// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_SPACES_H_ #define V8_HEAP_SPACES_H_ #include <list> #include <map> #include <memory> #include <unordered_map> #include <unordered_set> #include <vector> #include "src/allocation.h" #include "src/base/atomic-utils.h" #include "src/base/iterator.h" #include "src/base/list.h" #include "src/base/platform/mutex.h" #include "src/cancelable-task.h" #include "src/flags.h" #include "src/globals.h" #include "src/heap/heap.h" #include "src/heap/invalidated-slots.h" #include "src/heap/marking.h" #include "src/objects.h" #include "src/objects/map.h" #include "src/utils.h" namespace v8 { namespace internal { namespace heap { class HeapTester; class TestCodeRangeScope; } // namespace heap class AllocationObserver; class CompactionSpace; class CompactionSpaceCollection; class FreeList; class Isolate; class LinearAllocationArea; class LocalArrayBufferTracker; class MemoryAllocator; class MemoryChunk; class Page; class PagedSpace; class SemiSpace; class SkipList; class SlotsBuffer; class SlotSet; class TypedSlotSet; class Space; // ----------------------------------------------------------------------------- // Heap structures: // // A JS heap consists of a young generation, an old generation, and a large // object space. The young generation is divided into two semispaces. A // scavenger implements Cheney's copying algorithm. The old generation is // separated into a map space and an old object space. The map space contains // all (and only) map objects, the rest of old objects go into the old space. // The old generation is collected by a mark-sweep-compact collector. // // The semispaces of the young generation are contiguous. The old and map // spaces consists of a list of pages. A page has a page header and an object // area. // // There is a separate large object space for objects larger than // kMaxRegularHeapObjectSize, so that they do not have to move during // collection. The large object space is paged. Pages in large object space // may be larger than the page size. // // A store-buffer based write barrier is used to keep track of intergenerational // references. See heap/store-buffer.h. // // During scavenges and mark-sweep collections we sometimes (after a store // buffer overflow) iterate intergenerational pointers without decoding heap // object maps so if the page belongs to old space or large object space // it is essential to guarantee that the page does not contain any // garbage pointers to new space: every pointer aligned word which satisfies // the Heap::InNewSpace() predicate must be a pointer to a live heap object in // new space. Thus objects in old space and large object spaces should have a // special layout (e.g. no bare integer fields). This requirement does not // apply to map space which is iterated in a special fashion. However we still // require pointer fields of dead maps to be cleaned. // // To enable lazy cleaning of old space pages we can mark chunks of the page // as being garbage. Garbage sections are marked with a special map. These // sections are skipped when scanning the page, even if we are otherwise // scanning without regard for object boundaries. Garbage sections are chained // together to form a free list after a GC. Garbage sections created outside // of GCs by object trunctation etc. may not be in the free list chain. Very // small free spaces are ignored, they need only be cleaned of bogus pointers // into new space. // // Each page may have up to one special garbage section. The start of this // section is denoted by the top field in the space. The end of the section // is denoted by the limit field in the space. This special garbage section // is not marked with a free space map in the data. The point of this section // is to enable linear allocation without having to constantly update the byte // array every time the top field is updated and a new object is created. The // special garbage section is not in the chain of garbage sections. // // Since the top and limit fields are in the space, not the page, only one page // has a special