bool b_arrayed, bool relaxed) { // Walk two type trees together, and complain about differences auto a_insn = a->get_def(a_type); auto b_insn = b->get_def(b_type); assert(a_insn != a->end()); assert(b_insn != b->end()); // Ignore runtime-sized arrays-- they cannot appear in these interfaces. if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) { return TypesMatch(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed); } if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) { // We probably just found the extra level of arrayness in b_type: compare the type inside it to a_type return TypesMatch(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed); } if (a_insn.opcode() == spv::OpTypeVector && relaxed && IsNarrowNumericType(b_insn)) { return TypesMatch(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false); } if (a_insn.opcode() != b_insn.opcode()) { return false; } if (a_insn.opcode() == spv::OpTypePointer) { // Match on pointee type. storage class is expected to differ return TypesMatch(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed); } if (a_arrayed || b_arrayed) { // If we havent resolved array-of-verts by here, we're not going to. return false; } switch (a_insn.opcode()) { case spv::OpTypeBool: return true; case spv::OpTypeInt: // Match on width, signedness return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3); case spv::OpTypeFloat: // Match on width return a_insn.word(2) == b_insn.word(2); case spv::OpTypeVector: // Match on element type, count. if (!TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false)) return false; if (relaxed && IsNarrowNumericType(a->get_def(a_insn.word(2)))) { return a_insn.word(3) >= b_insn.word(3); } else { return a_insn.word(3) == b_insn.word(3); } case spv::OpTypeMatrix: // Match on element type, count. return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) && a_insn.word(3) == b_insn.word(3); case spv::OpTypeArray: // Match on element type, count. these all have the same layout. we don't get here if b_arrayed. This differs from // vector & matrix types in that the array size is the id of a constant instruction, * not a literal within OpTypeArray return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) && GetConstantValue(a, a_insn.word(3)) == GetConstantValue(b, b_insn.word(3)); case spv::OpTypeStruct: // Match on all element types { if (a_insn.len() != b_insn.len()) { return false; // Structs cannot match if member counts differ } for (unsigned i = 2; i < a_insn.len(); i++) { if (!TypesMatch(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) { return false; } } return true; } default: // Remaining types are CLisms, or may not appear in the interfaces we are interested in. Just claim no match. return false; } } static unsigned ValueOrDefault(std::unordered_map<unsigned, unsigned> const &map, unsigned id, unsigned def) { auto it = map.find(id); if (it == map.end()) return def; else return it->second; } static unsigned GetLocationsConsumedByType(shader_module const *src, unsigned type, bool strip_array_level) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypePointer: // See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing // pointers around. return GetLocationsConsumedByType(src, insn.word(3), strip_array_level); case spv::OpTypeArray: if (strip_array_level) { return GetLocationsConsumedByType(src, insn.word(2), false); } else { return GetConstantValue(src, insn.word(3)) * GetLocationsConsumedByType(src, insn.word(2), false); } case spv::OpTypeMatrix: // Num locations is the dimension * element size return insn.word(3) * GetLocationsConsumedByType(src, insn.word(2), false); case spv::OpTypeVector: { auto scalar_type = src->get_def(insn.word(2)); auto bit_width = (scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32; // Locations are 128-bit wide; 3- and 4-component vectors of 64 bit types require two. return (bit_width * insn.word(3) + 127) / 128; } default: // Everything else is just 1. return 1; // TODO: extend to handle 64bit scalar types, whose vectors may need multiple locations. } } static unsigned GetComponentsConsumedByType(shader_module const *src, unsigned type, bool strip_array_level) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypePointer: // See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing // pointers around. return GetComponentsConsumedByType(src, insn.word(3), strip_array_level); case spv::OpTypeStruct: { uint32_t sum = 0; for (uint32_t i = 2; i < insn.len(); i++) { // i=2 to skip word(0) and word(1)=ID of struct sum += GetComponentsConsumedByType(src, insn.word(i), false); } return sum; } case spv::OpTypeArray: { uint32_t sum = 0; for (uint32_t i = 2; i < insn.len(); i++) { sum += GetComponentsConsumedByType(src, insn.word(i), false); } return sum; } case spv::OpTypeMatrix: // Num locations is the dimension * element size return insn.word(3) * GetComponentsConsumedByType(src, insn.word(2), false); case spv::OpTypeVector: { auto scalar_type = src->get_def(insn.word(2)); auto bit_width = (scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32; // One component is 32-bit return (bit_width * insn.word(3) + 31) / 32; } case spv::OpTypeFloat: { auto bit_width = insn.word(2); return (bit_width + 31) / 32; } case spv::OpTypeInt: { auto bit_width = insn.word(2); return (bit_width + 31) / 32; } case spv::OpConstant: return GetComponentsConsumedByType(src, insn.word(1), false); default: return 0; } } static unsigned GetLocationsConsumedByFormat(VkFormat format) { switch (format) { case VK_FORMAT_R64G64B64A64_SFLOAT: case VK_FORMAT_R64G64B64A64_SINT: case VK_FORMAT_R64G64B64A64_UINT: case VK_FORMAT_R64G64B64_SFLOAT: case VK_FORMAT_R64G64B64_SINT: case VK_FORMAT_R64G64B64_UINT: return 2; default: return 1; } } static unsigned GetFormatType(VkFormat fmt) { if (FormatIsSInt(fmt)) return FORMAT_TYPE_SINT; if (FormatIsUInt(fmt)) return FORMAT_TYPE_UINT; if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT; if (fmt == VK_FORMAT_UNDEFINED) return 0; // everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader. return FORMAT_TYPE_FLOAT; } // characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above. // also used for input attachments, as we statically know their format. static unsigned GetFundamentalType(shader_module const *src, unsigned type) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypeInt: return insn.word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT; case spv::OpTypeFloat: return FORMAT_TYPE_FLOAT; case spv::OpTypeVector: case spv::OpTypeMatrix: case spv::OpTypeArray: case spv::OpTypeRuntimeArray: case spv::OpTypeImage: return GetFundamentalType(src, insn.word(2)); case spv::OpTypePointer: return GetFundamentalType(src, insn.word(3)); default: return 0; } } static uint32_t GetShaderStageId(VkShaderStageFlagBits stage) { uint32_t bit_pos = uint32_t(u_ffs(stage)); return bit_pos - 1; } static spirv_inst_iter GetStructType(shader_module const *src, spirv_inst_iter def, bool is_array_of_verts) { while (true) { if (def.opcode() == spv::OpTypePointer) { def = src->get_def(def.word(3)); } else if (def.opcode() == spv::OpTypeArray && is_array_of_verts) { def = src->get_def(def.word(2)); is_array_of_verts = false; } else if (def.opcode() == spv::OpTypeStruct) { return def; } else { return src->end(); } } } static bool CollectInterfaceBlockMembers(shader_module const *src, std::map<location_t, interface_var> *out, std::unordered_map<unsigned, unsigned> const &blocks, bool is_array_of_verts, uint32_t id, uint32_t type_id, bool is_patch, int /*first_location*/) { // Walk down the type_id presented, trying to determine whether it's actually an interface block. auto type = GetStructType(src, src->get_def(type_id), is_array_of_verts && !is_patch); if (type == src->end() || blocks.find(type.word(1)) == blocks.end()) { // This isn't an interface block. return false; } std::unordered_map<unsigned, unsigned> member_components; std::unordered_map<unsigned, unsigned> member_relaxed_precision; std::unordered_map<unsigned, unsigned> member_patch; // Walk all the OpMemberDecorate for type's result id -- first pass, collect components. for (auto insn : *src) { if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) { unsigned member_index = insn.word(2); if (insn.word(3) == spv::DecorationComponent) { unsigned component = insn.word(4); member_components[member_index] = component; } if (insn.word(3) == spv::DecorationRelaxedPrecision) { member_relaxed_precision[member_index] = 1; } if (insn.word(3) == spv::DecorationPatch) { member_patch[member_index] = 1; } } } // TODO: correctly handle location assignment from outside // Second pass -- produce the output, from Location decorations for (auto insn : *src) { if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) { unsigned member_index = insn.word(2); unsigned member_type_id = type.word(2 + member_index); if (insn.word(3) == spv::DecorationLocation) { unsigned location = insn.word(4); unsigned num_locations = GetLocationsConsumedByType(src, member_type_id, false); auto component_it = member_components.find(member_index); unsigned component = component_it == member_components.end() ? 