// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/profiler/tick-sample.h" #include "include/v8-profiler.h" #include "src/counters.h" #include "src/frames-inl.h" #include "src/msan.h" #include "src/simulator.h" #include "src/vm-state-inl.h" namespace v8 { namespace { bool IsSamePage(i::Address ptr1, i::Address ptr2) { const uint32_t kPageSize = 4096; i::Address mask = ~static_cast<i::Address>(kPageSize - 1); return (ptr1 & mask) == (ptr2 & mask); } // Check if the code at specified address could potentially be a // frame setup code. bool IsNoFrameRegion(i::Address address) { struct Pattern { int bytes_count; i::byte bytes[8]; int offsets[4]; }; static Pattern patterns[] = { #if V8_HOST_ARCH_IA32 // push %ebp // mov %esp,%ebp {3, {0x55, 0x89, 0xE5}, {0, 1, -1}}, // pop %ebp // ret N {2, {0x5D, 0xC2}, {0, 1, -1}}, // pop %ebp // ret {2, {0x5D, 0xC3}, {0, 1, -1}}, #elif V8_HOST_ARCH_X64 // pushq %rbp // movq %rsp,%rbp {4, {0x55, 0x48, 0x89, 0xE5}, {0, 1, -1}}, // popq %rbp // ret N {2, {0x5D, 0xC2}, {0, 1, -1}}, // popq %rbp // ret {2, {0x5D, 0xC3}, {0, 1, -1}}, #endif {0, {}, {}} }; i::byte* pc = reinterpret_cast<i::byte*>(address); for (Pattern* pattern = patterns; pattern->bytes_count; ++pattern) { for (int* offset_ptr = pattern->offsets; *offset_ptr != -1; ++offset_ptr) { int offset = *offset_ptr; if (!offset || IsSamePage(address, address - offset)) { MSAN_MEMORY_IS_INITIALIZED(pc - offset, pattern->bytes_count); if (!memcmp(pc - offset, pattern->bytes, pattern->bytes_count)) return true; } else { // It is not safe to examine bytes on another page as it might not be // allocated thus causing a SEGFAULT. // Check the pattern part that's on the same page and // pessimistically assume it could be the entire pattern match. MSAN_MEMORY_IS_INITIALIZED(pc, pattern->bytes_count - offset); if (!memcmp(pc, pattern->bytes + offset, pattern->bytes_count - offset)) return true; } } } return false; } } // namespace namespace internal { namespace { #if defined(USE_SIMULATOR) class SimulatorHelper { public: // Returns true if register values were successfully retrieved // from the simulator, otherwise returns false. static bool FillRegisters(Isolate* isolate, v8::RegisterState* state); }; bool SimulatorHelper::FillRegisters(Isolate* isolate, v8::RegisterState* state) { Simulator* simulator = isolate->thread_local_top()->simulator_; // Check if there is active simulator. if (simulator == nullptr) return false; #if V8_TARGET_ARCH_ARM if (!simulator->has_bad_pc()) { state->pc = reinterpret_cast<void*>(simulator->get_pc()); } state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp)); state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::r11)); #elif V8_TARGET_ARCH_ARM64 state->pc = reinterpret_cast<void*>(simulator->pc()); state->sp = reinterpret_cast<void*>(simulator->sp()); state->fp = reinterpret_cast<void*>(simulator->fp()); #elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 if (!simulator->has_bad_pc()) { state->pc = reinterpret_cast<void*>(simulator->get_pc()); } state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp)); state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::fp)); #elif V8_TARGET_ARCH_PPC if (!simulator->has_bad_pc()) { state->pc = reinterpret_cast<void*>(simulator->get_pc()); } state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp)); state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::fp)); #elif V8_TARGET_ARCH_S390 if (!simulator->has_bad_pc()) { state->pc = reinterpret_cast<void*>(simulator->get_pc()); } state->sp = reinterpret_cast<void*>(simulator->get_register(Simulator::sp)); state->fp = reinterpret_cast<void*>(simulator->get_register(Simulator::fp)); #endif if (state->sp == 0 || state->fp == 0) { // It possible that the simulator is interrupted while it is updating // the sp or fp register. ARM64 simulator does this in two steps: // first setting it to zero and then setting it to the new value. // Bailout if sp/fp doesn't contain the new value. // // FIXME: The above doesn't really solve the issue. // If a 64-bit target is executed on a 32-bit host even the final // write is non-atomic, so it might obtain a half of the result. // Moreover as long as the register set code uses memcpy (as of now), // it is not guaranteed to be atomic even when both host and target // are of same bitness. return false; } return true; } #endif // USE_SIMULATOR } // namespace } // namespace internal // // StackTracer implementation // DISABLE_ASAN void TickSample::Init(Isolate* v8_isolate, const RegisterState& reg_state, RecordCEntryFrame record_c_entry_frame, bool update_stats, bool use_simulator_reg_state) { this->update_stats = update_stats; SampleInfo info; RegisterState regs = reg_state; if (!GetStackSample(v8_isolate, ®s, record_c_entry_frame, stack, kMaxFramesCount, &info, use_simulator_reg_state)) { // It is