garbage section, and if the top and limit are equal then there // is no special garbage section. // Some assertion macros used in the debugging mode. #define DCHECK_PAGE_ALIGNED(address) \ DCHECK((OffsetFrom(address) & kPageAlignmentMask) == 0) #define DCHECK_OBJECT_ALIGNED(address) \ DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0) #define DCHECK_OBJECT_SIZE(size) \ DCHECK((0 < size) && (size <= kMaxRegularHeapObjectSize)) #define DCHECK_CODEOBJECT_SIZE(size, code_space) \ DCHECK((0 < size) && (size <= code_space->AreaSize())) #define DCHECK_PAGE_OFFSET(offset) \ DCHECK((Page::kObjectStartOffset <= offset) && (offset <= Page::kPageSize)) enum FreeListCategoryType { kTiniest, kTiny, kSmall, kMedium, kLarge, kHuge, kFirstCategory = kTiniest, kLastCategory = kHuge, kNumberOfCategories = kLastCategory + 1, kInvalidCategory }; enum FreeMode { kLinkCategory, kDoNotLinkCategory }; enum class SpaceAccountingMode { kSpaceAccounted, kSpaceUnaccounted }; enum ExternalBackingStoreType { kArrayBuffer, kExternalString, kNumTypes }; enum RememberedSetType { OLD_TO_NEW, OLD_TO_OLD, NUMBER_OF_REMEMBERED_SET_TYPES = OLD_TO_OLD + 1 }; // A free list category maintains a linked list of free memory blocks. class FreeListCategory { public: FreeListCategory(FreeList* free_list, Page* page) : free_list_(free_list), page_(page), type_(kInvalidCategory), available_(0), top_(nullptr), prev_(nullptr), next_(nullptr) {} void Initialize(FreeListCategoryType type) { type_ = type; available_ = 0; top_ = nullptr; prev_ = nullptr; next_ = nullptr; } void Reset(); void ResetStats() { Reset(); } void RepairFreeList(Heap* heap); // Relinks the category into the currently owning free list. Requires that the // category is currently unlinked. void Relink(); void Free(Address address, size_t size_in_bytes, FreeMode mode); // Performs a single try to pick a node of at least |minimum_size| from the // category. Stores the actual size in |node_size|. Returns nullptr if no // node is found. FreeSpace* PickNodeFromList(size_t minimum_size, size_t* node_size); // Picks a node of at least |minimum_size| from the category. Stores the // actual size in |node_size|. Returns nullptr if no node is found. FreeSpace* SearchForNodeInList(size_t minimum_size, size_t* node_size); inline FreeList* owner(); inline Page* page() const { return page_; } inline bool is_linked(); bool is_empty() { return top() == nullptr; } size_t available() const { return available_; } void set_free_list(FreeList* free_list) { free_list_ = free_list; } #ifdef DEBUG size_t SumFreeList(); int FreeListLength(); #endif private: // For debug builds we accurately compute free lists lengths up until // {kVeryLongFreeList} by manually walking the list. static const int kVeryLongFreeList = 500; FreeSpace* top() { return top_; } void set_top(FreeSpace* top) { top_ = top; } FreeListCategory* prev() { return prev_; } void set_prev(FreeListCategory* prev) { prev_ = prev; } FreeListCategory* next() { return next_; } void set_next(FreeListCategory* next) { next_ = next; } // This FreeListCategory is owned by the given free_list_. FreeList* free_list_; // This FreeListCategory holds free list entries of the given page_. Page* const page_; // |type_|: The type of this free list category. FreeListCategoryType type_; // |available_|: Total available bytes in all blocks of this free list // category. size_t available_; // |top_|: Points to the top FreeSpace* in the free list category. FreeSpace* top_; FreeListCategory* prev_; FreeListCategory* next_; friend class FreeList; friend class PagedSpace; DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListCategory); }; // MemoryChunk represents a memory region owned by a specific space. // It is divided into the header and the body. Chunk start is always // 1MB aligned. Start of the body is aligned so it can accommodate // any heap object. class MemoryChunk { public: // Use with std data structures. struct Hasher { size_t operator()(MemoryChunk* const chunk) const { return reinterpret_cast<size_t>(chunk) >> kPageSizeBits; } }; enum Flag { NO_FLAGS = 0u, IS_EXECUTABLE = 