// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_S390_MACRO_ASSEMBLER_S390_H_ #define V8_S390_MACRO_ASSEMBLER_S390_H_ #include "src/assembler.h" #include "src/bailout-reason.h" #include "src/globals.h" #include "src/s390/assembler-s390.h" #include "src/turbo-assembler.h" namespace v8 { namespace internal { // Give alias names to registers for calling conventions. constexpr Register kReturnRegister0 = r2; constexpr Register kReturnRegister1 = r3; constexpr Register kReturnRegister2 = r4; constexpr Register kJSFunctionRegister = r3; constexpr Register kContextRegister = r13; constexpr Register kAllocateSizeRegister = r3; constexpr Register kSpeculationPoisonRegister = r9; constexpr Register kInterpreterAccumulatorRegister = r2; constexpr Register kInterpreterBytecodeOffsetRegister = r6; constexpr Register kInterpreterBytecodeArrayRegister = r7; constexpr Register kInterpreterDispatchTableRegister = r8; constexpr Register kJavaScriptCallArgCountRegister = r2; constexpr Register kJavaScriptCallCodeStartRegister = r4; constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister; constexpr Register kJavaScriptCallNewTargetRegister = r5; constexpr Register kJavaScriptCallExtraArg1Register = r4; constexpr Register kOffHeapTrampolineRegister = ip; constexpr Register kRuntimeCallFunctionRegister = r3; constexpr Register kRuntimeCallArgCountRegister = r2; constexpr Register kRuntimeCallArgvRegister = r4; constexpr Register kWasmInstanceRegister = r6; // ---------------------------------------------------------------------------- // Static helper functions // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, int offset) { return MemOperand(object, offset - kHeapObjectTag); } // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, Register index, int offset) { return MemOperand(object, index, offset - kHeapObjectTag); } // Generate a MemOperand for loading a field from Root register inline MemOperand RootMemOperand(Heap::RootListIndex index) { return MemOperand(kRootRegister, index << kPointerSizeLog2); } enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg); // These exist to provide portability between 32 and 64bit #if V8_TARGET_ARCH_S390X // The length of the arithmetic operation is the length // of the register. // Length: // H = halfword // W = word // arithmetics and bitwise #define AddMI agsi #define AddRR agr #define SubRR sgr #define AndRR ngr #define OrRR ogr #define XorRR xgr #define LoadComplementRR lcgr #define LoadNegativeRR lngr // Distinct Operands #define AddP_RRR agrk #define AddPImm_RRI aghik #define AddLogicalP_RRR algrk #define SubP_RRR sgrk #define SubLogicalP_RRR slgrk #define AndP_RRR ngrk #define OrP_RRR ogrk #define XorP_RRR xgrk // Load / Store #define LoadRR lgr #define LoadAndTestRR ltgr #define LoadImmP lghi // Compare #define CmpPH cghi #define CmpLogicalPW clgfi // Shifts #define ShiftLeftP sllg #define ShiftRightP srlg #define ShiftLeftArithP slag #define ShiftRightArithP srag #else // arithmetics and bitwise // Reg2Reg #define AddMI asi #define AddRR ar #define SubRR sr #define AndRR nr #define OrRR or_z #define XorRR xr #define LoadComplementRR lcr #define LoadNegativeRR lnr // Distinct Operands #define AddP_RRR ark #define AddPImm_RRI ahik #define AddLogicalP_RRR alrk #define SubP_RRR srk #define SubLogicalP_RRR slrk #define AndP_RRR nrk #define OrP_RRR ork #define XorP_RRR xrk // Load / Store #define LoadRR lr #define LoadAndTestRR ltr #define LoadImmP lhi // Compare #define CmpPH chi #define CmpLogicalPW clfi // Shifts #define ShiftLeftP ShiftLeft #define ShiftRightP ShiftRight #define ShiftLeftArithP ShiftLeftArith #define ShiftRightArithP ShiftRightArith #endif class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase { public: TurboAssembler(Isolate* isolate, const AssemblerOptions& options, void* buffer, int buffer_size, CodeObjectRequired create_code_object) : TurboAssemblerBase(isolate, options, buffer, buffer_size, create_code_object) {} void LoadFromConstantsTable(Register destination, int constant_index) override; void LoadRootRegisterOffset(Register destination, intptr_t offset) override; void LoadRootRelative(Register destination, int32_t offset) override; // Jump, Call, and Ret pseudo instructions implementing inter-working. void Jump(Register target, Condition cond = al); void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al); void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); // Jump the register contains a smi. inline void JumpIfSmi(Register value, Label* smi_label) { TestIfSmi(value); beq(smi_label /*, cr0*/); // branch if SMI } void JumpIfEqual(Register x, int32_t y, Label* dest); void JumpIfLessThan(Register x, int32_t y, Label* dest); void Call(Register target); void Call(Address target, RelocInfo::Mode rmode, Condition cond = al); void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, Condition cond = al); void Ret() { b(r14); } void Ret(Condition cond) { b(cond, r14); } void CallForDeoptimization(Address target, int deopt_id, RelocInfo::Mode rmode) { USE(deopt_id); Call(target, rmode); } // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the sp register. void Drop(int count); void Drop(Register count, Register scratch = r0); void Ret(int drop) { Drop(drop); Ret(); } void Call(Label* target); // Register move. May do nothing if the