0 : component_it->second; bool is_relaxed_precision = member_relaxed_precision.find(member_index) != member_relaxed_precision.end(); bool member_is_patch = is_patch || member_patch.count(member_index) > 0; for (unsigned int offset = 0; offset < num_locations; offset++) { interface_var v = {}; v.id = id; // TODO: member index in interface_var too? v.type_id = member_type_id; v.offset = offset; v.is_patch = member_is_patch; v.is_block_member = true; v.is_relaxed_precision = is_relaxed_precision; (*out)[std::make_pair(location + offset, component)] = v; } } } } return true; } static std::map<location_t, interface_var> CollectInterfaceByLocation(shader_module const *src, spirv_inst_iter entrypoint, spv::StorageClass sinterface, bool is_array_of_verts) { std::unordered_map<unsigned, unsigned> var_locations; std::unordered_map<unsigned, unsigned> var_builtins; std::unordered_map<unsigned, unsigned> var_components; std::unordered_map<unsigned, unsigned> blocks; std::unordered_map<unsigned, unsigned> var_patch; std::unordered_map<unsigned, unsigned> var_relaxed_precision; for (auto insn : *src) { // We consider two interface models: SSO rendezvous-by-location, and builtins. Complain about anything that // fits neither model. if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationLocation) { var_locations[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationBuiltIn) { var_builtins[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationComponent) { var_components[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationBlock) { blocks[insn.word(1)] = 1; } if (insn.word(2) == spv::DecorationPatch) { var_patch[insn.word(1)] = 1; } if (insn.word(2) == spv::DecorationRelaxedPrecision) { var_relaxed_precision[insn.word(1)] = 1; } } } // TODO: handle grouped decorations // TODO: handle index=1 dual source outputs from FS -- two vars will have the same location, and we DON'T want to clobber. // Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out the // rest of the word - so we only need to look at the last byte in the word to determine which word contains the terminator. uint32_t word = 3; while (entrypoint.word(word) & 0xff000000u) { ++word; } ++word; std::map<location_t, interface_var> out; for (; word < entrypoint.len(); word++) { auto insn = src->get_def(entrypoint.word(word)); assert(insn != src->end()); assert(insn.opcode() == spv::OpVariable); if (insn.word(3) == static_cast<uint32_t>(sinterface)) { unsigned id = insn.word(2); unsigned type = insn.word(1); int location = ValueOrDefault(var_locations, id, static_cast<unsigned>(-1)); int builtin = ValueOrDefault(var_builtins, id, static_cast<unsigned>(-1)); unsigned component = ValueOrDefault(var_components, id, 0); // Unspecified is OK, is 0 bool is_patch = var_patch.find(id) != var_patch.end(); bool is_relaxed_precision = var_relaxed_precision.find(id) != var_relaxed_precision.end(); if (builtin != -1) continue; else if (!CollectInterfaceBlockMembers(src, &out, blocks, is_array_of_verts, id, type, is_patch, location)) { // A user-defined interface variable, with a location. Where a variable occupied multiple locations, emit // one result for each. unsigned num_locations = GetLocationsConsumedByType(src, type, is_array_of_verts && !is_patch); for (unsigned int offset = 0; offset < num_locations; offset++) { interface_var v = {}; v.id = id; v.type_id = type; v.offset = offset; v.is_patch = is_patch; v.is_relaxed_precision = is_relaxed_precision; out[std::make_pair(location + offset, component)] = v; } } } } return out; } static std::vector<std::pair<uint32_t, interface_var>> CollectInterfaceByInputAttachmentIndex( shader_module const *src, std::unordered_set<uint32_t> const &accessible_ids) { std::vector<std::pair<uint32_t, interface_var>> out; for (auto insn : *src) { if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationInputAttachmentIndex) { auto attachment_index = insn.word(3); auto id = insn.word(1); if (accessible_ids.count(id)) { auto def = src->get_def(id); assert(def != src->end()); if (def.opcode() == spv::OpVariable && insn.word(3) == spv::StorageClassUniformConstant) { auto num_locations = GetLocationsConsumedByType(src, def.word(1), false); for (unsigned int offset = 0; offset < num_locations; offset++) { interface_var v = {}; v.id = id; v.type_id = def.word(1); v.offset = offset; out.emplace_back(attachment_index + offset, v); } } } } } } return out; } static bool IsWritableDescriptorType(shader_module const *module, uint32_t type_id, bool is_storage_buffer) { auto type = module->get_def(type_id); // Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension. while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) { if (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypeRuntimeArray) { type = module->get_def(type.word(2)); // Element type } else { type = module->get_def(type.word(3)); // Pointee type } } switch (type.opcode()) { case spv::OpTypeImage: { auto dim = type.word(3); auto sampled = type.word(7); return sampled == 2 && dim != spv::DimSubpassData; } case spv::OpTypeStruct: { std::unordered_set<unsigned> nonwritable_members; for (auto insn : *module) { if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) { if (insn.word(2) == spv::DecorationBufferBlock) { // Legacy storage block in the Uniform storage class // has its struct type decorated with BufferBlock. is_storage_buffer = true; } } else if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1) && insn.word(3) == spv::DecorationNonWritable) { nonwritable_members.insert(insn.word(2)); } } // A buffer is writable if it's either flavor of storage buffer, and has any member not decorated // as nonwritable. return is_storage_buffer && nonwritable_members.size() != type.len() - 2; } } return false; } static std::vector<std::pair<descriptor_slot_t, interface_var>> CollectInterfaceByDescriptorSlot( debug_report_data const *report_data, shader_module const *src, std::unordered_set<uint32_t> const &accessible_ids, bool *has_writable_descriptor) { std::unordered_map<unsigned, unsigned> var_sets; std::unordered_map<unsigned, unsigned> var_bindings; std::unordered_map<unsigned, unsigned> var_nonwritable; for (auto insn : *src) { // All variables in the Uniform or UniformConstant storage classes are required to be decorated with both // DecorationDescriptorSet and DecorationBinding. if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationDescriptorSet) { var_sets[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationBinding) { var_bindings[insn.word(1)] = insn.word(3); } // Note: do toplevel DecorationNonWritable out here; it applies to // the OpVariable rather than the type. if (insn.word(2) == spv::DecorationNonWritable) { var_nonwritable[insn.word(1)] = 1; } } } std::vector<std::pair<descriptor_slot_t, interface_var>> out; for (auto id : accessible_ids) { auto insn = src->get_def(id); assert(insn != src->end()); if (insn.opcode() == spv::OpVariable && (insn.word(3) == spv::StorageClassUniform || insn.word(3) == spv::StorageClassUniformConstant || insn.word(3) == spv::StorageClassStorageBuffer)) { unsigned set = ValueOrDefault(var_sets, insn.word(2), 0); unsigned binding = ValueOrDefault(var_bindings, insn.word(2), 0); interface_var v = {}; v.id = insn.word(2); v.type_id = insn.word(1); out.emplace_back(std::make_pair(set, binding), v); if (var_nonwritable.find(id) == var_nonwritable.end() && IsWritableDescriptorType(src, insn.word(1), insn.word(3) == spv::StorageClassStorageBuffer)) { *has_writable_descriptor = true; } } } return out; } static bool ValidateViConsistency(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi) { // Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should // be specified only once. std::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings; bool skip = false; for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) { auto desc = &vi->pVertexBindingDescriptions[i]; auto &binding = bindings[desc->binding]; if (binding) { // TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps? skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_InconsistentVi, "Duplicate vertex input binding descriptions for binding %d", desc->binding); } else { binding = desc; } } return skip; } static bool ValidateViAgainstVsInputs(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi, shader_module const *vs, spirv_inst_iter entrypoint) { bool skip = false; auto inputs = CollectInterfaceByLocation(vs, entrypoint, spv::StorageClassInput, false); // Build index by location std::map<uint32_t, VkVertexInputAttributeDescription const *> attribs; if (vi) { for (unsigned i = 0; i < vi->vertexAttributeDescriptionCount; i++) { auto num_locations = GetLocationsConsumedByFormat(vi->pVertexAttributeDescriptions[i].format); for (auto j = 0u; j < num_locations; j++) { attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i]; } } } auto it_a = attribs.begin(); auto it_b = inputs.begin(); bool used = false; while ((attribs.size() > 0 && it_a != attribs.end()) || (inputs.size() > 0 && it_b != inputs.end())) { bool a_at_end = attribs.size() == 0 || it_a == attribs.end(); bool b_at_end = inputs.size() == 0 || it_b == inputs.end(); auto a_first = a_at_end ? 0 : it_a->first; auto b_first = b_at_end ? 