1u << 0, POINTERS_TO_HERE_ARE_INTERESTING = 1u << 1, POINTERS_FROM_HERE_ARE_INTERESTING = 1u << 2, // A page in new space has one of the next two flags set. IN_FROM_SPACE = 1u << 3, IN_TO_SPACE = 1u << 4, NEW_SPACE_BELOW_AGE_MARK = 1u << 5, EVACUATION_CANDIDATE = 1u << 6, NEVER_EVACUATE = 1u << 7, // Large objects can have a progress bar in their page header. These object // are scanned in increments and will be kept black while being scanned. // Even if the mutator writes to them they will be kept black and a white // to grey transition is performed in the value. HAS_PROGRESS_BAR = 1u << 8, // |PAGE_NEW_OLD_PROMOTION|: A page tagged with this flag has been promoted // from new to old space during evacuation. PAGE_NEW_OLD_PROMOTION = 1u << 9, // |PAGE_NEW_NEW_PROMOTION|: A page tagged with this flag has been moved // within the new space during evacuation. PAGE_NEW_NEW_PROMOTION = 1u << 10, // This flag is intended to be used for testing. Works only when both // FLAG_stress_compaction and FLAG_manual_evacuation_candidates_selection // are set. It forces the page to become an evacuation candidate at next // candidates selection cycle. FORCE_EVACUATION_CANDIDATE_FOR_TESTING = 1u << 11, // This flag is intended to be used for testing. NEVER_ALLOCATE_ON_PAGE = 1u << 12, // The memory chunk is already logically freed, however the actual freeing // still has to be performed. PRE_FREED = 1u << 13, // |POOLED|: When actually freeing this chunk, only uncommit and do not // give up the reservation as we still reuse the chunk at some point. POOLED = 1u << 14, // |COMPACTION_WAS_ABORTED|: Indicates that the compaction in this page // has been aborted and needs special handling by the sweeper. COMPACTION_WAS_ABORTED = 1u << 15, // |COMPACTION_WAS_ABORTED_FOR_TESTING|: During stress testing evacuation // on pages is sometimes aborted. The flag is used to avoid repeatedly // triggering on the same page. COMPACTION_WAS_ABORTED_FOR_TESTING = 1u << 16, // |SWEEP_TO_ITERATE|: The page requires sweeping using external markbits // to iterate the page. SWEEP_TO_ITERATE = 1u << 17, // |INCREMENTAL_MARKING|: Indicates whether incremental marking is currently // enabled. INCREMENTAL_MARKING = 1u << 18 }; using Flags = uintptr_t; static const Flags kPointersToHereAreInterestingMask = POINTERS_TO_HERE_ARE_INTERESTING; static const Flags kPointersFromHereAreInterestingMask = POINTERS_FROM_HERE_ARE_INTERESTING; static const Flags kEvacuationCandidateMask = EVACUATION_CANDIDATE; static const Flags kIsInNewSpaceMask = IN_FROM_SPACE | IN_TO_SPACE; static const Flags kSkipEvacuationSlotsRecordingMask = kEvacuationCandidateMask | kIsInNewSpaceMask; // |kSweepingDone|: The page state when sweeping is complete or sweeping must // not be performed on that page. Sweeper threads that are done with their // work will set this value and not touch the page anymore. // |kSweepingPending|: This page is ready for parallel sweeping. // |kSweepingInProgress|: This page is currently swept by a sweeper thread. enum ConcurrentSweepingState { kSweepingDone, kSweepingPending, kSweepingInProgress, }; static const intptr_t kAlignment = (static_cast<uintptr_t>(1) << kPageSizeBits); static const intptr_t kAlignmentMask = kAlignment - 1; static const intptr_t kSizeOffset = 0; static const intptr_t kFlagsOffset = kSizeOffset + kSizetSize; static const intptr_t kAreaStartOffset = kFlagsOffset + kIntptrSize; static const intptr_t kAreaEndOffset = kAreaStartOffset + kPointerSize; static const intptr_t kReservationOffset = kAreaEndOffset + kPointerSize; static const intptr_t kOwnerOffset = kReservationOffset + 2 * kPointerSize; static const size_t kMinHeaderSize = kSizeOffset // NOLINT + kSizetSize // size_t size + kUIntptrSize // uintptr_t flags_ + kPointerSize // Address area_start_ + kPointerSize // Address area_end_ + 2 * kPointerSize // VirtualMemory reservation_ + kPointerSize // Address owner_ + kPointerSize // Heap* heap_ + kIntptrSize // intptr_t progress_bar_ + kIntptrSize // std::atomic<intptr_t> live_byte_count_ + kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // SlotSet* array + kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // TypedSlotSet* array + kPointerSize // InvalidatedSlots* invalidated_slots_ + kPointerSize // SkipList* skip_list_ + kPointerSize // std::atomic<intptr_t> high_water_mark_ + kPointerSize // base::Mutex* mutex_ + kPointerSize // std::atomic<ConcurrentSweepingState> concurrent_sweeping_ + kPointerSize // base::Mutex* page_protection_change_mutex_ + kPointerSize // unitptr_t write_unprotect_counter_ + kSizetSize * kNumTypes // std::atomic<size_t> external_backing_store_bytes_ + kSizetSize // size_t allocated_bytes_ + kSizetSize // size_t wasted_memory_ + kPointerSize * 2 // base::ListNode + kPointerSize * kNumberOfCategories // FreeListCategory categories_[kNumberOfCategories] + kPointerSize // LocalArrayBufferTracker* local_tracker_ + kIntptrSize // std::atomic<intptr_t> young_generation_live_byte_count_ + kPointerSize; // Bitmap* young_generation_bitmap_ // We add some more space to the computed header size to amount for missing // alignment requirements in our computation. // Try to get kHeaderSize properly aligned on 32-bit and 64-bit machines. static const size_t kHeaderSize = kMinHeaderSize; static const int kBodyOffset = CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize); // The start offset of the object area in a page. Aligned to both maps and // code alignment to be suitable for both. Also aligned to 32 words because // the marking bitmap is arranged in 32 bit chunks. static const int kObjectStartAlignment = 32 * kPointerSize; static const int kObjectStartOffset = kBodyOffset - 1 + (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); // Page size in bytes. This must be a multiple of the OS page size. static const int kPageSize = 1 << kPageSizeBits; static const int kAllocatableMemory = kPageSize - kObjectStartOffset; // Maximum number of nested code memory modification scopes. // TODO(6792,mstarzinger): Drop to 3 or lower once WebAssembly is off heap. static const int kMaxWriteUnprotectCounter = 4; // Only works if the pointer is in the first kPageSize of the MemoryChunk. static MemoryChunk* FromAddress(Address a) { return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask); } // Only works if the object is in the first kPageSize of the MemoryChunk. static MemoryChunk* FromHeapObject(const HeapObject* o) { return reinterpret_cast<MemoryChunk*>(reinterpret_cast<Address>(o) & ~kAlignmentMask); } void SetOldGenerationPageFlags(bool is_marking); void SetYoungGenerationPageFlags(bool is_marking); static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr); static inline void UpdateHighWaterMark(Address mark) { if (mark == kNullAddress) return; // Need to subtract one from the mark because when a chunk is full the // top points to the next address after the chunk, which effectively belongs // to another chunk. See the comment to Page::FromTopOrLimit. MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1); intptr_t new_mark = static_cast<intptr_t>(mark - chunk->address()); intptr_t old_mark = 0; do { old_mark = chunk->high_water_mark_; } while ( (new_mark > old_mark) && !chunk->high_water_mark_.compare_exchange_weak(old_mark, new_mark)); } Address address() const { return reinterpret_cast<Address>(const_cast<MemoryChunk*>(this)); } base::Mutex* mutex() { return mutex_; } bool Contains(Address addr) { return addr >= area_start() && addr < area_end(); } // Checks whether |addr| can be a limit of addresses in this page. It's a // limit if it's in the page, or if it's just after the last byte of the page. bool ContainsLimit(Address addr) { return addr >= area_start() && addr <= area_end(); } void set_concurrent_sweeping_state(ConcurrentSweepingState state) { concurrent_sweeping_ = state; } ConcurrentSweepingState concurrent_sweeping_state() { return static_cast<ConcurrentSweepingState>(concurrent_sweeping_.load()); } bool SweepingDone() { return concurrent_sweeping_ == kSweepingDone; } size_t size() const { return size_; } void set_size(size_t size) { size_ = size; } inline Heap* heap() const { return heap_; } Heap* synchronized_heap(); inline