registers are identical. void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); } void Move(Register dst, Handle<HeapObject> value); void Move(Register dst, ExternalReference reference); void Move(Register dst, Register src, Condition cond = al); void Move(DoubleRegister dst, DoubleRegister src); void MoveChar(const MemOperand& opnd1, const MemOperand& opnd2, const Operand& length); void CompareLogicalChar(const MemOperand& opnd1, const MemOperand& opnd2, const Operand& length); void ExclusiveOrChar(const MemOperand& opnd1, const MemOperand& opnd2, const Operand& length); void RotateInsertSelectBits(Register dst, Register src, const Operand& startBit, const Operand& endBit, const Operand& shiftAmt, bool zeroBits); void BranchRelativeOnIdxHighP(Register dst, Register inc, Label* L); void SaveRegisters(RegList registers); void RestoreRegisters(RegList registers); void CallRecordWriteStub(Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode); void MultiPush(RegList regs, Register location = sp); void MultiPop(RegList regs, Register location = sp); void MultiPushDoubles(RegList dregs, Register location = sp); void MultiPopDoubles(RegList dregs, Register location = sp); // Calculate how much stack space (in bytes) are required to store caller // registers excluding those specified in the arguments. int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg) const; // Push caller saved registers on the stack, and return the number of bytes // stack pointer is adjusted. int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Restore caller saved registers from the stack, and return the number of // bytes stack pointer is adjusted. int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // Load an object from the root table. void LoadRoot(Register destination, Heap::RootListIndex index) override { LoadRoot(destination, index, al); } void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond); //-------------------------------------------------------------------------- // S390 Macro Assemblers for Instructions //-------------------------------------------------------------------------- // Arithmetic Operations // Add (Register - Immediate) void Add32(Register dst, const Operand& imm); void Add32_RI(Register dst, const Operand& imm); void AddP(Register dst, const Operand& imm); void Add32(Register dst, Register src, const Operand& imm); void Add32_RRI(Register dst, Register src, const Operand& imm); void AddP(Register dst, Register src, const Operand& imm); // Add (Register - Register) void Add32(Register dst, Register src); void AddP(Register dst, Register src); void AddP_ExtendSrc(Register dst, Register src); void Add32(Register dst, Register src1, Register src2); void AddP(Register dst, Register src1, Register src2); void AddP_ExtendSrc(Register dst, Register src1, Register src2); // Add (Register - Mem) void Add32(Register dst, const MemOperand& opnd); void AddP(Register dst, const MemOperand& opnd); void AddP_ExtendSrc(Register dst, const MemOperand& opnd); // Add (Mem - Immediate) void Add32(const MemOperand& opnd, const Operand& imm); void AddP(const MemOperand& opnd, const Operand& imm); // Add Logical (Register - Register) void AddLogical32(Register dst, Register src1, Register src2); // Add Logical With Carry (Register - Register) void AddLogicalWithCarry32(Register dst, Register src1, Register src2); // Add Logical (Register - Immediate) void AddLogical(Register dst, const Operand& imm); void AddLogicalP(Register dst, const Operand& imm); // Add Logical (Register - Mem) void AddLogical(Register dst, const MemOperand& opnd); void AddLogicalP(Register dst, const MemOperand& opnd); // Subtract (Register - Immediate) void Sub32(Register dst, const Operand& imm); void Sub32_RI(Register dst, const Operand& imm) { Sub32(dst, imm); } void SubP(Register dst, const Operand& imm); void Sub32(Register dst, Register src, const Operand& imm); void Sub32_RRI(Register dst, Register src, const Operand& imm) { Sub32(dst, src, imm); } void SubP(Register dst, Register src, const Operand& imm); // Subtract (Register - Register) void Sub32(Register dst, Register src); void SubP(Register dst, Register src); void SubP_ExtendSrc(Register dst, Register src); void Sub32(Register dst, Register src1, Register src2); void SubP(Register dst, Register src1, Register src2); void SubP_ExtendSrc(Register dst, Register src1, Register src2); // Subtract (Register - Mem) void Sub32(Register dst, const MemOperand& opnd); void SubP(Register dst, const MemOperand& opnd); void SubP_ExtendSrc(Register dst, const MemOperand& opnd); void LoadAndSub32(Register dst, Register src, const MemOperand& opnd); // Subtract Logical (Register - Mem) void SubLogical(Register dst, const MemOperand& opnd); void SubLogicalP(Register dst, const MemOperand& opnd); void SubLogicalP_ExtendSrc(Register dst, const MemOperand& opnd); // Subtract Logical 32-bit void SubLogical32(Register dst, Register src1, Register src2); // Subtract Logical With Borrow 32-bit void SubLogicalWithBorrow32(Register dst, Register src1, Register src2); // Multiply void MulP(Register dst, const Operand& opnd); void MulP(Register dst, Register src); void MulP(Register dst, const MemOperand& opnd); void Mul(Register dst, Register src1, Register src2); void Mul32(Register dst, const MemOperand& src1); void