0 : it_b->first.first; if (!a_at_end && (b_at_end || a_first < b_first)) { if (!used && log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed, "Vertex attribute at location %d not consumed by vertex shader", a_first)) { skip = true; } used = false; it_a++; } else if (!b_at_end && (a_at_end || b_first < a_first)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_InputNotProduced, "Vertex shader consumes input at location %d but not provided", b_first); it_b++; } else { unsigned attrib_type = GetFormatType(it_a->second->format); unsigned input_type = GetFundamentalType(vs, it_b->second.type_id); // Type checking if (!(attrib_type & input_type)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(vs->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch, "Attribute type of `%s` at location %d does not match vertex shader input type of `%s`", string_VkFormat(it_a->second->format), a_first, DescribeType(vs, it_b->second.type_id).c_str()); } // OK! used = true; it_b++; } } return skip; } static bool ValidateFsOutputsAgainstRenderPass(debug_report_data const *report_data, shader_module const *fs, spirv_inst_iter entrypoint, PIPELINE_STATE const *pipeline, uint32_t subpass_index) { auto rpci = pipeline->rp_state->createInfo.ptr(); std::map<uint32_t, VkFormat> color_attachments; auto subpass = rpci->pSubpasses[subpass_index]; for (auto i = 0u; i < subpass.colorAttachmentCount; ++i) { uint32_t attachment = subpass.pColorAttachments[i].attachment; if (attachment == VK_ATTACHMENT_UNUSED) continue; if (rpci->pAttachments[attachment].format != VK_FORMAT_UNDEFINED) { color_attachments[i] = rpci->pAttachments[attachment].format; } } bool skip = false; // TODO: dual source blend index (spv::DecIndex, zero if not provided) auto outputs = CollectInterfaceByLocation(fs, entrypoint, spv::StorageClassOutput, false); auto it_a = outputs.begin(); auto it_b = color_attachments.begin(); bool used = false; bool alphaToCoverageEnabled = pipeline->graphicsPipelineCI.pMultisampleState != NULL && pipeline->graphicsPipelineCI.pMultisampleState->alphaToCoverageEnable == VK_TRUE; bool locationZeroHasAlpha = false; // Walk attachment list and outputs together while ((outputs.size() > 0 && it_a != outputs.end()) || (color_attachments.size() > 0 && it_b != color_attachments.end())) { bool a_at_end = outputs.size() == 0 || it_a == outputs.end(); bool b_at_end = color_attachments.size() == 0 || it_b == color_attachments.end(); if (!a_at_end && it_a->first.first == 0 && fs->get_def(it_a->second.type_id) != fs->end() && GetComponentsConsumedByType(fs, it_a->second.type_id, false) == 4) locationZeroHasAlpha = true; if (!a_at_end && (b_at_end || it_a->first.first < it_b->first)) { if (!alphaToCoverageEnabled || it_a->first.first != 0) { skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed, "fragment shader writes to output location %d with no matching attachment", it_a->first.first); } it_a++; } else if (!b_at_end && (a_at_end || it_a->first.first > it_b->first)) { // Only complain if there are unmasked channels for this attachment. If the writemask is 0, it's acceptable for the // shader to not produce a matching output. if (!used) { if (pipeline->attachments[it_b->first].colorWriteMask != 0) { skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_InputNotProduced, "Attachment %d not written by fragment shader; undefined values will be written to attachment", it_b->first); } } used = false; it_b++; } else { unsigned output_type = GetFundamentalType(fs, it_a->second.type_id); unsigned att_type = GetFormatType(it_b->second); // Type checking if (!(output_type & att_type)) { skip |= log_msg( report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch, "Attachment %d of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined", it_b->first, string_VkFormat(it_b->second), DescribeType(fs, it_a->second.type_id).c_str()); } // OK! it_a++; used = true; } } if (alphaToCoverageEnabled && !locationZeroHasAlpha) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage, "fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled."); } return skip; } // For PointSize analysis we need to know if the variable decorated with the PointSize built-in was actually written to. // This function examines instructions in the static call tree for a write to this variable. static bool IsPointSizeWritten(shader_module const *src, spirv_inst_iter builtin_instr, spirv_inst_iter entrypoint) { auto type = builtin_instr.opcode(); uint32_t target_id = builtin_instr.word(1); bool init_complete = false; if (type == spv::OpMemberDecorate) { // Built-in is part of a structure -- examine instructions up to first function body to get initial IDs auto insn = entrypoint; while (!init_complete && (insn.opcode() != spv::OpFunction)) { switch (insn.opcode()) { case spv::OpTypePointer: if ((insn.word(3) == target_id) && (insn.word(2) == spv::StorageClassOutput)) { target_id = insn.word(1); } break; case spv::OpVariable: if (insn.word(1) == target_id) { target_id = insn.word(2); init_complete = true; } break; } insn++; } } if (!init_complete && (type == spv::OpMemberDecorate)) return false; bool found_write = false; std::unordered_set<uint32_t> worklist; worklist.insert(entrypoint.word(2)); // Follow instructions in call graph looking for writes to target while (!worklist.empty() && !found_write) { auto id_iter = worklist.begin(); auto id = *id_iter; worklist.erase(id_iter); auto insn = src->get_def(id); if (insn == src->end()) { continue; } if (insn.opcode() == spv::OpFunction) { // Scan body of function looking for other function calls or items in our ID chain while (++insn, insn.opcode() != spv::OpFunctionEnd) { switch (insn.opcode()) { case spv::OpAccessChain: if (insn.word(3) == target_id) { if (type == spv::OpMemberDecorate) { auto value = GetConstantValue(src, insn.word(4)); if (value == builtin_instr.word(2)) { target_id = insn.word(2); } } else { target_id = insn.word(2); } } break; case spv::OpStore: if (insn.word(1) == target_id) { found_write = true; } break; case spv::OpFunctionCall: worklist.insert(insn.word(3)); break; } } } } return found_write; } // For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is // important for identifying the set of shader resources actually used by an entrypoint, for example. // Note: we only explore parts of the image which might actually contain ids we care about for the above analyses. // - NOT the shader input/output interfaces. // // TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth // converting parts of this to be generated from the machine-readable spec instead. static std::unordered_set<uint32_t> MarkAccessibleIds(shader_module const *src, spirv_inst_iter entrypoint) { std::unordered_set<uint32_t> ids; std::unordered_set<uint32_t> worklist; worklist.insert(entrypoint.word(2)); while (!worklist.empty()) { auto id_iter = worklist.begin(); auto id = *id_iter; worklist.erase(id_iter); auto insn = src->get_def(id); if (insn == src->end()) { // ID is something we didn't collect in BuildDefIndex. that's OK -- we'll stumble across all kinds of things here // that we may not care about. continue; } // Try to add to the output set if (!ids.insert(id).second) { continue; // If we already saw this id, we don't want to walk it again. } switch (insn.opcode()) { case spv::OpFunction: // Scan whole body of the function, enlisting anything interesting while (++insn, insn.opcode() != spv::OpFunctionEnd) { switch (insn.opcode()) { case spv::OpLoad: case spv::OpAtomicLoad: case spv::OpAtomicExchange: case spv::OpAtomicCompareExchange: case spv::OpAtomicCompareExchangeWeak: case spv::OpAtomicIIncrement: case spv::OpAtomicIDecrement: case spv::OpAtomicIAdd: case spv::OpAtomicISub: case spv::OpAtomicSMin: case spv::OpAtomicUMin: case spv::OpAtomicSMax: case spv::OpAtomicUMax: case spv::OpAtomicAnd: case spv::OpAtomicOr: case spv::OpAtomicXor: worklist.insert(insn.word(3)); // ptr break; case spv::OpStore: case spv::OpAtomicStore: worklist.insert(insn.word(1)); // ptr break; case spv::OpAccessChain: case spv::OpInBoundsAccessChain: worklist.insert(insn.word(3)); // base ptr break; case spv::OpSampledImage: case spv::OpImageSampleImplicitLod: case spv::OpImageSampleExplicitLod: case spv::OpImageSampleDrefImplicitLod: case spv::OpImageSampleDrefExplicitLod: case spv::OpImageSampleProjImplicitLod: case spv::OpImageSampleProjExplicitLod: case spv::OpImageSampleProjDrefImplicitLod: case spv::OpImageSampleProjDrefExplicitLod: case spv::OpImageFetch: case spv::OpImageGather: case spv::OpImageDrefGather: case spv::OpImageRead: case spv::OpImage: case spv::OpImageQueryFormat: case spv::OpImageQueryOrder: case spv::OpImageQuerySizeLod: case spv::OpImageQuerySize: case spv::OpImageQueryLod: case spv::OpImageQueryLevels: case spv::OpImageQuerySamples: case spv::OpImageSparseSampleImplicitLod: case spv::OpImageSparseSampleExplicitLod: case spv::OpImageSparseSampleDrefImplicitLod: case spv::OpImageSparseSampleDrefExplicitLod: case spv::OpImageSparseSampleProjImplicitLod: case spv::OpImageSparseSampleProjExplicitLod: case spv::OpImageSparseSampleProjDrefImplicitLod: case spv::OpImageSparseSampleProjDrefExplicitLod: case spv::OpImageSparseFetch: case spv::OpImageSparseGather: case spv::OpImageSparseDrefGather: case spv::OpImageTexelPointer: worklist.insert(insn.word(3)); // Image or sampled image break; case spv::OpImageWrite: worklist.insert(insn.word(1)); // Image -- different operand order to above break; case spv::OpFunctionCall: for (uint32_t i = 3; i < insn.len(); i++) { worklist.insert(insn.word(i)); // fn itself, and all args } break; case spv::OpExtInst: for (uint32_t i = 5; i < insn.len(); i++) { worklist.insert(insn.word(i)); // Operands to ext inst } break; } } break; } } return ids; } static bool ValidatePushConstantBlockAgainstPipeline(debug_report_data const *report_data, std::vector<VkPushConstantRange> const *push_constant_ranges, shader_module const *src, spirv_inst_iter type, VkShaderStageFlagBits stage) { bool skip = false; // Strip off ptrs etc type = GetStructType(src, type, false); assert(type != src->end()); // Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step. // TODO: arrays, matrices, weird sizes for (auto insn : *src) { if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) { if (insn.word(3) == spv::DecorationOffset) { unsigned offset = insn.word(4); auto size = 4; // Bytes; TODO: calculate this based on the type bool found_range = false; for (auto const &range : *push_constant_ranges) { if (range.offset <= offset && range.offset + range.size >= offset + size) { found_range = true; if ((range.stageFlags & stage) == 0) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_PushConstantNotAccessibleFromStage, "Push constant range covering variable starting at offset %u not accessible from stage %s", offset, string_VkShaderStageFlagBits(stage)); } break; } } if (!found_range) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_PushConstantOutOfRange, "Push constant range covering variable starting at offset %u not declared in layout", offset); } } } } return skip; } static bool ValidatePushConstantUsage(debug_report_data const *report_data, std::vector<VkPushConstantRange> const *push_constant_ranges, shader_module const *src, std::unordered_set<uint32_t> accessible_ids, VkShaderStageFlagBits stage) { bool skip = false; for (auto id : accessible_ids) { auto def_insn = src->get_def(id); if (def_insn.opcode() == spv::OpVariable && def_insn.word(3) == spv::StorageClassPushConstant) { skip |= ValidatePushConstantBlockAgainstPipeline(report_data, push_constant_ranges, src, src->get_def(def_insn.word(1)), stage); } } return skip; } // Validate that data for each specialization entry is fully contained within the buffer. static bool ValidateSpecializationOffsets(debug_report_data const *report_data, VkPipelineShaderStageCreateInfo const *info) { bool skip = false; VkSpecializationInfo const *spec = info->pSpecializationInfo; if (spec) { for (auto i = 0u; i < spec->mapEntryCount; i++) { // TODO: This is a good place for "VUID-VkSpecializationInfo-offset-00773". if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0, "VUID-VkSpecializationInfo-pMapEntries-00774", "Specialization entry %u (for constant id %u) references memory outside provided specialization " "data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..", i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset, spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize); } } } return skip; } // TODO (jbolz): Can this return a const reference? static std::set<uint32_t> TypeToDescriptorTypeSet(shader_module const *module, uint32_t type_id, unsigned &descriptor_count) { auto type = module->get_def(type_id); bool is_storage_buffer = false; descriptor_count = 1; std::set<uint32_t> ret; // Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension. while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) { if (type.opcode() == spv::OpTypeRuntimeArray) { descriptor_count = 0; type = module->get_def(type.word(2)); } else if (type.opcode() == spv::OpTypeArray) { descriptor_count *= GetConstantValue(module, type.word(3)); type = module->get_def(type.word(2)); } else { if (type.word(2) == spv::StorageClassStorageBuffer) { is_storage_buffer = true; } type = module->get_def(type.word(3)); } } switch (type.opcode()) { case spv::OpTypeStruct: { for (auto insn : *module) { if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) { if (insn.word(2) == spv::DecorationBlock) { if (is_storage_buffer) { ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); return ret; } else { ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC); ret.insert(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT); return ret; } } else if (insn.word(2) == spv::DecorationBufferBlock) { ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER); ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); return ret; } } } // Invalid return ret; } case spv::OpTypeSampler: ret.insert(VK_DESCRIPTOR_TYPE_SAMPLER); ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); return ret; case spv::OpTypeSampledImage: { // Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel // buffer descriptor doesn't really provide one. Allow this slight mismatch. auto image_type = module->get_def(type.word(2)); auto dim = image_type.word(3); auto sampled = image_type.word(7); if (dim == spv::DimBuffer && sampled == 1) { ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER); return ret; } } ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); return ret; case spv::OpTypeImage: { // Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler. // SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable. auto dim = type.word(3); auto sampled = type.word(7); if (dim == spv::DimSubpassData) { ret.insert(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT); return ret; } else if (dim == spv::DimBuffer) { if (sampled == 1) { ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER); return ret; } else { ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER); return ret; } } else if (sampled == 1) { ret.insert(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE); ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER); return ret; } else { ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE); return ret; } } case spv::OpTypeAccelerationStructureNV: ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV); return ret; // We shouldn't really see any other junk types -- but if we do, they're a mismatch. default: return ret; // Matches nothing } } static std::string string_descriptorTypes(const std::set<uint32_t> &descriptor_types) { std::stringstream ss; for (auto it = descriptor_types.begin(); it != descriptor_types.end(); ++it) { if (ss.tellp()) ss << ", "; ss << string_VkDescriptorType(VkDescriptorType(*it)); } return ss.str(); } static bool RequireFeature(debug_report_data const *report_data, VkBool32 feature, char const *feature_name) { if (!feature) { if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_FeatureNotEnabled, "Shader requires %s but is not enabled on the device", feature_name)) { return true; } } return false; } static bool RequireExtension(debug_report_data const *report_data, bool extension, char const *extension_name) { if (!extension) { if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_FeatureNotEnabled, "Shader requires extension %s but is not enabled on the device", extension_name)) { return true; } } return false; } bool CoreChecks::ValidateShaderCapabilities(layer_data *dev_data, shader_module const *src, VkShaderStageFlagBits stage, bool has_writable_descriptor) { bool skip = false; auto const &features = GetEnabledFeatures(); auto const &extensions = GetDeviceExtensions(); struct FeaturePointer { // Callable object to test if this feature is enabled in the given aggregate feature struct const std::function<VkBool32(const DeviceFeatures &)> IsEnabled; // Test if feature pointer is populated explicit operator bool() const { return static_cast<bool>(IsEnabled); } // Default and nullptr constructor to create an empty FeaturePointer FeaturePointer() : IsEnabled(nullptr) {} FeaturePointer(std::nullptr_t ptr) : IsEnabled(nullptr) {} // Constructors to populate FeaturePointer based on given pointer to member FeaturePointer(VkBool32 VkPhysicalDeviceFeatures::*ptr) : IsEnabled([=](const DeviceFeatures &features) { return features.core.*ptr; }) {} FeaturePointer(VkBool32 VkPhysicalDeviceDescriptorIndexingFeaturesEXT::*ptr) : IsEnabled([=](const DeviceFeatures &features) { return features.descriptor_indexing.*ptr; }) {} FeaturePointer(VkBool32 VkPhysicalDevice8BitStorageFeaturesKHR::*ptr) : IsEnabled([=](const DeviceFeatures &features) { return features.eight_bit_storage.*ptr; }) {} FeaturePointer(VkBool32 VkPhysicalDeviceTransformFeedbackFeaturesEXT::*ptr) : IsEnabled([=](const DeviceFeatures &features) { return features.transform_feedback_features.*ptr; }) {} FeaturePointer(VkBool32 VkPhysicalDeviceFloat16Int8FeaturesKHR::*ptr) : IsEnabled([=](const DeviceFeatures &features) { return features.float16_int8.*ptr; }) {} FeaturePointer(VkBool32 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT::*ptr) : IsEnabled([=](const DeviceFeatures &features) { return features.scalar_block_layout_features.