// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_S390 #include "src/api-arguments-inl.h" #include "src/assembler-inl.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/objects/api-callbacks.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" #include "src/s390/code-stubs-s390.h" // Cannot be the first include. namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void JSEntryStub::Generate(MacroAssembler* masm) { // r2: code entry // r3: function // r4: receiver // r5: argc // r6: argv Label invoke, handler_entry, exit; { NoRootArrayScope no_root_array(masm); ProfileEntryHookStub::MaybeCallEntryHook(masm); // saving floating point registers #if V8_TARGET_ARCH_S390X // 64bit ABI requires f8 to f15 be saved __ lay(sp, MemOperand(sp, -8 * kDoubleSize)); __ std(d8, MemOperand(sp)); __ std(d9, MemOperand(sp, 1 * kDoubleSize)); __ std(d10, MemOperand(sp, 2 * kDoubleSize)); __ std(d11, MemOperand(sp, 3 * kDoubleSize)); __ std(d12, MemOperand(sp, 4 * kDoubleSize)); __ std(d13, MemOperand(sp, 5 * kDoubleSize)); __ std(d14, MemOperand(sp, 6 * kDoubleSize)); __ std(d15, MemOperand(sp, 7 * kDoubleSize)); #else // 31bit ABI requires you to store f4 and f6: // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417 __ lay(sp, MemOperand(sp, -2 * kDoubleSize)); __ std(d4, MemOperand(sp)); __ std(d6, MemOperand(sp, kDoubleSize)); #endif // zLinux ABI // Incoming parameters: // r2: code entry // r3: function // r4: receiver // r5: argc // r6: argv // Requires us to save the callee-preserved registers r6-r13 // General convention is to also save r14 (return addr) and // sp/r15 as well in a single STM/STMG __ lay(sp, MemOperand(sp, -10 * kPointerSize)); __ StoreMultipleP(r6, sp, MemOperand(sp, 0)); // Set up the reserved register for 0.0. // __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0); // Push a frame with special values setup to mark it as an entry frame. // Bad FP (-1) // SMI Marker // SMI Marker // kCEntryFPAddress // Frame type __ lay(sp, MemOperand(sp, -5 * kPointerSize)); // Push a bad frame pointer to fail if it is used. __ LoadImmP(r10, Operand(-1)); StackFrame::Type marker = type(); __ Load(r9, Operand(StackFrame::TypeToMarker(marker))); __ Load(r8, Operand(StackFrame::TypeToMarker(marker))); // Save copies of the top frame descriptor on the stack. __ mov(r7, Operand(ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, isolate()))); __ LoadP(r7, MemOperand(r7)); __ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize)); // Set up frame pointer for the frame to be pushed. // Need to add kPointerSize, because sp has one extra // frame already for the frame type being pushed later. __ lay(fp, MemOperand( sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize)); __ InitializeRootRegister(); } // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp = ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress, isolate()); __ mov(r7, Operand(js_entry_sp)); __ LoadAndTestP(r8, MemOperand(r7)); __ bne(&non_outermost_js, Label::kNear); __ StoreP(fp, MemOperand(r7)); __ Load(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont, Label::kNear); __ bind(&non_outermost_js); __ Load(ip, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ StoreP(ip, MemOperand(sp)); // frame-type // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ b(&invoke, Label::kNear); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, isolate()))); __ StoreP(r2, MemOperand(ip)); __ LoadRoot(r2, Heap::kExceptionRootIndex); __ b(&exit, Label::kNear); // Invoke: Link this frame into the handler chain. __ bind(&invoke); // Must preserve r2-r6. __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the b(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r2: code entry // r3: function // r4: receiver // r5: argc // r6: argv __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // r2 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r7); __ CmpP(r7, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ bne(&non_outermost_js_2, Label::kNear); __ mov(r8, Operand::Zero()); __ mov(r7, Operand(js_entry_sp)); __ StoreP(r8, MemOperand(r7)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r5); __ mov(ip, Operand(ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, isolate()))); __ StoreP(r5, MemOperand(ip)); // Reset the stack to the callee saved registers. __ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset)); // Reload callee-saved preserved regs, return address reg (r14) and sp __ LoadMultipleP(r6, sp, MemOperand(sp, 0)); __ la(sp, MemOperand(sp, 10 * kPointerSize)); // saving floating point registers #if V8_TARGET_ARCH_S390X // 64bit ABI requires f8 to f15 be saved __ ld(d8, MemOperand(sp)); __ ld(d9, MemOperand(sp, 1 * kDoubleSize)); __ ld(d10, MemOperand(sp, 2 * kDoubleSize)); __ ld(d11, MemOperand(sp, 3 * kDoubleSize)); __ ld(d12, MemOperand(sp, 4 * kDoubleSize)); __ ld(d13, MemOperand(sp, 5 * kDoubleSize)); __ ld(d14, MemOperand(sp, 6 * kDoubleSize)); __ ld(d15, MemOperand(sp, 7 * kDoubleSize)); __ la(sp, MemOperand(sp, 8 * kDoubleSize)); #else // 31bit ABI requires you to store f4 and f6: // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417 __ ld(d4, MemOperand(sp)); __ ld(d6, MemOperand(sp, kDoubleSize)); __ la(sp, MemOperand(sp, 2 * kDoubleSize)); #endif __ b(r14); } // This stub is paired with