// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Features shared by parsing and pre-parsing scanners. #ifndef V8_PARSING_SCANNER_H_ #define V8_PARSING_SCANNER_H_ #include <algorithm> #include "src/allocation.h" #include "src/base/logging.h" #include "src/char-predicates.h" #include "src/globals.h" #include "src/messages.h" #include "src/parsing/token.h" #include "src/unicode-decoder.h" #include "src/unicode.h" namespace v8 { namespace internal { class AstRawString; class AstValueFactory; class DuplicateFinder; class ExternalOneByteString; class ExternalTwoByteString; class ParserRecorder; class UnicodeCache; // --------------------------------------------------------------------- // Buffered stream of UTF-16 code units, using an internal UTF-16 buffer. // A code unit is a 16 bit value representing either a 16 bit code point // or one part of a surrogate pair that make a single 21 bit code point. class Utf16CharacterStream { public: static const uc32 kEndOfInput = -1; virtual ~Utf16CharacterStream() {} inline uc32 Peek() { if (V8_LIKELY(buffer_cursor_ < buffer_end_)) { return static_cast<uc32>(*buffer_cursor_); } else if (ReadBlockChecked()) { return static_cast<uc32>(*buffer_cursor_); } else { return kEndOfInput; } } // Returns and advances past the next UTF-16 code unit in the input // stream. If there are no more code units it returns kEndOfInput. inline uc32 Advance() { uc32 result = Peek(); buffer_cursor_++; return result; } // Returns and advances past the next UTF-16 code unit in the input stream // that meets the checks requirement. If there are no more code units it // returns kEndOfInput. template <typename FunctionType> V8_INLINE uc32 AdvanceUntil(FunctionType check) { while (true) { auto next_cursor_pos = std::find_if(buffer_cursor_, buffer_end_, [&check](uint16_t raw_c0_) { uc32 c0_ = static_cast<uc32>(raw_c0_); return check(c0_); }); if (next_cursor_pos == buffer_end_) { buffer_cursor_ = buffer_end_; if (!ReadBlockChecked()) { buffer_cursor_++; return kEndOfInput; } } else { buffer_cursor_ = next_cursor_pos + 1; return static_cast<uc32>(*next_cursor_pos); } } } // Go back one by one character in the input stream. // This undoes the most recent Advance(). inline void Back() { // The common case - if the previous character is within // buffer_start_ .. buffer_end_ will be handles locally. // Otherwise, a new block is requested. if (V8_LIKELY(buffer_cursor_ > buffer_start_)) { buffer_cursor_--; } else { ReadBlockAt(pos() - 1); } } inline size_t pos() const { return buffer_pos_ + (buffer_cursor_ - buffer_start_); } inline void Seek(size_t pos) { if (V8_LIKELY(pos >= buffer_pos_ && pos < (buffer_pos_ + (buffer_end_ - buffer_start_)))) { buffer_cursor_ = buffer_start_ + (pos - buffer_pos_); } else { ReadBlockAt(pos); } } // Returns true if the stream could access the V8 heap after construction. virtual bool can_access_heap() = 0; protected: Utf16CharacterStream(const uint16_t* buffer_start, const uint16_t* buffer_cursor, const uint16_t* buffer_end, size_t buffer_pos) : buffer_start_(buffer_start), buffer_cursor_(buffer_cursor), buffer_end_(buffer_end), buffer_pos_(buffer_pos) {} Utf16CharacterStream() : Utf16CharacterStream(nullptr, nullptr, nullptr, 0) {} bool ReadBlockChecked() { size_t position = pos(); USE(position); bool success = ReadBlock(); // Post-conditions: 1, We should always be at the right position. // 2, Cursor should be inside the buffer. // 3, We should have more characters available iff success. DCHECK_EQ(pos(), position); DCHECK_LE(buffer_cursor_, buffer_end_); DCHECK_LE(buffer_start_, buffer_cursor_); DCHECK_EQ(success, buffer_cursor_ < buffer_end_); return success; } void ReadBlockAt(size_t new_pos) { // The callers of this method (Back/Back2/Seek) should handle the easy // case (seeking within the current buffer), and we should only get here // if we actually require new data. // (This is really an efficiency check, not a correctness invariant.) DCHECK(new_pos < buffer_pos_ || new_pos >= buffer_pos_ + (buffer_end_ - buffer_start_)); // Change