*ptr; }) {} }; struct CapabilityInfo { char const *name; FeaturePointer feature; bool DeviceExtensions::*extension; }; // clang-format off static const std::unordered_multimap<uint32_t, CapabilityInfo> capabilities = { // Capabilities always supported by a Vulkan 1.0 implementation -- no // feature bits. {spv::CapabilityMatrix, {nullptr}}, {spv::CapabilityShader, {nullptr}}, {spv::CapabilityInputAttachment, {nullptr}}, {spv::CapabilitySampled1D, {nullptr}}, {spv::CapabilityImage1D, {nullptr}}, {spv::CapabilitySampledBuffer, {nullptr}}, {spv::CapabilityImageQuery, {nullptr}}, {spv::CapabilityDerivativeControl, {nullptr}}, // Capabilities that are optionally supported, but require a feature to // be enabled on the device {spv::CapabilityGeometry, {"VkPhysicalDeviceFeatures::geometryShader", &VkPhysicalDeviceFeatures::geometryShader}}, {spv::CapabilityTessellation, {"VkPhysicalDeviceFeatures::tessellationShader", &VkPhysicalDeviceFeatures::tessellationShader}}, {spv::CapabilityFloat64, {"VkPhysicalDeviceFeatures::shaderFloat64", &VkPhysicalDeviceFeatures::shaderFloat64}}, {spv::CapabilityInt64, {"VkPhysicalDeviceFeatures::shaderInt64", &VkPhysicalDeviceFeatures::shaderInt64}}, {spv::CapabilityTessellationPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize}}, {spv::CapabilityGeometryPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize}}, {spv::CapabilityImageGatherExtended, {"VkPhysicalDeviceFeatures::shaderImageGatherExtended", &VkPhysicalDeviceFeatures::shaderImageGatherExtended}}, {spv::CapabilityStorageImageMultisample, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &VkPhysicalDeviceFeatures::shaderStorageImageMultisample}}, {spv::CapabilityUniformBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing}}, {spv::CapabilitySampledImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing}}, {spv::CapabilityStorageBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing}}, {spv::CapabilityStorageImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing", &VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing}}, {spv::CapabilityClipDistance, {"VkPhysicalDeviceFeatures::shaderClipDistance", &VkPhysicalDeviceFeatures::shaderClipDistance}}, {spv::CapabilityCullDistance, {"VkPhysicalDeviceFeatures::shaderCullDistance", &VkPhysicalDeviceFeatures::shaderCullDistance}}, {spv::CapabilityImageCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &VkPhysicalDeviceFeatures::imageCubeArray}}, {spv::CapabilitySampleRateShading, {"VkPhysicalDeviceFeatures::sampleRateShading", &VkPhysicalDeviceFeatures::sampleRateShading}}, {spv::CapabilitySparseResidency, {"VkPhysicalDeviceFeatures::shaderResourceResidency", &VkPhysicalDeviceFeatures::shaderResourceResidency}}, {spv::CapabilityMinLod, {"VkPhysicalDeviceFeatures::shaderResourceMinLod", &VkPhysicalDeviceFeatures::shaderResourceMinLod}}, {spv::CapabilitySampledCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &VkPhysicalDeviceFeatures::imageCubeArray}}, {spv::CapabilityImageMSArray, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &VkPhysicalDeviceFeatures::shaderStorageImageMultisample}}, {spv::CapabilityStorageImageExtendedFormats, {"VkPhysicalDeviceFeatures::shaderStorageImageExtendedFormats", &VkPhysicalDeviceFeatures::shaderStorageImageExtendedFormats}}, {spv::CapabilityInterpolationFunction, {"VkPhysicalDeviceFeatures::sampleRateShading", &VkPhysicalDeviceFeatures::sampleRateShading}}, {spv::CapabilityStorageImageReadWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat", &VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat}}, {spv::CapabilityStorageImageWriteWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat", &VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat}}, {spv::CapabilityMultiViewport, {"VkPhysicalDeviceFeatures::multiViewport", &VkPhysicalDeviceFeatures::multiViewport}}, {spv::CapabilityShaderNonUniformEXT, {VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_descriptor_indexing}}, {spv::CapabilityRuntimeDescriptorArrayEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray}}, {spv::CapabilityInputAttachmentArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing}}, {spv::CapabilityUniformTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing}}, {spv::CapabilityStorageTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing}}, {spv::CapabilityUniformBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing}}, {spv::CapabilitySampledImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing}}, {spv::CapabilityStorageBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing}}, {spv::CapabilityStorageImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing}}, {spv::CapabilityInputAttachmentArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing}}, {spv::CapabilityUniformTexelBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing}}, {spv::CapabilityStorageTexelBufferArrayNonUniformIndexingEXT , {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing", &VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing}}, // Capabilities that require an extension {spv::CapabilityDrawParameters, {VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_draw_parameters}}, {spv::CapabilityGeometryShaderPassthroughNV, {VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_geometry_shader_passthrough}}, {spv::CapabilitySampleMaskOverrideCoverageNV, {VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_sample_mask_override_coverage}}, {spv::CapabilityShaderViewportIndexLayerEXT, {VK_EXT_SHADER_VIEWPORT_INDEX_LAYER_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_viewport_index_layer}}, {spv::CapabilityShaderViewportIndexLayerNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_viewport_array2}}, {spv::CapabilityShaderViewportMaskNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_nv_viewport_array2}}, {spv::CapabilitySubgroupBallotKHR, {VK_EXT_SHADER_SUBGROUP_BALLOT_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_subgroup_ballot }}, {spv::CapabilitySubgroupVoteKHR, {VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_ext_shader_subgroup_vote }}, {spv::CapabilityInt64Atomics, {VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME, nullptr, &DeviceExtensions::vk_khr_shader_atomic_int64 }}, {spv::CapabilityStorageBuffer8BitAccess , {"VkPhysicalDevice8BitStorageFeaturesKHR::storageBuffer8BitAccess", &VkPhysicalDevice8BitStorageFeaturesKHR::storageBuffer8BitAccess, &DeviceExtensions::vk_khr_8bit_storage}}, {spv::CapabilityUniformAndStorageBuffer8BitAccess , {"VkPhysicalDevice8BitStorageFeaturesKHR::uniformAndStorageBuffer8BitAccess", &VkPhysicalDevice8BitStorageFeaturesKHR::uniformAndStorageBuffer8BitAccess, &DeviceExtensions::vk_khr_8bit_storage}}, {spv::CapabilityStoragePushConstant8 , {"VkPhysicalDevice8BitStorageFeaturesKHR::storagePushConstant8", &VkPhysicalDevice8BitStorageFeaturesKHR::storagePushConstant8, &DeviceExtensions::vk_khr_8bit_storage}}, {spv::CapabilityTransformFeedback , { "VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback", &VkPhysicalDeviceTransformFeedbackFeaturesEXT::transformFeedback, &DeviceExtensions::vk_ext_transform_feedback}}, {spv::CapabilityGeometryStreams , { "VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams", &VkPhysicalDeviceTransformFeedbackFeaturesEXT::geometryStreams, &DeviceExtensions::vk_ext_transform_feedback}}, {spv::CapabilityFloat16 , {"VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderFloat16", &VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderFloat16, &DeviceExtensions::vk_khr_shader_float16_int8}}, {spv::CapabilityInt8 , {"VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderInt8", &VkPhysicalDeviceFloat16Int8FeaturesKHR::shaderInt8, &DeviceExtensions::vk_khr_shader_float16_int8}}, }; // clang-format on for (auto insn : *src) { if (insn.opcode() == spv::OpCapability) { size_t n = capabilities.count(insn.word(1)); if (1 == n) { // key occurs exactly once auto it = capabilities.find(insn.word(1)); if (it != capabilities.end()) { if (it->second.feature) { skip |= RequireFeature(report_data, it->second.feature.IsEnabled(*features), it->second.name); } if (it->second.extension) { skip |= RequireExtension(report_data, extensions->*(it->second.extension), it->second.name); } } } else if (1 < n) { // key occurs multiple times, at least one must be enabled bool needs_feature = false, has_feature = false; bool needs_ext = false, has_ext = false; std::string feature_names = "(one of) [ "; std::string extension_names = feature_names; auto caps = capabilities.equal_range(insn.word(1)); for (auto it = caps.first; it != caps.second; ++it) { if (it->second.feature) { needs_feature = true; has_feature = has_feature || it->second.feature.IsEnabled(*features); feature_names += it->second.name; feature_names += " "; } if (it->second.extension) { needs_ext = true; has_ext = has_ext || extensions->*(it->second.extension); extension_names += it->second.name; extension_names += " "; } } if (needs_feature) { feature_names += "]"; skip |= RequireFeature(report_data, has_feature, feature_names.c_str()); } if (needs_ext) { extension_names += "]"; skip |= RequireExtension(report_data, has_ext, extension_names.c_str()); } } } } if (has_writable_descriptor) { switch (stage) { case VK_SHADER_STAGE_COMPUTE_BIT: case VK_SHADER_STAGE_RAYGEN_BIT_NV: case VK_SHADER_STAGE_ANY_HIT_BIT_NV: case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV: case VK_SHADER_STAGE_MISS_BIT_NV: case VK_SHADER_STAGE_INTERSECTION_BIT_NV: case VK_SHADER_STAGE_CALLABLE_BIT_NV: case VK_SHADER_STAGE_TASK_BIT_NV: case VK_SHADER_STAGE_MESH_BIT_NV: /* No feature requirements for writes and atomics from compute * raytracing, or mesh stages */ break; case VK_SHADER_STAGE_FRAGMENT_BIT: skip |= RequireFeature(report_data, features->core.fragmentStoresAndAtomics, "fragmentStoresAndAtomics"); break; default: skip |= RequireFeature(report_data, features->core.vertexPipelineStoresAndAtomics, "vertexPipelineStoresAndAtomics"); break; } } return skip; } static bool VariableIsBuiltIn(shader_module const *src, const uint32_t ID, std::vector<uint32_t> const &builtInBlockIDs, std::vector<uint32_t> const &builtInIDs) { auto insn = src->get_def(ID); switch (insn.opcode()) { case spv::OpVariable: { // First check if the variable is a "pure" built-in type, e.g. gl_ViewportIndex uint32_t ID = insn.word(2); for (auto builtInID : builtInIDs) { if (ID == builtInID) { return true; } } VariableIsBuiltIn(src, insn.word(1), builtInBlockIDs, builtInIDs); break; } case spv::OpTypePointer: VariableIsBuiltIn(src, insn.word(3), builtInBlockIDs, builtInIDs); break; case spv::OpTypeArray: VariableIsBuiltIn(src, insn.word(2), builtInBlockIDs, builtInIDs); break; case spv::OpTypeStruct: { uint32_t ID = insn.word(1); // We only need to check the first member as either all will be, or none will be built-in for (auto builtInBlockID : builtInBlockIDs) { if (ID == builtInBlockID) { return true; } } return false; } default: return false; } return false; } bool CoreChecks::ValidateShaderStageInputOutputLimits(layer_data *dev_data, shader_module const *src, VkPipelineShaderStageCreateInfo const *pStage, PIPELINE_STATE *pipeline) { if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT || pStage->stage == VK_SHADER_STAGE_ALL_GRAPHICS || pStage->stage == VK_SHADER_STAGE_ALL) { return false; } bool skip = false; auto const &limits = dev_data->phys_dev_props.limits; std::vector<uint32_t> builtInBlockIDs; std::vector<uint32_t> builtInIDs; struct Variable { uint32_t baseTypePtrID; uint32_t ID; uint32_t storageClass; }; std::vector<Variable> variables; for (auto insn : *src) { switch (insn.opcode()) { // Find all built-in member decorations case spv::OpMemberDecorate: if (insn.word(3) == spv::DecorationBuiltIn) { builtInBlockIDs.push_back(insn.word(1)); } break; // Find all built-in decorations case spv::OpDecorate: switch (insn.word(2)) { case spv::DecorationBlock: { uint32_t blockID = insn.word(1); for (auto builtInBlockID : builtInBlockIDs) { // Check if one of the members of the block are built-in -> the block is built-in if (blockID == builtInBlockID) { builtInIDs.push_back(blockID); break; } } break; } case spv::DecorationBuiltIn: builtInIDs.push_back(insn.word(1)); break; default: break; } break; // Find all input and output variables case spv::OpVariable: { Variable var = {}; var.storageClass = insn.word(3); if (var.storageClass == spv::StorageClassInput || var.storageClass == spv::StorageClassOutput) { var.baseTypePtrID = insn.word(1); var.ID = insn.word(2); variables.push_back(var); } break; } default: break; } } uint32_t numCompIn = 0, numCompOut = 0; for (auto &var : variables) { // Check the variable's ID if (VariableIsBuiltIn(src, var.ID, builtInBlockIDs, builtInIDs)) { continue; } // Check the variable's type's ID - e.g. gl_PerVertex is made of basic types, not built-in types if (VariableIsBuiltIn(src, src->get_def(var.baseTypePtrID).word(3), builtInBlockIDs, builtInIDs)) { continue; } if (var.storageClass == spv::StorageClassInput) { numCompIn += GetComponentsConsumedByType(src, var.baseTypePtrID, false); } else { // var.storageClass == spv::StorageClassOutput numCompOut += GetComponentsConsumedByType(src, var.baseTypePtrID, false); } } switch (pStage->stage) { case VK_SHADER_STAGE_VERTEX_BIT: if (numCompOut > limits.maxVertexOutputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Vertex shader exceeds " "VkPhysicalDeviceLimits::maxVertexOutputComponents of %u " "components by %u components", limits.maxVertexOutputComponents, numCompOut - limits.maxVertexOutputComponents); } break; case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT: if (numCompIn > limits.maxTessellationControlPerVertexInputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Tessellation control shader exceeds " "VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents of %u " "components by %u components", limits.maxTessellationControlPerVertexInputComponents, numCompIn - limits.maxTessellationControlPerVertexInputComponents); } if (numCompOut > limits.maxTessellationControlPerVertexOutputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Tessellation control shader exceeds " "VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents of %u " "components by %u components", limits.maxTessellationControlPerVertexOutputComponents, numCompOut - limits.maxTessellationControlPerVertexOutputComponents); } break; case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT: if (numCompIn > limits.maxTessellationEvaluationInputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds " "VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents of %u " "components by %u components", limits.maxTessellationEvaluationInputComponents, numCompIn - limits.maxTessellationEvaluationInputComponents); } if (numCompOut > limits.maxTessellationEvaluationOutputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds " "VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents of %u " "components by %u components", limits.maxTessellationEvaluationOutputComponents, numCompOut - limits.maxTessellationEvaluationOutputComponents); } break; case VK_SHADER_STAGE_GEOMETRY_BIT: if (numCompIn > limits.maxGeometryInputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Geometry shader exceeds " "VkPhysicalDeviceLimits::maxGeometryInputComponents of %u " "components by %u components", limits.maxGeometryInputComponents, numCompIn - limits.maxGeometryInputComponents); } if (numCompOut > limits.maxGeometryOutputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Geometry shader exceeds " "VkPhysicalDeviceLimits::maxGeometryOutputComponents of %u " "components by %u components", limits.maxGeometryOutputComponents, numCompOut - limits.maxGeometryOutputComponents); } break; case VK_SHADER_STAGE_FRAGMENT_BIT: if (numCompIn > limits.maxFragmentInputComponents) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_ExceedDeviceLimit, "Invalid Pipeline CreateInfo State: Fragment shader exceeds " "VkPhysicalDeviceLimits::maxFragmentInputComponents of %u " "components by %u components", limits.maxFragmentInputComponents, numCompIn - limits.maxFragmentInputComponents); } break; case VK_SHADER_STAGE_RAYGEN_BIT_NV: case VK_SHADER_STAGE_ANY_HIT_BIT_NV: case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV: case VK_SHADER_STAGE_MISS_BIT_NV: case VK_SHADER_STAGE_INTERSECTION_BIT_NV: case VK_SHADER_STAGE_CALLABLE_BIT_NV: case VK_SHADER_STAGE_TASK_BIT_NV: case VK_SHADER_STAGE_MESH_BIT_NV: break; default: assert(false); // This should never happen } return skip; } uint32_t DescriptorTypeToReqs(shader_module const *module, uint32_t type_id) { auto type = module->get_def(type_id); while (true) { switch (type.opcode()) { case spv::OpTypeArray: case spv::OpTypeRuntimeArray: case spv::OpTypeSampledImage: type = module->get_def(type.word(2)); break; case spv::OpTypePointer: type = module->get_def(type.word(3)); break; case spv::OpTypeImage: { auto dim = type.word(3); auto arrayed = type.word(5); auto msaa = type.word(6); uint32_t bits = 0; switch (GetFundamentalType(module, type.word(2))) { case FORMAT_TYPE_FLOAT: bits = DESCRIPTOR_REQ_COMPONENT_TYPE_FLOAT; break; case FORMAT_TYPE_UINT: bits = DESCRIPTOR_REQ_COMPONENT_TYPE_UINT; break; case FORMAT_TYPE_SINT: bits = DESCRIPTOR_REQ_COMPONENT_TYPE_SINT; break; default: break; } switch (dim) { case spv::Dim1D: bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D; return bits; case spv::Dim2D: bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE; bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D; return bits; case spv::Dim3D: bits |= DESCRIPTOR_REQ_VIEW_TYPE_3D; return bits; case spv::DimCube: bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE; return bits; case spv::DimSubpassData: bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE; return bits; default: // buffer, etc. return bits; } } default: return 0; } } } // For given pipelineLayout verify that the set_layout_node at slot.first // has the requested binding at slot.second and return ptr to that binding static VkDescriptorSetLayoutBinding const *GetDescriptorBinding(PIPELINE_LAYOUT_NODE const *pipelineLayout, descriptor_slot_t slot) { if (!pipelineLayout) return nullptr; if (slot.first >= pipelineLayout->set_layouts.size()) return nullptr; return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second); } static void ProcessExecutionModes(shader_module const *src, spirv_inst_iter entrypoint, PIPELINE_STATE *pipeline) { auto entrypoint_id = entrypoint.word(2); bool is_point_mode = false; for (auto insn : *src) { if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) { switch (insn.word(2)) { case spv::ExecutionModePointMode: // In tessellation shaders, PointMode is separate and trumps the tessellation topology. is_point_mode = true; break; case spv::ExecutionModeOutputPoints: pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST; break; case spv::ExecutionModeIsolines: case spv::ExecutionModeOutputLineStrip: pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; break; case spv::ExecutionModeTriangles: case spv::ExecutionModeQuads: case spv::ExecutionModeOutputTriangleStrip: pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; break; } } } if (is_point_mode) pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST; } // If PointList topology is specified in the pipeline, verify that a shader geometry stage writes PointSize // o If there is only a vertex shader : gl_PointSize must be written when using points // o If there is a geometry or tessellation shader: // - If shaderTessellationAndGeometryPointSize feature is enabled: // * gl_PointSize must be written in the final geometry stage // - If shaderTessellationAndGeometryPointSize feature is disabled: // * gl_PointSize must NOT be written and a default of 1.0 is assumed bool CoreChecks::ValidatePointListShaderState(const layer_data *dev_data, const PIPELINE_STATE *pipeline, shader_module const *src, spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) { if (pipeline->topology_at_rasterizer != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) { return false; } bool pointsize_written = false; bool skip = false; // Search for PointSize built-in decorations std::vector<uint32_t> pointsize_builtin_offsets; spirv_inst_iter insn = entrypoint; while (!pointsize_written && (insn.opcode() != spv::OpFunction)) { if (insn.opcode() == spv::OpMemberDecorate) { if (insn.word(3) == spv::DecorationBuiltIn) { if (insn.word(4) == spv::BuiltInPointSize) { pointsize_written = IsPointSizeWritten(src, insn, entrypoint); } } } else if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationBuiltIn) { if (insn.word(3) == spv::BuiltInPointSize) { pointsize_written = IsPointSizeWritten(src, insn, entrypoint); } } } insn++; } if ((stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || stage == VK_SHADER_STAGE_GEOMETRY_BIT) && !GetEnabledFeatures()->core.shaderTessellationAndGeometryPointSize) { if (pointsize_written) { skip |= log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_PointSizeBuiltInOverSpecified, "Pipeline topology is set to POINT_LIST and geometry or tessellation shaders write PointSize which " "is prohibited when the shaderTessellationAndGeometryPointSize feature is not enabled."); } } else if (!pointsize_written) { skip |= log_msg(GetReportData(), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, HandleToUint64(pipeline->pipeline), kVUID_Core_Shader_MissingPointSizeBuiltIn, "Pipeline topology is set to POINT_LIST, but PointSize is not written to in the shader corresponding to %s.", string_VkShaderStageFlagBits(stage)); } return skip; } bool CoreChecks::ValidatePipelineShaderStage(layer_data *dev_data, VkPipelineShaderStageCreateInfo const *pStage, PIPELINE_STATE *pipeline, shader_module const **out_module, spirv_inst_iter *out_entrypoint, bool check_point_size) { bool skip = false; auto module = *out_module = GetShaderModuleState(pStage->module); auto report_data = GetReportData(); if (!module->has_valid_spirv) return false; // Find the entrypoint auto entrypoint = *out_entrypoint = FindEntrypoint(module, pStage->pName, pStage->stage); if (entrypoint == module->end()) { if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, "VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s..", pStage->pName, string_VkShaderStageFlagBits(pStage->stage))) { return true; // no point continuing beyond here, any analysis is just going to be garbage. } } // Mark accessible ids auto accessible_ids = MarkAccessibleIds(module, entrypoint); ProcessExecutionModes(module, entrypoint, pipeline); // Validate descriptor set layout against what the entrypoint actually uses bool has_writable_descriptor = false; auto descriptor_uses = CollectInterfaceByDescriptorSlot(report_data, module, accessible_ids, &has_writable_descriptor); // Validate shader capabilities against enabled device features skip |= ValidateShaderCapabilities(dev_data, module, pStage->stage, has_writable_descriptor); skip |= ValidateShaderStageInputOutputLimits(dev_data, module, pStage, pipeline); skip |= ValidateSpecializationOffsets(report_data, pStage); skip |= ValidatePushConstantUsage(report_data, pipeline->pipeline_layout.push_constant_ranges.get(), module, accessible_ids, pStage->stage); if (check_point_size && !pipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) { skip |= ValidatePointListShaderState(dev_data, pipeline, module, entrypoint, pStage->stage); } // Validate descriptor use for (auto use : descriptor_uses) { // While validating shaders capture which slots are used by the pipeline auto &reqs = pipeline->active_slots[use.first.first][use.first.second]; reqs = descriptor_req(reqs | DescriptorTypeToReqs(module, use.second.type_id)); // Verify given pipelineLayout has requested setLayout with requested binding const auto &binding = GetDescriptorBinding(&pipeline->pipeline_layout, use.first); unsigned required_descriptor_count; std::set<uint32_t> descriptor_types = TypeToDescriptorTypeSet(module, use.second.type_id, required_descriptor_count); if (!binding) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_MissingDescriptor, "Shader uses descriptor slot %u.%u (expected `%s`) but not declared in pipeline layout", use.first.first, use.first.second, string_descriptorTypes(descriptor_types).c_str()); } else if (~binding->stageFlags & pStage->stage) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0, kVUID_Core_Shader_DescriptorNotAccessibleFromStage, "Shader uses descriptor slot %u.%u but descriptor not accessible from stage %s", use.first.first, use.first.second, string_VkShaderStageFlagBits(pStage->stage)); } else if (descriptor_types.find(binding->descriptorType) == descriptor_types.end()) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_DescriptorTypeMismatch, "Type mismatch on descriptor slot %u.%u (expected `%s`) but descriptor of type %s", use.first.first, use.first.second, string_descriptorTypes(descriptor_types).c_str(), string_VkDescriptorType(binding->descriptorType)); } else if (binding->descriptorCount < required_descriptor_count) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_DescriptorTypeMismatch, "Shader expects at least %u descriptors for binding %u.%u but only %u provided", required_descriptor_count, use.first.first, use.first.second, binding->descriptorCount); } } // Validate use of input attachments against subpass structure if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) { auto input_attachment_uses = CollectInterfaceByInputAttachmentIndex(module, accessible_ids); auto rpci = pipeline->rp_state->createInfo.ptr(); auto subpass = pipeline->graphicsPipelineCI.subpass; for (auto use : input_attachment_uses) { auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments; auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount) ? input_attachments[use.first].attachment : VK_ATTACHMENT_UNUSED; if (index == VK_ATTACHMENT_UNUSED) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_MissingInputAttachment, "Shader consumes input attachment index %d but not provided in subpass", use.first); } else if (!(GetFormatType(rpci->pAttachments[index].format) & GetFundamentalType(module, use.second.type_id))) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_InputAttachmentTypeMismatch, "Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first, string_VkFormat(rpci->pAttachments[index].format), DescribeType(module, use.second.type_id).c_str()); } } } return skip; } static bool ValidateInterfaceBetweenStages(debug_report_data const *report_data, shader_module const *producer, spirv_inst_iter producer_entrypoint, shader_stage_attributes const *producer_stage, shader_module const *consumer, spirv_inst_iter consumer_entrypoint, shader_stage_attributes const *consumer_stage) { bool skip = false; auto outputs = CollectInterfaceByLocation(producer, producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output); auto inputs = CollectInterfaceByLocation(consumer, consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input); auto a_it = outputs.begin(); auto b_it = inputs.begin(); // Maps sorted by key (location); walk them together to find mismatches while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) { bool a_at_end = outputs.size() == 0 || a_it == outputs.end(); bool b_at_end = inputs.size() == 0 || b_it == inputs.end(); auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first; auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first; if (b_at_end || ((!a_at_end) && (a_first < b_first))) { skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_OutputNotConsumed, "%s writes to output location %u.