// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/assembler-inl.h" #include "src/deoptimizer.h" #include "src/register-configuration.h" #include "src/safepoint-table.h" namespace v8 { namespace internal { #define __ masm()-> // This code tries to be close to ia32 code so that any changes can be // easily ported. void Deoptimizer::TableEntryGenerator::Generate() { GeneratePrologue(); // Unlike on ARM we don't save all the registers, just the useful ones. // For the rest, there are gaps on the stack, so the offsets remain the same. const int kNumberOfRegisters = Register::kNumRegisters; RegList restored_regs = kJSCallerSaved | kCalleeSaved; RegList saved_regs = restored_regs | sp.bit() | ra.bit(); const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters; const int kFloatRegsSize = kFloatSize * FloatRegister::kNumRegisters; // Save all FPU registers before messing with them. __ Subu(sp, sp, Operand(kDoubleRegsSize)); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); const DoubleRegister fpu_reg = DoubleRegister::from_code(code); int offset = code * kDoubleSize; __ Sdc1(fpu_reg, MemOperand(sp, offset)); } __ Subu(sp, sp, Operand(kFloatRegsSize)); for (int i = 0; i < config->num_allocatable_float_registers(); ++i) { int code = config->GetAllocatableFloatCode(i); const FloatRegister fpu_reg = FloatRegister::from_code(code); int offset = code * kFloatSize; __ swc1(fpu_reg, MemOperand(sp, offset)); } // Push saved_regs (needed to populate FrameDescription::registers_). // Leave gaps for other registers. __ Subu(sp, sp, kNumberOfRegisters * kPointerSize); for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { if ((saved_regs & (1 << i)) != 0) { __ sw(ToRegister(i), MemOperand(sp, kPointerSize * i)); } } __ li(a2, Operand(ExternalReference::Create( IsolateAddressId::kCEntryFPAddress, isolate()))); __ sw(fp, MemOperand(a2)); const int kSavedRegistersAreaSize = (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize + kFloatRegsSize; // Get the bailout id from the stack. __ lw(a2, MemOperand(sp, kSavedRegistersAreaSize)); // Get the address of the location in the code object (a3) (return // address for lazy deoptimization) and compute the fp-to-sp delta in // register t0. __ mov(a3, ra); // Correct one word for bailout id. __ Addu(t0, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); __ Subu(t0, fp, t0); // Allocate a new deoptimizer object. __ PrepareCallCFunction(6, t1); // Pass four arguments in a0 to a3 and fifth & sixth arguments on stack. __ mov(a0, zero_reg); Label context_check; __ lw(a1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ JumpIfSmi(a1, &context_check); __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ bind(&context_check); __ li(a1, Operand(static_cast<int>(deopt_kind()))); // a2: bailout id already loaded. // a3: code address or 0 already loaded. __ sw(t0, CFunctionArgumentOperand(5)); // Fp-to-sp delta. __ li(t1, Operand(ExternalReference::isolate_address(isolate()))); __ sw(t1, CFunctionArgumentOperand(6)); // Isolate. // Call Deoptimizer::New(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6); } // Preserve "deoptimizer" object in register v0 and get the input // frame descriptor pointer to a1 (deoptimizer->input_); // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below. __ mov(a0, v0); __ lw(a1, MemOperand(v0, Deoptimizer::input_offset())); // Copy core registers into FrameDescription::registers_[kNumRegisters]. DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters); for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); if ((saved_regs & (1 << i)) != 0) { __ lw(a2, MemOperand(sp, i * kPointerSize)); __ sw(a2, MemOperand(a1, offset)); } else if (FLAG_debug_code) { __ li(a2, kDebugZapValue); __ sw(a2, MemOperand(a1, offset)); } } int double_regs_offset = FrameDescription::double_registers_offset(); // Copy FPU registers to // double_registers_[DoubleRegister::kNumAllocatableRegisters] for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); int dst_offset = code * kDoubleSize + double_regs_offset; int src_offset = code * kDoubleSize + kNumberOfRegisters * kPointerSize + kFloatRegsSize; __ Ldc1(f0, MemOperand(sp, src_offset)); __ Sdc1(f0, MemOperand(a1, dst_offset)); } // Copy FPU registers to // float_registers_[FloatRegister::kNumAllocatableRegisters] int float_regs_offset = FrameDescription::float_registers_offset(); for (int i = 0; i < config->num_allocatable_float_registers(); ++i) { int code = config->GetAllocatableFloatCode(i); int dst_offset = code * kFloatSize + float_regs_offset; int src_offset = code * kFloatSize + kNumberOfRegisters * kPointerSize; __ lwc1(f0, MemOperand(sp, src_offset)); __ swc1(f0, MemOperand(a1, dst_offset)); } // Remove the bailout id and the saved registers from the stack. __ Addu(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); // Compute a pointer to the unwinding limit in register a2; that is // the first stack slot not part of the input frame. __ lw(a2, MemOperand(a1, FrameDescription::frame_size_offset())); __ Addu(a2, a2, sp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ Addu(a3, a1, Operand(FrameDescription::frame_content_offset())); Label pop_loop; Label pop_loop_header; __ BranchShort(&pop_loop_header); __ bind(&pop_loop); __ pop(t0); __ sw(t0, MemOperand(a3, 0)); __ addiu(a3, a3, sizeof(uint32_t)); __ bind(&pop_loop_header); __ BranchShort(&pop_loop, ne, a2, Operand(sp)); // Compute the output frame in the deoptimizer. __ push(a0); // Preserve deoptimizer object across call. // a0: deoptimizer object; a1: scratch. __ PrepareCallCFunction(1, a1); // Call Deoptimizer::ComputeOutputFrames(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); } __ pop(a0); // Restore deoptimizer object (class Deoptimizer). __ lw(sp, MemOperand(a0, Deoptimizer::caller_frame_top_offset())); // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: t0 = current "FrameDescription** output_", // a1 = one past the last FrameDescription**. __ lw(a1, MemOperand(a0, Deoptimizer::output_count_offset())); __ lw(t0, MemOperand(a0, Deoptimizer::output_offset())); // t0 is output_. __ Lsa(a1, t0, a1, kPointerSizeLog2); __ BranchShort(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: a2 = current FrameDescription*, a3 = loop index. __ lw(a2, MemOperand(t0, 0)); // output_[ix] __ lw(a3, MemOperand(a2, FrameDescription::frame_size_offset())); __ BranchShort(&inner_loop_header); __ bind(&inner_push_loop); __ Subu(a3, a3, Operand(sizeof(uint32_t))); __ Addu(t2, a2, Operand(a3)); __ lw(t3, MemOperand(t2, FrameDescription::frame_content_offset())); __ push(t3); __ bind(&inner_loop_header); __ BranchShort(&inner_push_loop, ne, a3, Operand(zero_reg)); __ Addu(t0, t0, Operand(kPointerSize)); __ bind(&outer_loop_header); __ BranchShort(&outer_push_loop, lt, t0, Operand(a1)); __ lw(a1, MemOperand(a0, Deoptimizer::input_offset())); for (int i = 0; i < config->num_allocatable_double_registers(); ++i) { int code = config->GetAllocatableDoubleCode(i); const DoubleRegister fpu_reg = DoubleRegister::from_code(code); int src_offset = code * kDoubleSize + double_regs_offset; __ Ldc1(fpu_reg, MemOperand(a1, src_offset)); } // Push pc and continuation from the last output frame. __ lw(t2, MemOperand(a2, FrameDescription::pc_offset())); __ push(t2); __ lw(t2, MemOperand(a2, FrameDescription::continuation_offset())); __ push(t2); // Technically restoring 'at' should work unless zero_reg is also restored // but it's safer to check for this. DCHECK(!(at.bit() & restored_regs)); // Restore the registers from the last output frame. __ mov(at, a2); for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); if ((restored_regs & (1 << i)) != 0) { __ lw(ToRegister(i), MemOperand(at, offset)); } } __ InitializeRootRegister(); __ pop(at); // Get continuation, leave pc on stack. __ pop(ra); __ Jump(at); __ stop("Unreachable."); } // Maximum size of a table entry generated below. #ifdef _MIPS_ARCH_MIPS32R6 const int Deoptimizer::table_entry_size_ = 2 * kInstrSize; #else const int Deoptimizer::table_entry_size_ = 3 * kInstrSize; #endif void Deoptimizer::TableEntryGenerator::GeneratePrologue() { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); // Create a sequence of deoptimization entries. // Note that registers are still live when jumping to an entry. Label table_start, done, trampoline_jump; __ bind(&table_start); #ifdef _MIPS_ARCH_MIPS32R6 int kMaxEntriesBranchReach = (1 << (kImm26Bits - 2)) / (table_entry_size_ / kInstrSize); #else int kMaxEntriesBranchReach = (1 << (kImm16Bits - 2)) / (table_entry_size_ / kInstrSize); #endif if (count() <= kMaxEntriesBranchReach) { // Common case. for (int i = 0; i < count(); i++) { Label start; __ bind(&start); DCHECK(is_int16(i)); if (IsMipsArchVariant(kMips32r6)) { __ li(kScratchReg, i); __ BranchShort(PROTECT, &done); } else { __ BranchShort(USE_DELAY_SLOT, &done); // Expose delay slot. __ li(kScratchReg, i); // In the delay slot. __ nop(); } DCHECK_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); } DCHECK_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), count() * table_entry_size_); __ bind(&done); __ Push(kScratchReg); } else { DCHECK(!IsMipsArchVariant(kMips32r6)); // Uncommon case, the branch cannot reach. // Create mini trampoline to reach the end of the table for (int i = 0, j = 0; i < count(); i++, j++) { Label start; __ bind(&start); DCHECK(is_int16(i)); if (j >= kMaxEntriesBranchReach) { j = 0; __ li(kScratchReg, i); __ bind(&trampoline_jump); trampoline_jump = Label(); __ BranchShort(USE_DELAY_SLOT, &trampoline_jump); __ nop(); } else { __ BranchShort(USE_DELAY_SLOT, &trampoline_jump); // Expose delay slot. __ li(kScratchReg, i); // In the delay slot. __ nop(); } DCHECK_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); } DCHECK_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), count() * table_entry_size_); __ bind(&trampoline_jump); __ Push(kScratchReg); } } bool Deoptimizer::PadTopOfStackRegister() { return false; } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) { // No embedded constant pool support. UNREACHABLE(); } #undef __ } // namespace internal } // namespace v8