pos() to point to new_pos. buffer_pos_ = new_pos; buffer_cursor_ = buffer_start_; DCHECK_EQ(pos(), new_pos); ReadBlockChecked(); } // Read more data, and update buffer_*_ to point to it. // Returns true if more data was available. // // ReadBlock() may modify any of the buffer_*_ members, but must sure that // the result of pos() remains unaffected. // // Examples: // - a stream could either fill a separate buffer. Then buffer_start_ and // buffer_cursor_ would point to the beginning of the buffer, and // buffer_pos would be the old pos(). // - a stream with existing buffer chunks would set buffer_start_ and // buffer_end_ to cover the full chunk, and then buffer_cursor_ would // point into the middle of the buffer, while buffer_pos_ would describe // the start of the buffer. virtual bool ReadBlock() = 0; const uint16_t* buffer_start_; const uint16_t* buffer_cursor_; const uint16_t* buffer_end_; size_t buffer_pos_; }; // ---------------------------------------------------------------------------- // JavaScript Scanner. class Scanner { public: // Scoped helper for a re-settable bookmark. class BookmarkScope { public: explicit BookmarkScope(Scanner* scanner) : scanner_(scanner), bookmark_(kNoBookmark) { DCHECK_NOT_NULL(scanner_); } ~BookmarkScope() {} void Set(); void Apply(); bool HasBeenSet(); bool HasBeenApplied(); private: static const size_t kNoBookmark; static const size_t kBookmarkWasApplied; static const size_t kBookmarkAtFirstPos; Scanner* scanner_; size_t bookmark_; DISALLOW_COPY_AND_ASSIGN(BookmarkScope); }; // Representation of an interval of source positions. struct Location { Location(int b, int e) : beg_pos(b), end_pos(e) { } Location() : beg_pos(0), end_pos(0) { } bool IsValid() const { return beg_pos >= 0 && end_pos >= beg_pos; } static Location invalid() { return Location(-1, -1); } int beg_pos; int end_pos; }; // -1 is outside of the range of any real source code. static const int kNoOctalLocation = -1; static const uc32 kEndOfInput = Utf16CharacterStream::kEndOfInput; explicit Scanner(UnicodeCache* scanner_contants, Utf16CharacterStream* source, bool is_module); void Initialize(); // Returns the next token and advances input. Token::Value Next(); // Returns the token following peek() Token::Value PeekAhead(); // Returns the current token again. Token::Value current_token() { return current().token; } Token::Value current_contextual_token() { return current().contextual_token; } Token::Value next_contextual_token() { return next().contextual_token; } // Returns the location information for the current token // (the token last returned by Next()). Location location() const { return current().location; } // This error is specifically an invalid hex or unicode escape sequence. bool has_error() const { return scanner_error_ != MessageTemplate::kNone; } MessageTemplate::Template error() const { return scanner_error_; } Location error_location() const { return scanner_error_location_; } bool has_invalid_template_escape() const { return current().invalid_template_escape_message != MessageTemplate::kNone; } MessageTemplate::Template invalid_template_escape_message() const { DCHECK(has_invalid_template_escape()); return current().invalid_template_escape_message; } Location invalid_template_escape_location() const { DCHECK(has_invalid_template_escape()); return current().invalid_template_escape_location; } // Similar functions for the upcoming token. // One token look-ahead (past the token returned by Next()). Token::Value peek() const { return next().token; } Location peek_location() const { return next().location; } bool literal_contains_escapes() const { return LiteralContainsEscapes(current()); } const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory) const; const AstRawString* NextSymbol(AstValueFactory* ast_value_factory) const; const AstRawString* CurrentRawSymbol( AstValueFactory* ast_value_factory) const; double DoubleValue(); const char* CurrentLiteralAsCString(Zone* zone) const; inline bool CurrentMatches(Token::Value token) const { DCHECK(Token::IsKeyword(token)); return