%u which is not consumed by %s", producer_stage->name, a_first.first, a_first.second, consumer_stage->name); a_it++; } else if (a_at_end || a_first > b_first) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(consumer->vk_shader_module), kVUID_Core_Shader_InputNotProduced, "%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first, b_first.second, producer_stage->name); b_it++; } else { // subtleties of arrayed interfaces: // - if is_patch, then the member is not arrayed, even though the interface may be. // - if is_block_member, then the extra array level of an arrayed interface is not // expressed in the member type -- it's expressed in the block type. if (!TypesMatch(producer, consumer, a_it->second.type_id, b_it->second.type_id, producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member, consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member, true)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch, "Type mismatch on location %u.%u: '%s' vs '%s'", a_first.first, a_first.second, DescribeType(producer, a_it->second.type_id).c_str(), DescribeType(consumer, b_it->second.type_id).c_str()); } if (a_it->second.is_patch != b_it->second.is_patch) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch, "Decoration mismatch on location %u.%u: is per-%s in %s stage but per-%s in %s stage", a_first.first, a_first.second, a_it->second.is_patch ? "patch" : "vertex", producer_stage->name, b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name); } if (a_it->second.is_relaxed_precision != b_it->second.is_relaxed_precision) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), kVUID_Core_Shader_InterfaceTypeMismatch, "Decoration mismatch on location %u.%u: %s and %s stages differ in precision", a_first.first, a_first.second, producer_stage->name, consumer_stage->name); } a_it++; b_it++; } } return skip; } static inline uint32_t DetermineFinalGeomStage(PIPELINE_STATE *pipeline, VkGraphicsPipelineCreateInfo *pCreateInfo) { uint32_t stage_mask = 0; if (pipeline->topology_at_rasterizer == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) { for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { stage_mask |= pCreateInfo->pStages[i].stage; } // Determine which shader in which PointSize should be written (the final geometry stage) if (stage_mask & VK_SHADER_STAGE_MESH_BIT_NV) { stage_mask = VK_SHADER_STAGE_MESH_BIT_NV; } else if (stage_mask & VK_SHADER_STAGE_GEOMETRY_BIT) { stage_mask = VK_SHADER_STAGE_GEOMETRY_BIT; } else if (stage_mask & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { stage_mask = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; } else if (stage_mask & VK_SHADER_STAGE_VERTEX_BIT) { stage_mask = VK_SHADER_STAGE_VERTEX_BIT; } } return stage_mask; } // Validate that the shaders used by the given pipeline and store the active_slots // that are actually used by the pipeline into pPipeline->active_slots bool CoreChecks::ValidateAndCapturePipelineShaderState(layer_data *dev_data, PIPELINE_STATE *pipeline) { auto pCreateInfo = pipeline->graphicsPipelineCI.ptr(); int vertex_stage = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT); int fragment_stage = GetShaderStageId(VK_SHADER_STAGE_FRAGMENT_BIT); auto report_data = GetReportData(); shader_module const *shaders[32]; memset(shaders, 0, sizeof(shaders)); spirv_inst_iter entrypoints[32]; memset(entrypoints, 0, sizeof(entrypoints)); bool skip = false; uint32_t pointlist_stage_mask = DetermineFinalGeomStage(pipeline, pCreateInfo); for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { auto pStage = &pCreateInfo->pStages[i]; auto stage_id = GetShaderStageId(pStage->stage); skip |= ValidatePipelineShaderStage(dev_data, pStage, pipeline, &shaders[stage_id], &entrypoints[stage_id], (pointlist_stage_mask == pStage->stage)); } // if the shader stages are no good individually, cross-stage validation is pointless. if (skip) return true; auto vi = pCreateInfo->pVertexInputState; if (vi) { skip |= ValidateViConsistency(report_data, vi); } if (shaders[vertex_stage] && shaders[vertex_stage]->has_valid_spirv) { skip |= ValidateViAgainstVsInputs(report_data, vi, shaders[vertex_stage], entrypoints[vertex_stage]); } int producer = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT); int consumer = GetShaderStageId(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); while (!shaders[producer] && producer != fragment_stage) { producer++; consumer++; } for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) { assert(shaders[producer]); if (shaders[consumer]) { if (shaders[consumer]->has_valid_spirv && shaders[producer]->has_valid_spirv) { skip |= ValidateInterfaceBetweenStages(report_data, shaders[producer], entrypoints[producer], &shader_stage_attribs[producer], shaders[consumer], entrypoints[consumer], &shader_stage_attribs[consumer]); } producer = consumer; } } if (shaders[fragment_stage] && shaders[fragment_stage]->has_valid_spirv) { skip |= ValidateFsOutputsAgainstRenderPass(report_data, shaders[fragment_stage], entrypoints[fragment_stage], pipeline, pCreateInfo->subpass); } return skip; } bool CoreChecks::ValidateComputePipeline(layer_data *dev_data, PIPELINE_STATE *pipeline) { auto pCreateInfo = pipeline->computePipelineCI.ptr(); shader_module const *module; spirv_inst_iter entrypoint; return ValidatePipelineShaderStage(dev_data, &pCreateInfo->stage, pipeline, &module, &entrypoint, false); } bool CoreChecks::ValidateRayTracingPipelineNV(layer_data *dev_data, PIPELINE_STATE *pipeline) { auto pCreateInfo = pipeline->raytracingPipelineCI.ptr(); shader_module const *module; spirv_inst_iter entrypoint; return ValidatePipelineShaderStage(dev_data, pCreateInfo->pStages, pipeline, &module, &entrypoint, false); } uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); } static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) { while ((pCreateInfo = (VkShaderModuleCreateInfo const *)pCreateInfo->pNext) != nullptr) { if (pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT) return (ValidationCache *)((VkShaderModuleValidationCacheCreateInfoEXT const *)pCreateInfo)->validationCache; } return nullptr; } bool CoreChecks::PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) { layer_data *device_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map); bool skip = false; spv_result_t spv_valid = SPV_SUCCESS; if (GetDisables()->shader_validation) { return false; } auto have_glsl_shader = GetDeviceExtensions()->vk_nv_glsl_shader; if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) { skip |= log_msg(device_data->report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, "VUID-VkShaderModuleCreateInfo-pCode-01376", "SPIR-V module not valid: Codesize must be a multiple of 4 but is " PRINTF_SIZE_T_SPECIFIER ".", pCreateInfo->codeSize); } else { auto cache = GetValidationCacheInfo(pCreateInfo); uint32_t hash = 0; if (cache) { hash = ValidationCache::MakeShaderHash(pCreateInfo); if (cache->Contains(hash)) return false; } // Use SPIRV-Tools validator to try and catch any issues with the module itself spv_target_env spirv_environment = SPV_ENV_VULKAN_1_0; if (GetApiVersion() >= VK_API_VERSION_1_1) { spirv_environment = SPV_ENV_VULKAN_1_1; } spv_context ctx = spvContextCreate(spirv_environment); spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)}; spv_diagnostic diag = nullptr; spv_validator_options options = spvValidatorOptionsCreate(); if (GetDeviceExtensions()->vk_khr_relaxed_block_layout) { spvValidatorOptionsSetRelaxBlockLayout(options, true); } if (GetDeviceExtensions()->vk_ext_scalar_block_layout && GetEnabledFeatures()->scalar_block_layout_features.scalarBlockLayout == VK_TRUE) { spvValidatorOptionsSetScalarBlockLayout(options, true); } spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag); if (spv_valid != SPV_SUCCESS) { if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) { skip |= log_msg(device_data->report_data, spv_valid == SPV_WARNING ? VK_DEBUG_REPORT_WARNING_BIT_EXT : VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s", diag && diag->error ? diag->error : "(no error text)"); } } else { if (cache) { cache->Insert(hash); } } spvValidatorOptionsDestroy(options); spvDiagnosticDestroy(diag); spvContextDestroy(ctx); } return skip; } void CoreChecks::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule, void *csm_state_data) { layer_data *device_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map); create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data); if (GetEnables()->gpu_validation) { GpuPreCallCreateShaderModule(device_data, pCreateInfo, pAllocator, pShaderModule, &csm_state->unique_shader_id, &csm_state->instrumented_create_info, &csm_state->instrumented_pgm); } } void CoreChecks::PostCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule, VkResult result, void *csm_state_data) { layer_data *device_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map); if (VK_SUCCESS != result) return; create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data); spv_target_env spirv_environment = ((GetApiVersion() >= VK_API_VERSION_1_1) ? SPV_ENV_VULKAN_1_1 : SPV_ENV_VULKAN_1_0); bool is_spirv = (pCreateInfo->pCode[0] == spv::MagicNumber); std::unique_ptr<shader_module> new_shader_module( is_spirv ? new shader_module(pCreateInfo, *pShaderModule, spirv_environment, csm_state->unique_shader_id) : new shader_module()); device_data->shaderModuleMap[*pShaderModule] = std::move(new_shader_module); }