Mul32(Register dst, Register src1); void Mul32(Register dst, const Operand& src1); void MulHigh32(Register dst, Register src1, const MemOperand& src2); void MulHigh32(Register dst, Register src1, Register src2); void MulHigh32(Register dst, Register src1, const Operand& src2); void MulHighU32(Register dst, Register src1, const MemOperand& src2); void MulHighU32(Register dst, Register src1, Register src2); void MulHighU32(Register dst, Register src1, const Operand& src2); void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, const MemOperand& src2); void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, Register src2); void Mul32WithOverflowIfCCUnequal(Register dst, Register src1, const Operand& src2); void Mul64(Register dst, const MemOperand& src1); void Mul64(Register dst, Register src1); void Mul64(Register dst, const Operand& src1); void MulPWithCondition(Register dst, Register src1, Register src2); // Divide void DivP(Register dividend, Register divider); void Div32(Register dst, Register src1, const MemOperand& src2); void Div32(Register dst, Register src1, Register src2); void DivU32(Register dst, Register src1, const MemOperand& src2); void DivU32(Register dst, Register src1, Register src2); void Div64(Register dst, Register src1, const MemOperand& src2); void Div64(Register dst, Register src1, Register src2); void DivU64(Register dst, Register src1, const MemOperand& src2); void DivU64(Register dst, Register src1, Register src2); // Mod void Mod32(Register dst, Register src1, const MemOperand& src2); void Mod32(Register dst, Register src1, Register src2); void ModU32(Register dst, Register src1, const MemOperand& src2); void ModU32(Register dst, Register src1, Register src2); void Mod64(Register dst, Register src1, const MemOperand& src2); void Mod64(Register dst, Register src1, Register src2); void ModU64(Register dst, Register src1, const MemOperand& src2); void ModU64(Register dst, Register src1, Register src2); // Square root void Sqrt(DoubleRegister result, DoubleRegister input); void Sqrt(DoubleRegister result, const MemOperand& input); // Compare void Cmp32(Register src1, Register src2); void CmpP(Register src1, Register src2); void Cmp32(Register dst, const Operand& opnd); void CmpP(Register dst, const Operand& opnd); void Cmp32(Register dst, const MemOperand& opnd); void CmpP(Register dst, const MemOperand& opnd); void CmpAndSwap(Register old_val, Register new_val, const MemOperand& opnd); // Compare Logical void CmpLogical32(Register src1, Register src2); void CmpLogicalP(Register src1, Register src2); void CmpLogical32(Register src1, const Operand& opnd); void CmpLogicalP(Register src1, const Operand& opnd); void CmpLogical32(Register dst, const MemOperand& opnd); void CmpLogicalP(Register dst, const MemOperand& opnd); // Compare Logical Byte (CLI/CLIY) void CmpLogicalByte(const MemOperand& mem, const Operand& imm); // Load 32bit void Load(Register dst, const MemOperand& opnd); void Load(Register dst, const Operand& opnd); void LoadW(Register dst, const MemOperand& opnd, Register scratch = no_reg); void LoadW(Register dst, Register src); void LoadlW(Register dst, const MemOperand& opnd, Register scratch = no_reg); void LoadlW(Register dst, Register src); void LoadLogicalHalfWordP(Register dst, const MemOperand& opnd); void LoadLogicalHalfWordP(Register dst, Register src); void LoadB(Register dst, const MemOperand& opnd); void LoadB(Register dst, Register src); void LoadlB(Register dst, const MemOperand& opnd); void LoadlB(Register dst, Register src); void LoadLogicalReversedWordP(Register dst, const MemOperand& opnd); void LoadLogicalReversedHalfWordP(Register dst, const MemOperand& opnd); // Load And Test void LoadAndTest32(Register dst, Register src); void LoadAndTestP_ExtendSrc(Register dst, Register src); void LoadAndTestP(Register dst, Register src); void LoadAndTest32(Register dst, const MemOperand& opnd); void LoadAndTestP(Register dst, const MemOperand& opnd); // Load Floating Point void LoadDouble(DoubleRegister dst, const MemOperand& opnd); void LoadFloat32(DoubleRegister dst, const MemOperand& opnd); void LoadFloat32ConvertToDouble(DoubleRegister dst, const MemOperand& mem); void AddFloat32(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void AddFloat64(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void SubFloat32(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void SubFloat64(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void MulFloat32(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void MulFloat64(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void DivFloat32(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void DivFloat64(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); void LoadFloat32ToDouble(DoubleRegister dst, const MemOperand& opnd, DoubleRegister scratch); // Load On Condition void LoadOnConditionP(Condition cond, Register dst, Register src); void LoadPositiveP(Register result, Register input); void LoadPositive32(Register result, Register input); // Store Floating Point void StoreDouble(DoubleRegister dst, const MemOperand& opnd); void StoreFloat32(DoubleRegister dst, const MemOperand& opnd); void StoreDoubleAsFloat32(DoubleRegister src, const MemOperand& mem, DoubleRegister scratch); void Branch(Condition c, const Operand& opnd); void