executing JS but failed to collect a stack trace. // Mark the sample as spoiled. pc = nullptr; return; } state = info.vm_state; pc = regs.pc; frames_count = static_cast<unsigned>(info.frames_count); has_external_callback = info.external_callback_entry != nullptr; if (has_external_callback) { external_callback_entry = info.external_callback_entry; } else if (frames_count) { // sp register may point at an arbitrary place in memory, make // sure MSAN doesn't complain about it. MSAN_MEMORY_IS_INITIALIZED(regs.sp, sizeof(void*)); // Sample potential return address value for frameless invocation of // stubs (we'll figure out later, if this value makes sense). tos = reinterpret_cast<void*>( i::Memory<i::Address>(reinterpret_cast<i::Address>(regs.sp))); } else { tos = nullptr; } } bool TickSample::GetStackSample(Isolate* v8_isolate, RegisterState* regs, RecordCEntryFrame record_c_entry_frame, void** frames, size_t frames_limit, v8::SampleInfo* sample_info, bool use_simulator_reg_state) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); sample_info->frames_count = 0; sample_info->vm_state = isolate->current_vm_state(); sample_info->external_callback_entry = nullptr; if (sample_info->vm_state == GC) return true; i::Address js_entry_sp = isolate->js_entry_sp(); if (js_entry_sp == 0) return true; // Not executing JS now. #if defined(USE_SIMULATOR) if (use_simulator_reg_state) { if (!i::SimulatorHelper::FillRegisters(isolate, regs)) return false; } #else USE(use_simulator_reg_state); #endif DCHECK(regs->sp); // Check whether we interrupted setup/teardown of a stack frame in JS code. // Avoid this check for C++ code, as that would trigger false positives. if (regs->pc && isolate->heap()->memory_allocator()->code_range()->contains( reinterpret_cast<i::Address>(regs->pc)) && IsNoFrameRegion(reinterpret_cast<i::Address>(regs->pc))) { // The frame is not setup, so it'd be hard to iterate the stack. Bailout. return false; } i::ExternalCallbackScope* scope = isolate->external_callback_scope(); i::Address handler = i::Isolate::handler(isolate->thread_local_top()); // If there is a handler on top of the external callback scope then // we have already entrered JavaScript again and the external callback // is not the top function. if (scope && scope->scope_address() < handler) { i::Address* external_callback_entry_ptr = scope->callback_entrypoint_address(); sample_info->external_callback_entry = external_callback_entry_ptr == nullptr ? nullptr : reinterpret_cast<void*>(*external_callback_entry_ptr); } i::SafeStackFrameIterator it(isolate, reinterpret_cast<i::Address>(regs->fp), reinterpret_cast<i::Address>(regs->sp), js_entry_sp); if (it.done()) return true; size_t i = 0; if (record_c_entry_frame == kIncludeCEntryFrame && (it.top_frame_type() == internal::StackFrame::EXIT || it.top_frame_type() == internal::StackFrame::BUILTIN_EXIT)) { frames[i++] = reinterpret_cast<void*>(isolate->c_function()); } i::RuntimeCallTimer* timer = isolate->counters()->runtime_call_stats()->current_timer(); for (; !it.done() && i < frames_limit; it.Advance()) { while (timer && reinterpret_cast<i::Address>(timer) < it.frame()->fp() && i < frames_limit) { frames[i++] = reinterpret_cast<void*>(timer->counter()); timer = timer->parent(); } if (i == frames_limit) break; if (it.frame()->is_interpreted()) { // For interpreted frames use the bytecode array pointer as the pc. i::InterpretedFrame* frame = static_cast<i::InterpretedFrame*>(it.frame()); // Since the sampler can interrupt execution at any point the // bytecode_array might be garbage, so don't actually dereference it. We // avoid the frame->GetXXX functions since they call BytecodeArray::cast, // which has a heap access in its DCHECK. i::Object* bytecode_array = i::Memory<i::Object*>( frame->fp() + i::InterpreterFrameConstants::kBytecodeArrayFromFp); i::Object* bytecode_offset = i::Memory<i::Object*>( frame->fp() + i::InterpreterFrameConstants::kBytecodeOffsetFromFp); // If the bytecode array is a heap object and the bytecode offset is a // Smi, use those, otherwise fall back to using the frame's pc. if (HAS_HEAP_OBJECT_TAG(bytecode_array) && HAS_SMI_TAG(bytecode_offset)) { frames[i++] = reinterpret_cast<void*>( reinterpret_cast<i::Address>(bytecode_array) + i::Internals::SmiValue(bytecode_offset)); continue; } } frames[i++] = reinterpret_cast<void*>(it.frame()->pc()); } sample_info->frames_count = i; return true; } namespace internal { void TickSample::Init(Isolate* isolate, const v8::RegisterState& state, RecordCEntryFrame record_c_entry_frame, bool update_stats, bool use_simulator_reg_state) { v8::TickSample::Init(reinterpret_cast<v8::Isolate*>(isolate), state, record_c_entry_frame, update_stats, use_simulator_reg_state); if (pc == nullptr) return; timestamp = base::TimeTicks::HighResolutionNow(); } } // namespace internal } // namespace v8