DirectCEntryStub::GenerateCall void DirectCEntryStub::Generate(MacroAssembler* masm) { __ CleanseP(r14); __ b(ip); // Callee will return to R14 directly } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { if (FLAG_embedded_builtins) { if (masm->root_array_available() && isolate()->ShouldLoadConstantsFromRootList()) { // This is basically an inlined version of Call(Handle<Code>) that loads // the code object into lr instead of ip. __ Move(ip, target); __ IndirectLoadConstant(r1, GetCode()); __ AddP(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(r1); return; } } #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) // Native AIX/S390X Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize)); __ LoadP(target, MemOperand(target, 0)); // Instruction address #else // ip needs to be set for DirectCEentryStub::Generate, and also // for ABI_CALL_VIA_IP. __ Move(ip, target); #endif __ call(GetCode(), RelocInfo::CODE_TARGET); // Call the stub. } void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, Zone* zone) { if (tasm->isolate()->function_entry_hook() != nullptr) { PredictableCodeSizeScope predictable(tasm, #if V8_TARGET_ARCH_S390X 40); #elif V8_HOST_ARCH_S390 36); #else 32); #endif tasm->CleanseP(r14); tasm->Push(r14, ip); tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); tasm->Pop(r14, ip); } } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != nullptr) { PredictableCodeSizeScope predictable(masm, #if V8_TARGET_ARCH_S390X 40); #elif V8_HOST_ARCH_S390 36); #else 32); #endif ProfileEntryHookStub stub(masm->isolate()); __ CleanseP(r14); __ Push(r14, ip); __ CallStub(&stub); // BRASL __ Pop(r14, ip); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call. #if V8_TARGET_ARCH_S390X const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 18; // LAY + STG * 2 #elif V8_HOST_ARCH_S390 const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 18; // NILH + LAY + ST * 2 #else const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 14; // LAY + ST * 2 #endif // This should contain all kJSCallerSaved registers. const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. r7.bit(); // Saved stack pointer. // We also save r14+ip, so count here is one higher than the mask indicates. const int32_t kNumSavedRegs = kNumJSCallerSaved + 3; // Save all caller-save registers as this may be called from anywhere. __ CleanseP(r14); __ LoadRR(ip, r14); __ MultiPush(kSavedRegs | ip.bit()); // Compute the function's address for the first argument. __ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is two slots above the saved temporaries. // Grab that for the second argument to the hook. __ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ LoadRR(r7, sp); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); } #if !defined(USE_SIMULATOR) uintptr_t entry_hook = reinterpret_cast<uintptr_t>(isolate()->function_entry_hook()); __ mov(ip, Operand(entry_hook)); #if ABI_USES_FUNCTION_DESCRIPTORS // Function descriptor __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize)); __ LoadP(ip, MemOperand(ip, 0)); // ip already set. #endif #endif // zLinux ABI requires caller's frame to have sufficient space for callee // preserved regsiter save area. __ LoadImmP(r0, Operand::Zero()); __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize - kNumRequiredStackFrameSlots * kPointerSize)); __ StoreP(r0, MemOperand(sp)); #if defined(USE_SIMULATOR) // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter __ mov(r4, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ mov(ip, Operand(ExternalReference::Create( &dispatcher, ExternalReference::BUILTIN_CALL))); #endif __ Call(ip); // zLinux ABI requires caller's frame to have sufficient space for callee // preserved regsiter save area. __ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize + kNumRequiredStackFrameSlots * kPointerSize)); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ LoadRR(sp, r7); } // Also pop lr to get Ret(0). __ MultiPop(kSavedRegs | ip.bit()); __ LoadRR(r14, ip); __ Ret(); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, MemOperand return_value_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); // Additional parameter is the address of the actual callback. DCHECK(function_address == r3 || function_address == r4); Register scratch = r5; __ Move(scratch, ExternalReference::is_profiling_address(isolate)); __ LoadlB(scratch, MemOperand(scratch, 0)); __ CmpP(scratch, Operand::Zero()); Label profiler_disabled; Label end_profiler_check; __ beq(&profiler_disabled, Label::kNear); __ Move(scratch, thunk_ref); __ b(&end_profiler_check, Label::kNear); __ bind(&profiler_disabled); __ LoadRR(scratch, function_address); __ bind(&end_profiler_check); // Allocate HandleScope in callee-save registers. // r9 - next_address // r6 - next_address->kNextOffset // r7 - next_address->kLimitOffset // r8 - next_address->kLevelOffset __ Move(r9, next_address); __ LoadP(r6, MemOperand(r9, kNextOffset)); __ LoadP(r7, MemOperand(r9, kLimitOffset)); __ LoadlW(r8, MemOperand(r9, kLevelOffset)); __ AddP(r8, Operand(1)); __ StoreW(r8, MemOperand(r9, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r2); __ Move(r2, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::log_enter_external_function(), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, scratch); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r2); __ Move(r2, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::log_leave_external_function(), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // load value from ReturnValue __ LoadP(r2, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ StoreP(r6, MemOperand(r9, kNextOffset)); if (__ emit_debug_code()) { __ LoadlW(r3, MemOperand(r9, kLevelOffset)); __ CmpP(r3, r8); __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall); } __ SubP(r8, Operand(1)); __ StoreW(r8, MemOperand(r9, kLevelOffset)); __ CmpP(r7, MemOperand(r9, kLimitOffset)); __ bne(&delete_allocated_handles, Label::kNear); // Leave the API exit frame. __ bind(&leave_exit_frame); // LeaveExitFrame expects unwind space to be in a register. if (stack_space_operand != nullptr) { __ l(r6, *stack_space_operand); } else { __ mov(r6, Operand(stack_space)); } __ LeaveExitFrame(false, r6, stack_space_operand != nullptr); // Check if the function scheduled an exception. __ Move(r7, ExternalReference::scheduled_exception_address(isolate)); __ LoadP(r7, MemOperand(r7)); __ CompareRoot(r7, Heap::kTheHoleValueRootIndex); __ bne(&promote_scheduled_exception, Label::kNear); __ b(r14); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ StoreP(r7, MemOperand(r9, kLimitOffset)); __ LoadRR(r6, r2); __ PrepareCallCFunction(1, r7); __ Move(r2, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); __ LoadRR(r2, r6); __ b(&leave_exit_frame, Label::kNear); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r6 : call_data // -- r4 : holder // -- r3 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1) * 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register call_data = r6; Register holder = r4; Register api_function_address = r3; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kArgsLength == 6); STATIC_ASSERT(FCA::kNewTargetIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // call data __ push(call_data); Register scratch = call_data; __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); // return value __ push(scratch); // return value default __ push(scratch); // isolate __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); __ push(scratch); // holder __ push(holder); // Prepare arguments. __ LoadRR(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // S390 LINUX ABI: // // Create 4 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1-3] FunctionCallbackInfo const int kApiStackSpace = 4; const int kFunctionCallbackInfoOffset = (kStackFrameExtraParamSlot + 1) * kPointerSize; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(api_function_address != r2 && scratch != r2); // r2 = FunctionCallbackInfo& // Arguments is after the return address. __ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset)); // FunctionCallbackInfo::implicit_args_ __ StoreP(scratch, MemOperand(r2, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ StoreP(ip, MemOperand(r2, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ LoadImmP(ip, Operand(argc())); __ StoreW(ip, MemOperand(r2, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(); AllowExternalCallThatCantCauseGC scope(masm); // Stores return the first js argument int return_value_offset = 2 + FCA::kReturnValueOffset; MemOperand return_value_operand(fp, return_value_offset * kPointerSize); const int stack_space = argc() + FCA::kArgsLength + 1; MemOperand* stack_space_operand = nullptr; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_operand, return_value_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { int arg0Slot = 0; int accessorInfoSlot = 0; int apiStackSpace = 0; // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = r6; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = r4; __ push(receiver); // Push data from AccessorInfo. __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ push(scratch); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Push(scratch, scratch); __ Move(scratch, ExternalReference::isolate_address(isolate())); __ Push(scratch, holder); __ Push(Smi::kZero); // should_throw_on_error -> false __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ LoadRR(r2, sp); // r2 = Handle<Name> __ AddP(r3, r2, Operand(1 * kPointerSize)); // r3 = v8::PCI::args_ // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] AccessorInfo& // // Otherwise: // // Create 3 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] copy of Handle (first arg) // [2] AccessorInfo& if (ABI_PASSES_HANDLES_IN_REGS) { accessorInfoSlot = kStackFrameExtraParamSlot + 1; apiStackSpace = 2; } else { arg0Slot = kStackFrameExtraParamSlot + 1; accessorInfoSlot = arg0Slot + 1; apiStackSpace = 3; } FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, apiStackSpace); if (!ABI_PASSES_HANDLES_IN_REGS) { // pass 1st arg by reference __ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize)); __ AddP(r2, sp, Operand(arg0Slot * kPointerSize)); } // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize)); __ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize)); // r3 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(); __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ LoadP(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, nullptr, return_value_operand); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_S390