SkipList* skip_list() { return skip_list_; } inline void set_skip_list(SkipList* skip_list) { skip_list_ = skip_list; } template <RememberedSetType type> bool ContainsSlots() { return slot_set<type>() != nullptr || typed_slot_set<type>() != nullptr || invalidated_slots() != nullptr; } template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC> SlotSet* slot_set() { if (access_mode == AccessMode::ATOMIC) return base::AsAtomicPointer::Acquire_Load(&slot_set_[type]); return slot_set_[type]; } template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC> TypedSlotSet* typed_slot_set() { if (access_mode == AccessMode::ATOMIC) return base::AsAtomicPointer::Acquire_Load(&typed_slot_set_[type]); return typed_slot_set_[type]; } template <RememberedSetType type> SlotSet* AllocateSlotSet(); // Not safe to be called concurrently. template <RememberedSetType type> void ReleaseSlotSet(); template <RememberedSetType type> TypedSlotSet* AllocateTypedSlotSet(); // Not safe to be called concurrently. template <RememberedSetType type> void ReleaseTypedSlotSet(); InvalidatedSlots* AllocateInvalidatedSlots(); void ReleaseInvalidatedSlots(); void RegisterObjectWithInvalidatedSlots(HeapObject* object, int size); // Updates invalidated_slots after array left-trimming. void MoveObjectWithInvalidatedSlots(HeapObject* old_start, HeapObject* new_start); InvalidatedSlots* invalidated_slots() { return invalidated_slots_; } void ReleaseLocalTracker(); void AllocateYoungGenerationBitmap(); void ReleaseYoungGenerationBitmap(); Address area_start() { return area_start_; } Address area_end() { return area_end_; } size_t area_size() { return static_cast<size_t>(area_end() - area_start()); } // Approximate amount of physical memory committed for this chunk. size_t CommittedPhysicalMemory(); Address HighWaterMark() { return address() + high_water_mark_; } int progress_bar() { DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); return static_cast<int>(progress_bar_); } void set_progress_bar(int progress_bar) { DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); progress_bar_ = progress_bar; } void ResetProgressBar() { if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { set_progress_bar(0); } } void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount); void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount); size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) { return external_backing_store_bytes_[type]; } inline uint32_t AddressToMarkbitIndex(Address addr) const { return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2; } inline Address MarkbitIndexToAddress(uint32_t index) const { return this->address() + (index << kPointerSizeLog2); } template <AccessMode access_mode = AccessMode::NON_ATOMIC> void SetFlag(Flag flag) { if (access_mode == AccessMode::NON_ATOMIC) { flags_ |= flag; } else { base::AsAtomicWord::SetBits<uintptr_t>(&flags_, flag, flag); } } template <AccessMode access_mode = AccessMode::NON_ATOMIC> bool IsFlagSet(Flag flag) { return (GetFlags<access_mode>() & flag) != 0; } void ClearFlag(Flag flag) { flags_ &= ~flag; } // Set or clear multiple flags at a time. The flags in the mask are set to // the value in "flags", the rest retain the current value in |flags_|. void SetFlags(uintptr_t flags, uintptr_t mask) { flags_ = (flags_ & ~mask) | (flags & mask); } // Return all current flags. template <AccessMode access_mode = AccessMode::NON_ATOMIC> uintptr_t GetFlags() { if (access_mode == AccessMode::NON_ATOMIC) { return flags_; } else { return base::AsAtomicWord::Relaxed_Load(&flags_); } } bool NeverEvacuate() { return IsFlagSet(NEVER_EVACUATE); } void MarkNeverEvacuate() { SetFlag(NEVER_EVACUATE); } bool CanAllocate() { return !IsEvacuationCandidate() && !IsFlagSet(NEVER_ALLOCATE_ON_PAGE); } template <AccessMode access_mode = AccessMode::NON_ATOMIC> bool IsEvacuationCandidate() { DCHECK(!