current().token == token; } inline bool CurrentMatchesContextual(Token::Value token) const { DCHECK(Token::IsContextualKeyword(token)); return current().contextual_token == token; } // Match the token against the contextual keyword or literal buffer. inline bool CurrentMatchesContextualEscaped(Token::Value token) const { DCHECK(Token::IsContextualKeyword(token) || token == Token::LET); // Escaped keywords are not matched as tokens. So if we require escape // and/or string processing we need to look at the literal content // (which was escape-processed already). // Conveniently, !current().literal_chars.is_used() for all proper // keywords, so this second condition should exit early in common cases. return (current().contextual_token == token) || (current().literal_chars.is_used() && current().literal_chars.Equals(Vector<const char>( Token::String(token), Token::StringLength(token)))); } bool IsUseStrict() const { return current().token == Token::STRING && current().literal_chars.Equals( Vector<const char>("use strict", strlen("use strict"))); } bool IsGetOrSet(bool* is_get, bool* is_set) const { *is_get = CurrentMatchesContextual(Token::GET); *is_set = CurrentMatchesContextual(Token::SET); return *is_get || *is_set; } bool IsLet() const { return CurrentMatches(Token::LET) || CurrentMatchesContextualEscaped(Token::LET); } // Check whether the CurrentSymbol() has already been seen. // The DuplicateFinder holds the data, so different instances can be used // for different sets of duplicates to check for. bool IsDuplicateSymbol(DuplicateFinder* duplicate_finder, AstValueFactory* ast_value_factory) const; UnicodeCache* unicode_cache() { return unicode_cache_; } // Returns the location of the last seen octal literal. Location octal_position() const { return octal_pos_; } void clear_octal_position() { octal_pos_ = Location::invalid(); octal_message_ = MessageTemplate::kNone; } MessageTemplate::Template octal_message() const { return octal_message_; } // Returns the value of the last smi that was scanned. uint32_t smi_value() const { return current().smi_value_; } // Seek forward to the given position. This operation does not // work in general, for instance when there are pushed back // characters, but works for seeking forward until simple delimiter // tokens, which is what it is used for. void SeekForward(int pos); // Returns true if there was a line terminator before the peek'ed token, // possibly inside a multi-line comment. bool HasLineTerminatorBeforeNext() const { return next().after_line_terminator; } bool HasLineTerminatorAfterNext() { Token::Value ensure_next_next = PeekAhead(); USE(ensure_next_next); return next_next().after_line_terminator; } // Scans the input as a regular expression pattern, next token must be /(=). // Returns true if a pattern is scanned. bool ScanRegExpPattern(); // Scans the input as regular expression flags. Returns the flags on success. Maybe<RegExp::Flags> ScanRegExpFlags(); // Scans the input as a template literal Token::Value ScanTemplateStart(); Token::Value ScanTemplateContinuation() { DCHECK_EQ(next().token, Token::RBRACE); next().location.beg_pos = source_pos() - 1; // We already consumed } return ScanTemplateSpan(); } Handle<String> SourceUrl(Isolate* isolate) const; Handle<String> SourceMappingUrl(Isolate* isolate) const; bool FoundHtmlComment() const { return found_html_comment_; } bool allow_harmony_bigint() const { return allow_harmony_bigint_; } void set_allow_harmony_bigint(bool allow) { allow_harmony_bigint_ = allow; } bool allow_harmony_private_fields() const { return allow_harmony_private_fields_; } void set_allow_harmony_private_fields(bool allow) { allow_harmony_private_fields_ = allow; } bool allow_harmony_numeric_separator() const { return allow_harmony_numeric_separator_; } void set_allow_harmony_numeric_separator(bool allow) { allow_harmony_numeric_separator_ = allow; } private: // Scoped helper for saving & restoring scanner error state. // This is used for tagged template literals, in which normally forbidden // escape sequences are allowed. class ErrorState; // Scoped helper for literal recording. Automatically drops the literal // if aborting the scanning before it's complete. class LiteralScope { public: explicit LiteralScope(Scanner* self) : scanner_(self), complete_(false) { scanner_->StartLiteral(); } ~LiteralScope() { if (!complete_) scanner_->DropLiteral(); } void Complete() { complete_ = true; } private: Scanner* scanner_; bool complete_; }; // LiteralBuffer - Collector of chars of literals. class LiteralBuffer { public: LiteralBuffer() : position_(0), is_one_byte_(true), is_used_(false), backing_store_() {} ~LiteralBuffer() { backing_store_.Dispose(); } V8_INLINE void AddChar(char code_unit) { DCHECK(is_used_); DCHECK(IsValidAscii(code_unit)); AddOneByteChar(static_cast<byte>(code_unit)); } V8_INLINE void AddChar(uc32 code_unit) { DCHECK(is_used_); if (is_one_byte_) { if (code_unit <= static_cast<uc32>(unibrow::Latin1::kMaxChar)) { AddOneByteChar(static_cast<byte>(code_unit)); return; } ConvertToTwoByte(); } AddTwoByteChar(code_unit); } bool is_one_byte() const { return is_one_byte_; } bool Equals(Vector<const char> keyword) const { DCHECK(is_used_); return is_one_byte() && keyword.length() == position_ && (memcmp(keyword.start(), backing_store_.start(), position_) == 0); } Vector<const uint16_t> two_byte_literal() const { DCHECK(!is_one_byte_); DCHECK(is_used_); DCHECK_EQ(position_ & 0x1, 0); return Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(backing_store_.start()), position_ >> 1); } Vector<const uint8_t> one_byte_literal() const { DCHECK(is_one_byte_); DCHECK(is_used_); return Vector<const uint8_t>( reinterpret_cast<const uint8_t*>(backing_store_.start()), position_); } int length() const { return is_one_byte_ ? position_ : (position_ >> 1); } void Start() { DCHECK(!is_used_); DCHECK_EQ(0, position_); is_used_ = true; } bool is_used() const { return is_used_; } void Drop() { is_used_ = false; position_ = 0; is_one_byte_ = true; } Handle<String> Internalize(Isolate* isolate) const; private: static const int kInitialCapacity = 16; static const int kGrowthFactory = 4; static const int kMinConversionSlack = 256; static const int kMaxGrowth = 1 * MB; inline bool IsValidAscii(char code_unit) { // Control characters and printable characters span the range of // valid ASCII characters (0-127). Chars are unsigned on some // platforms which causes compiler warnings if the validity check // tests the lower bound >= 0 as it's always true. return iscntrl(code_unit) || isprint(code_unit); } V8_INLINE void AddOneByteChar(byte one_byte_char) { DCHECK(is_one_byte_); if (position_ >= backing_store_.length()) ExpandBuffer(); backing_store_[position_] = one_byte_char; position_ += kOneByteSize; } void AddTwoByteChar(uc32 code_unit); int NewCapacity(int min_capacity); void ExpandBuffer(); void ConvertToTwoByte(); int position_; bool is_one_byte_; bool is_used_; Vector<byte> backing_store_; DISALLOW_COPY_AND_ASSIGN(LiteralBuffer); }; // The current and look-ahead token. struct TokenDesc { Location location = {0, 0}; LiteralBuffer literal_chars; LiteralBuffer raw_literal_chars; Token::Value token = Token::UNINITIALIZED; MessageTemplate::Template invalid_template_escape_message = MessageTemplate::kNone; Location invalid_template_escape_location; Token::Value contextual_token = Token::UNINITIALIZED; uint32_t smi_value_ = 0; bool after_line_terminator = false; }; enum NumberKind { BINARY, OCTAL, IMPLICIT_OCTAL, HEX, DECIMAL, DECIMAL_WITH_LEADING_ZERO }; static const int kCharacterLookaheadBufferSize = 1; const int kMaxAscii = 127; // Scans octal escape sequence. Also accepts "\0" decimal escape sequence. template <bool capture_raw> uc32 ScanOctalEscape(uc32 c, int length); // Call this after setting source_ to the input. void Init() { // Set c0_ (one character ahead) STATIC_ASSERT(kCharacterLookaheadBufferSize == 1); Advance(); current_ = &token_storage_[0]; next_ = &token_storage_[1]; next_next_ = &token_storage_[2]; found_html_comment_ = false; scanner_error_ = MessageTemplate::kNone; } void