BranchOnCount(Register r1, Label* l); // Shifts void ShiftLeft(Register dst, Register src, Register val); void ShiftLeft(Register dst, Register src, const Operand& val); void ShiftRight(Register dst, Register src, Register val); void ShiftRight(Register dst, Register src, const Operand& val); void ShiftLeftArith(Register dst, Register src, Register shift); void ShiftLeftArith(Register dst, Register src, const Operand& val); void ShiftRightArith(Register dst, Register src, Register shift); void ShiftRightArith(Register dst, Register src, const Operand& val); void ClearRightImm(Register dst, Register src, const Operand& val); // Bitwise operations void And(Register dst, Register src); void AndP(Register dst, Register src); void And(Register dst, Register src1, Register src2); void AndP(Register dst, Register src1, Register src2); void And(Register dst, const MemOperand& opnd); void AndP(Register dst, const MemOperand& opnd); void And(Register dst, const Operand& opnd); void AndP(Register dst, const Operand& opnd); void And(Register dst, Register src, const Operand& opnd); void AndP(Register dst, Register src, const Operand& opnd); void Or(Register dst, Register src); void OrP(Register dst, Register src); void Or(Register dst, Register src1, Register src2); void OrP(Register dst, Register src1, Register src2); void Or(Register dst, const MemOperand& opnd); void OrP(Register dst, const MemOperand& opnd); void Or(Register dst, const Operand& opnd); void OrP(Register dst, const Operand& opnd); void Or(Register dst, Register src, const Operand& opnd); void OrP(Register dst, Register src, const Operand& opnd); void Xor(Register dst, Register src); void XorP(Register dst, Register src); void Xor(Register dst, Register src1, Register src2); void XorP(Register dst, Register src1, Register src2); void Xor(Register dst, const MemOperand& opnd); void XorP(Register dst, const MemOperand& opnd); void Xor(Register dst, const Operand& opnd); void XorP(Register dst, const Operand& opnd); void Xor(Register dst, Register src, const Operand& opnd); void XorP(Register dst, Register src, const Operand& opnd); void Popcnt32(Register dst, Register src); void Not32(Register dst, Register src = no_reg); void Not64(Register dst, Register src = no_reg); void NotP(Register dst, Register src = no_reg); #ifdef V8_TARGET_ARCH_S390X void Popcnt64(Register dst, Register src); #endif void mov(Register dst, const Operand& src); void CleanUInt32(Register x) { #ifdef V8_TARGET_ARCH_S390X llgfr(x, x); #endif } void push(Register src) { lay(sp, MemOperand(sp, -kPointerSize)); StoreP(src, MemOperand(sp)); } void pop(Register dst) { LoadP(dst, MemOperand(sp)); la(sp, MemOperand(sp, kPointerSize)); } void pop() { la(sp, MemOperand(sp, kPointerSize)); } void Push(Register src) { push(src); } // Push a handle. void Push(Handle<HeapObject> handle); void Push(Smi* smi); // Push two registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2) { lay(sp, MemOperand(sp, -kPointerSize * 2)); StoreP(src1, MemOperand(sp, kPointerSize)); StoreP(src2, MemOperand(sp, 0)); } // Push three registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3) { lay(sp, MemOperand(sp, -kPointerSize * 3)); StoreP(src1, MemOperand(sp, kPointerSize * 2)); StoreP(src2, MemOperand(sp, kPointerSize)); StoreP(src3, MemOperand(sp, 0)); } // Push four registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4) { lay(sp, MemOperand(sp, -kPointerSize * 4)); StoreP(src1, MemOperand(sp, kPointerSize * 3)); StoreP(src2, MemOperand(sp, kPointerSize * 2)); StoreP(src3, MemOperand(sp, kPointerSize)); StoreP(src4, MemOperand(sp, 0)); } // Push five registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4, Register src5) { DCHECK(src1 != src2); DCHECK(src1 != src3); DCHECK(src2 != src3); DCHECK(src1 != src4); DCHECK(src2 != src4); DCHECK(src3 != src4); DCHECK(src1 != src5); DCHECK(src2 != src5); DCHECK(src3 != src5); DCHECK(src4 != src5); lay(sp, MemOperand(sp, -kPointerSize * 5)); StoreP(src1, MemOperand(sp, kPointerSize * 4)); StoreP(src2, MemOperand(sp, kPointerSize * 3)); StoreP(src3, MemOperand(sp, kPointerSize * 2)); StoreP(src4, MemOperand(sp, kPointerSize)); StoreP(src5, MemOperand(sp, 0)); } void Pop(Register dst) { pop(dst); } // Pop two registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2) { LoadP(src2, MemOperand(sp, 0)); LoadP(src1, MemOperand(sp, kPointerSize)); la(sp, MemOperand(sp, 2 * kPointerSize)); } // Pop three registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3) { LoadP(src3, MemOperand(sp, 0)); LoadP(src2, MemOperand(sp, kPointerSize)); LoadP(src1, MemOperand(sp, 2 * kPointerSize)); la(sp, MemOperand(sp, 3 * kPointerSize)); } // Pop four registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3, Register src4) { LoadP(src4, MemOperand(sp, 0)); LoadP(src3, MemOperand(sp, kPointerSize)); LoadP(src2, MemOperand(sp, 2 * kPointerSize)); LoadP(src1, MemOperand(sp, 3 * kPointerSize)); la(sp, MemOperand(sp, 4 * kPointerSize)); } // Pop five registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3, Register src4, Register src5) { LoadP(src5, MemOperand(sp, 0)); LoadP(src4, MemOperand(sp, kPointerSize)); LoadP(src3, MemOperand(sp, 2 * kPointerSize)); LoadP(src2, MemOperand(sp, 3 * kPointerSize)); LoadP(src1, MemOperand(sp, 4 * kPointerSize)); la(sp, MemOperand(sp, 5 * kPointerSize)); } // Push a fixed frame, consisting of lr, fp, constant pool. void PushCommonFrame(Register marker_reg = no_reg); // Push a standard frame, consisting of lr, fp, constant pool, // context and JS function void PushStandardFrame(Register function_reg); void PopCommonFrame(Register marker_reg = no_reg); // Restore caller's frame pointer and return address prior to being // overwritten by tail call stack preparation. void RestoreFrameStateForTailCall(); void InitializeRootRegister() { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); mov(kRootRegister, Operand(roots_array_start)); AddP(kRootRegister, kRootRegister, Operand(kRootRegisterBias)); } // If the value is a NaN, canonicalize the value else, do nothing. void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); void CanonicalizeNaN(const DoubleRegister value) { CanonicalizeNaN(value, value); } // Converts the integer (untagged smi) in |src| to a double, storing // the result to |dst| void ConvertIntToDouble(DoubleRegister dst, Register src); // Converts the unsigned integer (untagged smi) in |src| to // a double, storing the result to |dst| void ConvertUnsignedIntToDouble(DoubleRegister dst, Register src); // Converts the integer (untagged smi) in |src| to // a float, storing the result in |dst| void ConvertIntToFloat(DoubleRegister dst, Register src); // Converts the unsigned integer (untagged smi) in |src| to // a float, storing the result in |dst| void ConvertUnsignedIntToFloat(DoubleRegister dst, Register src); void ConvertInt64ToFloat(DoubleRegister double_dst, Register src); void ConvertInt64ToDouble(DoubleRegister double_dst, Register src); void ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, Register src); void ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, Register src); void MovIntToFloat(DoubleRegister dst, Register src); void MovFloatToInt(Register dst, DoubleRegister src); void MovDoubleToInt64(Register dst, DoubleRegister src); void MovInt64ToDouble(DoubleRegister dst, Register src); // Converts the double_input to an integer. Note that, upon return, // the contents of double_dst will also hold the fixed point representation. void ConvertFloat32ToInt64(const Register dst, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); // Converts the double_input to an integer. Note that, upon return, // the contents of double_dst will also hold the fixed point representation. void ConvertDoubleToInt64(const Register dst, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); void ConvertDoubleToInt32(const Register dst, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); void ConvertFloat32ToInt32(const Register result, const DoubleRegister double_input, FPRoundingMode rounding_mode); void ConvertFloat32ToUnsignedInt32( const Register result, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); // Converts the double_input to an unsigned integer. Note that, upon return, // the contents of double_dst will also hold the fixed point representation. void ConvertDoubleToUnsignedInt64( const Register dst, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); void ConvertDoubleToUnsignedInt32( const Register dst, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); void ConvertFloat32ToUnsignedInt64( const Register result, const DoubleRegister double_input, FPRoundingMode rounding_mode = kRoundToZero); #if !V8_TARGET_ARCH_S390X void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift); void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift); void ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift); void ShiftRightPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift); void ShiftRightArithPair(Register dst_low, Register dst_high, Register src_low, Register src_high, Register scratch, Register shift); void ShiftRightArithPair(Register dst_low, Register dst_high, Register src_low, Register src_high, uint32_t shift); #endif // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type, Register base = no_reg, int prologue_offset = 0); void Prologue(Register base, int prologue_offset = 0); // Get the actual activation frame alignment for target environment. static int ActivationFrameAlignment(); // ---------------------------------------------------------------- // new S390 macro-assembler interfaces that are slightly higher level // than assembler-s390 and may generate variable length sequences // load a literal signed int value <value> to GPR <dst> void LoadIntLiteral(Register dst, int value); // load an SMI value <value> to GPR <dst> void LoadSmiLiteral(Register dst, Smi* smi); // load a literal double value <value> to FPR <result> void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch); void LoadDoubleLiteral(DoubleRegister result, uint64_t value, Register scratch); void LoadFloat32Literal(DoubleRegister result, float value, Register scratch); void StoreW(Register src, const MemOperand& mem, Register scratch = no_reg); void LoadHalfWordP(Register dst, Register src); void LoadHalfWordP(Register dst, const MemOperand& mem, Register scratch = no_reg); void StoreHalfWord(Register src, const MemOperand& mem, Register scratch = r0); void StoreByte(Register src, const MemOperand& mem, Register scratch = r0); void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch = r0); void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch = r0); void CmpSmiLiteral(Register src1, Smi* smi, Register scratch); void CmpLogicalSmiLiteral(Register src1, Smi* smi, Register scratch); void AndSmiLiteral(Register dst, Register src, Smi* smi); // Set new rounding mode RN to FPSCR void SetRoundingMode(FPRoundingMode RN); // reset rounding mode to default (kRoundToNearest) void ResetRoundingMode(); // These exist to provide portability between 32 and 64bit void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg); void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg); void StoreP(const MemOperand& mem, const Operand& opnd, Register scratch = no_reg); void LoadMultipleP(Register dst1, Register dst2, const MemOperand& mem); void StoreMultipleP(Register dst1, Register dst2, const MemOperand& mem); void LoadMultipleW(Register dst1, Register dst2, const MemOperand& mem); void StoreMultipleW(Register dst1, Register dst2, const MemOperand& mem); void SwapP(Register src, Register dst, Register scratch); void SwapP(Register src, MemOperand dst, Register scratch); void SwapP(MemOperand src, MemOperand dst, Register scratch_0, Register scratch_1); void SwapFloat32(DoubleRegister src, DoubleRegister dst, DoubleRegister scratch); void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch); void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch_0, DoubleRegister scratch_1); void SwapDouble(DoubleRegister src, DoubleRegister dst, DoubleRegister scratch); void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch); void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch_0, DoubleRegister scratch_1); // Cleanse pointer address on 31bit by zero out top bit. // This is a NOP on 64-bit. void CleanseP(Register src) { #if (V8_HOST_ARCH_S390 && !(V8_TARGET_ARCH_S390X)) nilh(src, Operand(0x7FFF)); #endif } void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. void CallStubDelayed(CodeStub* stub); // Call a runtime routine. This expects {centry} to contain a fitting CEntry // builtin for the target runtime function and uses an indirect call. void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, non-register arguments must be stored in // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments // are word sized. If double arguments are used, this function assumes that // all double arguments are stored before core registers; otherwise the // correct alignment of the double values is not guaranteed. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch); void PrepareCallCFunction(int num_reg_arguments, Register scratch); // There are two ways of passing double arguments on ARM, depending on // whether soft or hard floating point ABI is used. These functions // abstract parameter passing for the three different ways we call // C functions from generated code. void MovToFloatParameter(DoubleRegister src); void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); void MovToFloatResult(DoubleRegister src); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments); void CallCFunction(Register function, int num_reg_arguments, int num_double_arguments); void MovFromFloatParameter(DoubleRegister dst); void MovFromFloatResult(DoubleRegister dst); // Emit code for a truncating division by a constant. The dividend register is // unchanged and ip gets clobbered. Dividend and result must be different. void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode); void TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cond is not satisfied. // Use --debug_code to enable. void Assert(Condition cond, AbortReason reason, CRegister cr = cr7); // Like Assert(), but always enabled. void Check(Condition cond, AbortReason reason, CRegister cr = cr7); // Print a message to stdout and abort execution. void Abort(AbortReason reason); inline bool AllowThisStubCall(CodeStub* stub); // --------------------------------------------------------------------------- // Bit testing/extraction // // Bit numbering is such that the least significant bit is bit 0 // (for consistency between 32/64-bit). // Extract consecutive bits (defined by rangeStart - rangeEnd) from src // and place them into the least significant bits of dst. inline void ExtractBitRange(Register dst, Register src, int rangeStart, int rangeEnd) { DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer); // Try to use RISBG if possible. if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { int shiftAmount = (64 - rangeEnd) % 64; // Convert to shift left. int endBit = 63; // End is always LSB after shifting. int startBit = 63 - rangeStart + rangeEnd; RotateInsertSelectBits(dst, src, Operand(startBit), Operand(endBit), Operand(shiftAmount), true); } else { if (rangeEnd > 0) // Don't need to shift if rangeEnd is zero. ShiftRightP(dst, src, Operand(rangeEnd)); else if (dst != src) // If we didn't shift, we might need to copy LoadRR(dst, src); int width = rangeStart - rangeEnd + 1; #if V8_TARGET_ARCH_S390X uint64_t mask = (static_cast<uint64_t>(1) << width) - 1; nihf(dst, Operand(mask >> 32)); nilf(dst, Operand(mask & 0xFFFFFFFF)); ltgr(dst, dst); #else uint32_t mask = (1 << width) - 1; AndP(dst, Operand(mask)); #endif } } inline void ExtractBit(Register dst, Register src, uint32_t bitNumber) { ExtractBitRange(dst, src, bitNumber, bitNumber); } // Extract consecutive bits (defined by mask) from src and