ReportScannerError(const Location& location, MessageTemplate::Template error) { if (has_error()) return; scanner_error_ = error; scanner_error_location_ = location; } void ReportScannerError(int pos, MessageTemplate::Template error) { if (has_error()) return; scanner_error_ = error; scanner_error_location_ = Location(pos, pos + 1); } // Seek to the next_ token at the given position. void SeekNext(size_t position); // Literal buffer support inline void StartLiteral() { next().literal_chars.Start(); } inline void StartRawLiteral() { next().raw_literal_chars.Start(); } V8_INLINE void AddLiteralChar(uc32 c) { next().literal_chars.AddChar(c); } V8_INLINE void AddLiteralChar(char c) { next().literal_chars.AddChar(c); } V8_INLINE void AddRawLiteralChar(uc32 c) { next().raw_literal_chars.AddChar(c); } // Stops scanning of a literal and drop the collected characters, // e.g., due to an encountered error. inline void DropLiteral() { next().literal_chars.Drop(); next().raw_literal_chars.Drop(); } inline void AddLiteralCharAdvance() { AddLiteralChar(c0_); Advance(); } // Low-level scanning support. template <bool capture_raw = false> void Advance() { if (capture_raw) { AddRawLiteralChar(c0_); } c0_ = source_->Advance(); } template <typename FunctionType> V8_INLINE void AdvanceUntil(FunctionType check) { c0_ = source_->AdvanceUntil(check); } bool CombineSurrogatePair() { DCHECK(!unibrow::Utf16::IsLeadSurrogate(kEndOfInput)); if (unibrow::Utf16::IsLeadSurrogate(c0_)) { uc32 c1 = source_->Advance(); DCHECK(!unibrow::Utf16::IsTrailSurrogate(kEndOfInput)); if (unibrow::Utf16::IsTrailSurrogate(c1)) { c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1); return true; } source_->Back(); } return false; } void PushBack(uc32 ch) { DCHECK_LE(c0_, static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)); source_->Back(); c0_ = ch; } uc32 Peek() const { return source_->Peek(); } inline Token::Value Select(Token::Value tok) { Advance(); return tok; } inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) { Advance(); if (c0_ == next) { Advance(); return then; } else { return else_; } } // Returns the literal string, if any, for the current token (the // token last returned by Next()). The string is 0-terminated. // Literal strings are collected for identifiers, strings, numbers as well // as for template literals. For template literals we also collect the raw // form. // These functions only give the correct result if the literal was scanned // when a LiteralScope object is alive. // // Current usage of these functions is unfortunately a little undisciplined, // and is_literal_one_byte() + is_literal_one_byte_string() is also // requested for tokens that do not have a literal. Hence, we treat any // token as a one-byte literal. E.g. Token::FUNCTION pretends to have a // literal "function". Vector<const uint8_t> literal_one_byte_string() const { if (current().literal_chars.is_used()) return current().literal_chars.one_byte_literal(); const char* str = Token::String(current().token); const uint8_t* str_as_uint8 = reinterpret_cast<const uint8_t*>(str); return Vector<const uint8_t>(str_as_uint8, Token::StringLength(current().token)); } Vector<const uint16_t> literal_two_byte_string() const { DCHECK(current().literal_chars.is_used()); return current().literal_chars.two_byte_literal(); } bool is_literal_one_byte() const { return !current().literal_chars.is_used() || current().literal_chars.is_one_byte(); } // Returns the literal string for the next token (the token that // would be returned if Next() were called). Vector<const uint8_t> next_literal_one_byte_string() const { DCHECK(next().literal_chars.is_used()); return next().literal_chars.one_byte_literal(); } Vector<const uint16_t> next_literal_two_byte_string() const { DCHECK(next().literal_chars.is_used()); return next().literal_chars.two_byte_literal(); } bool is_next_literal_one_byte() const { DCHECK(next().literal_chars.is_used()); return next().literal_chars.is_one_byte(); } Vector<const uint8_t> raw_literal_one_byte_string() const { DCHECK(current().raw_literal_chars.is_used()); return current().raw_literal_chars.one_byte_literal(); } Vector<const uint16_t> raw_literal_two_byte_string() const { DCHECK(current().raw_literal_chars.is_used()); return current().raw_literal_chars.two_byte_literal(); } bool is_raw_literal_one_byte() const { DCHECK(current().raw_literal_chars.is_used()); return current().raw_literal_chars.is_one_byte(); } template <bool capture_raw, bool unicode = false> uc32 ScanHexNumber(int expected_length); // Scan a number of any length but not bigger than max_value. For example, the // number can be 000000001, so it's very long in characters but its value is // small. template <bool capture_raw> uc32 ScanUnlimitedLengthHexNumber(int max_value, int beg_pos); // Scans a single JavaScript token. void Scan(); V8_INLINE Token::Value SkipWhiteSpace(); Token::Value SkipSingleHTMLComment(); Token::Value SkipSingleLineComment(); Token::Value SkipSourceURLComment(); void TryToParseSourceURLComment(); Token::Value SkipMultiLineComment(); // Scans a possible HTML comment -- begins with '<!'. Token::Value ScanHtmlComment(); bool ScanDigitsWithNumericSeparators(bool (*predicate)(uc32 ch), bool is_check_first_digit); bool ScanDecimalDigits(); // Optimized function to scan decimal number as Smi. bool ScanDecimalAsSmi(uint64_t* value); bool ScanDecimalAsSmiWithNumericSeparators(uint64_t* value); bool ScanHexDigits(); bool ScanBinaryDigits(); bool ScanSignedInteger(); bool ScanOctalDigits(); bool ScanImplicitOctalDigits(int start_pos, NumberKind* kind); Token::Value ScanNumber(bool seen_period); Token::Value ScanIdentifierOrKeyword(); Token::Value ScanIdentifierOrKeywordInner(LiteralScope* literal); Token::Value ScanString(); Token::Value ScanPrivateName(); // Scans an escape-sequence which is part of a string and adds the // decoded character to the current literal. Returns true if a pattern // is scanned. template <bool capture_raw> bool ScanEscape(); // Decodes a Unicode escape-sequence which is part of an identifier. // If the escape sequence cannot be decoded the result is kBadChar. uc32 ScanIdentifierUnicodeEscape(); // Helper for the above functions. template <bool capture_raw> uc32 ScanUnicodeEscape(); Token::Value ScanTemplateSpan(); // Return the current source position. int source_pos() { return static_cast<int>(source_->pos()) - kCharacterLookaheadBufferSize; } static bool LiteralContainsEscapes(const TokenDesc& token) { Location location = token.location; int source_length = (location.end_pos - location.beg_pos); if (token.token == Token::STRING) { // Subtract delimiters. source_length -= 2; } return token.literal_chars.is_used() && (token.literal_chars.length() != source_length); } #ifdef DEBUG void SanityCheckTokenDesc(const TokenDesc&) const; #endif UnicodeCache* unicode_cache_; // Values parsed from magic comments. LiteralBuffer source_url_; LiteralBuffer source_mapping_url_; TokenDesc token_storage_[3]; TokenDesc& next() { return *next_; } const TokenDesc& current() const { return *current_; } const TokenDesc& next() const { return *next_; } const TokenDesc& next_next() const { return *next_next_; } TokenDesc* current_; // desc for current token (as returned by Next()) TokenDesc* next_; // desc for next token (one token look-ahead) TokenDesc* next_next_; // desc for the token after next (after PeakAhead()) // Input stream. Must be initialized to an Utf16CharacterStream. Utf16CharacterStream* const source_; // Last-seen positions of potentially problematic tokens. Location octal_pos_; MessageTemplate::Template octal_message_; // One Unicode character look-ahead; c0_ < 0 at the end of the input. uc32 c0_; // Whether this scanner encountered an HTML comment. bool found_html_comment_; // Harmony flags to allow ESNext features. bool allow_harmony_bigint_; bool allow_harmony_private_fields_; bool allow_harmony_numeric_separator_; const bool is_module_; MessageTemplate::Template scanner_error_; Location scanner_error_location_; }; } // namespace internal } // namespace v8 #endif // V8_PARSING_SCANNER_H_