place them // into the least significant bits of dst. inline void ExtractBitMask(Register dst, Register src, uintptr_t mask, RCBit rc = LeaveRC) { int start = kBitsPerPointer - 1; int end; uintptr_t bit = (1L << start); while (bit && (mask & bit) == 0) { start--; bit >>= 1; } end = start; bit >>= 1; while (bit && (mask & bit)) { end--; bit >>= 1; } // 1-bits in mask must be contiguous DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0); ExtractBitRange(dst, src, start, end); } // Test single bit in value. inline void TestBit(Register value, int bitNumber, Register scratch = r0) { ExtractBitRange(scratch, value, bitNumber, bitNumber); } // Test consecutive bit range in value. Range is defined by // rangeStart - rangeEnd. inline void TestBitRange(Register value, int rangeStart, int rangeEnd, Register scratch = r0) { ExtractBitRange(scratch, value, rangeStart, rangeEnd); } // Test consecutive bit range in value. Range is defined by mask. inline void TestBitMask(Register value, uintptr_t mask, Register scratch = r0) { ExtractBitMask(scratch, value, mask, SetRC); } inline void TestIfSmi(Register value) { tmll(value, Operand(1)); } inline void TestIfSmi(MemOperand value) { if (is_uint12(value.offset())) { tm(value, Operand(1)); } else if (is_int20(value.offset())) { tmy(value, Operand(1)); } else { LoadB(r0, value); tmll(r0, Operand(1)); } } inline void TestIfInt32(Register value) { // High bits must be identical to fit into an 32-bit integer cgfr(value, value); } void SmiUntag(Register reg, int scale = 0) { SmiUntag(reg, reg, scale); } void SmiUntag(Register dst, Register src, int scale = 0) { if (scale > kSmiShift) { ShiftLeftP(dst, src, Operand(scale - kSmiShift)); } else if (scale < kSmiShift) { ShiftRightArithP(dst, src, Operand(kSmiShift - scale)); } else { // do nothing } } // Activation support. void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg = false); // Returns the pc offset at which the frame ends. int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met); void ResetSpeculationPoisonRegister(); void ComputeCodeStartAddress(Register dst); private: static const int kSmiShift = kSmiTagSize + kSmiShiftSize; void CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments); void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); int CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments); }; // MacroAssembler implements a collection of frequently used macros. class MacroAssembler : public TurboAssembler { public: MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object) : MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer, size, create_code_object) {} MacroAssembler(Isolate* isolate, const AssemblerOptions& options, void* buffer, int size, CodeObjectRequired create_code_object); // Call a code stub. void TailCallStub(CodeStub* stub, Condition cond = al); void CallStub(CodeStub* stub, Condition cond = al); void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, kSaveFPRegs); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); // --------------------------------------------------------------------------- // Support functions. // Compare object type for heap object. heap_object contains a non-Smi // whose object type should be compared with the given type. This both // sets the flags and leaves the object type in the type_reg register. // It leaves the map in the map register (unless the type_reg and map register // are the same register). It leaves the heap object in the heap_object // register unless the heap_object register is the same register as one of the // other registers. // Type_reg can be no_reg. In that case ip is used. void CompareObjectType(Register heap_object, Register map, Register type_reg, InstanceType type); // Compare instance type in a map. map contains a valid map object whose // object type should be compared with the given type. This both // sets the flags and leaves the object type in the type_reg register. void CompareInstanceType(Register map, Register type_reg, InstanceType type); // Compare the object in a register to a value from the root list. // Uses the ip register as scratch. void CompareRoot(Register obj, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index) { LoadRoot(r0, index); Push(r0); } // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame = false); // Generates a trampoline to jump to the off-heap instruction stream. void JumpToInstructionStream(Address entry); // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) { CompareRoot(with, index); beq(if_equal); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, Heap::RootListIndex index, Label* if_not_equal) { CompareRoot(with, index); bne(if_not_equal); } // Try to convert a double to a signed 32-bit integer. // CR_EQ in cr7 is set and result assigned if the conversion is exact. void TryDoubleToInt32Exact(Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch); // --------------------------------------------------------------------------- // In-place weak references. void LoadWeakValue(Register out, Register in, Label* target_if_cleared); // --------------------------------------------------------------------------- // StatsCounter support void IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); // --------------------------------------------------------------------------- // JavaScript invokes // Set up call kind marking in ecx. The method takes ecx as an // explicit first parameter to make the code more readable at the // call sites. // void SetCallKind(Register dst, CallKind kind); // Removes current frame and its arguments from the stack preserving // the arguments and a return address pushed to the stack for the next call. // Both |callee_args_count| and |caller_args_count_reg| do not include // receiver. |callee_args_count| is not modified, |caller_args_count_reg| // is trashed. // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // On function call, call into the debugger if necessary. void CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag); void InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); // Frame restart support void MaybeDropFrames(); // Exception handling // Push a new stack handler and link into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. // Must preserve the result register. void PopStackHandler(); // Enter exit frame. // stack_space - extra stack space, used for parameters before call to C. // At least one slot (for the return address) should be provided. void EnterExitFrame(bool save_doubles, int stack_space = 1, StackFrame::Type frame_type = StackFrame::EXIT); // Leave the current exit frame. Expects the return value in r0. // Expect the number of values, pushed prior to the exit frame, to // remove in a register (or no_reg, if there is nothing to remove). void LeaveExitFrame(bool save_doubles, Register argument_count, bool argument_count_is_length = false); // Load the global proxy from the current context. void LoadGlobalProxy(Register dst) { LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); } void LoadNativeContextSlot(int index, Register dst); // --------------------------------------------------------------------------- // Smi utilities // Shift left by kSmiShift void SmiTag(Register reg) { SmiTag(reg, reg); } void SmiTag(Register dst, Register src) { ShiftLeftP(dst, src, Operand(kSmiShift)); } void SmiToPtrArrayOffset(Register dst, Register src) { #if V8_TARGET_ARCH_S390X STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2); ShiftRightArithP(dst, src, Operand(kSmiShift - kPointerSizeLog2)); #else STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2); ShiftLeftP(dst, src, Operand(kPointerSizeLog2 - kSmiShift)); #endif } // Untag the source value into destination and jump if source is a smi. // Souce and destination can be the same register. void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); // Jump if either of the registers contain a non-smi. inline void JumpIfNotSmi(Register value, Label* not_smi_label) { TestIfSmi(value); bne(not_smi_label /*, cr0*/); } // Jump if either of the registers contain a smi. void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); void AssertSmi(Register object); #if V8_TARGET_ARCH_S390X // Ensure it is permissible to read/write int value directly from // upper half of the smi. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32); #endif #if V8_TARGET_LITTLE_ENDIAN #define SmiWordOffset(offset) (offset + kPointerSize / 2) #else #define SmiWordOffset(offset) offset #endif // Abort execution if argument is not a Constructor, enabled via --debug-code. void AssertConstructor(Register object, Register scratch); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject (or subclass), // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object, Register scratch); template <typename Field> void DecodeField(Register dst, Register src) { ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift); } template <typename Field> void DecodeField(Register reg) { DecodeField<Field>(reg, reg); } // --------------------------------------------------------------------------- // GC Support void IncrementalMarkingRecordWriteHelper(Register object, Register value, Register address); void CallJSEntry(Register target); static int CallSizeNotPredictableCodeSize(Address target, RelocInfo::Mode rmode, Condition cond = al); void JumpToJSEntry(Register target); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldMemOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // For a given |object| notify the garbage collector that the slot |address| // has been written. |value| is the object being stored. The value and // address registers are clobbered by the operation. void RecordWrite( Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // Push and pop the registers that can hold pointers, as defined by the // RegList constant kSafepointSavedRegisters. void PushSafepointRegisters(); void PopSafepointRegisters(); void LoadRepresentation(Register dst, const MemOperand& mem, Representation r, Register scratch = no_reg); void StoreRepresentation(Register src, const MemOperand& mem, Representation r, Register scratch = no_reg); private: static const int kSmiShift = kSmiTagSize + kSmiShiftSize; // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // ----------------------------------------------------------------------------- // Static helper functions. inline MemOperand ContextMemOperand(Register context, int index = 0) { return MemOperand(context, Context::SlotOffset(index)); } inline MemOperand NativeContextMemOperand() { return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_S390_MACRO_ASSEMBLER_S390_H_