(IsFlagSet<access_mode>(NEVER_EVACUATE) && IsFlagSet<access_mode>(EVACUATION_CANDIDATE))); return IsFlagSet<access_mode>(EVACUATION_CANDIDATE); } template <AccessMode access_mode = AccessMode::NON_ATOMIC> bool ShouldSkipEvacuationSlotRecording() { uintptr_t flags = GetFlags<access_mode>(); return ((flags & kSkipEvacuationSlotsRecordingMask) != 0) && ((flags & COMPACTION_WAS_ABORTED) == 0); } Executability executable() { return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; } bool InNewSpace() { return (flags_ & kIsInNewSpaceMask) != 0; } bool InToSpace() { return IsFlagSet(IN_TO_SPACE); } bool InFromSpace() { return IsFlagSet(IN_FROM_SPACE); } bool InOldSpace() const; bool InLargeObjectSpace() const; Space* owner() const { return owner_; } void set_owner(Space* space) { owner_ = space; } bool IsPagedSpace() const; // Emits a memory barrier. For TSAN builds the other thread needs to perform // MemoryChunk::synchronized_heap() to simulate the barrier. void InitializationMemoryFence(); void SetReadAndExecutable(); void SetReadAndWritable(); base::ListNode<MemoryChunk>& list_node() { return list_node_; } protected: static MemoryChunk* Initialize(Heap* heap, Address base, size_t size, Address area_start, Address area_end, Executability executable, Space* owner, VirtualMemory* reservation); // Should be called when memory chunk is about to be freed. void ReleaseAllocatedMemory(); VirtualMemory* reserved_memory() { return &reservation_; } size_t size_; uintptr_t flags_; // Start and end of allocatable memory on this chunk. Address area_start_; Address area_end_; // If the chunk needs to remember its memory reservation, it is stored here. VirtualMemory reservation_; // The space owning this memory chunk. std::atomic<Space*> owner_; Heap* heap_; // Used by the incremental marker to keep track of the scanning progress in // large objects that have a progress bar and are scanned in increments. intptr_t progress_bar_; // Count of bytes marked black on page. std::atomic<intptr_t> live_byte_count_; // A single slot set for small pages (of size kPageSize) or an array of slot // set for large pages. In the latter case the number of entries in the array // is ceil(size() / kPageSize). SlotSet* slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES]; TypedSlotSet* typed_slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES]; InvalidatedSlots* invalidated_slots_; SkipList* skip_list_; // Assuming the initial allocation on a page is sequential, // count highest number of bytes ever allocated on the page. std::atomic<intptr_t> high_water_mark_; base::Mutex* mutex_; std::atomic<intptr_t> concurrent_sweeping_; base::Mutex* page_protection_change_mutex_; // This field is only relevant for code pages. It depicts the number of // times a component requested this page to be read+writeable. The // counter is decremented when a component resets to read+executable. // If Value() == 0 => The memory is read and executable. // If Value() >= 1 => The Memory is read and writable (and maybe executable). // The maximum value is limited by {kMaxWriteUnprotectCounter} to prevent // excessive nesting of scopes. // All executable MemoryChunks are allocated rw based on the assumption that // they will be used immediatelly for an allocation. They are initialized // with the number of open CodeSpaceMemoryModificationScopes. The caller // that triggers the page allocation is responsible for decrementing the // counter. uintptr_t write_unprotect_counter_; // Byte allocated on the page, which includes all objects on the page // and the linear allocation area. size_t allocated_bytes_; // Tracks off-heap memory used by this memory chunk. std::atomic<size_t> external_backing_store_bytes_[kNumTypes]; // Freed memory that was not added to the free list. size_t wasted_memory_; base::ListNode<MemoryChunk> list_node_; FreeListCategory* categories_[kNumberOfCategories]; LocalArrayBufferTracker* local_tracker_; std::atomic<intptr_t> young_generation_live_byte_count_; Bitmap* young_generation_bitmap_; private: void InitializeReservedMemory() { reservation_.Reset(); } friend class ConcurrentMarkingState; friend class IncrementalMarkingState; friend class MajorAtomicMarkingState; friend class MajorMarkingState; friend class MajorNonAtomicMarkingState; friend class MemoryAllocator; friend class MemoryChunkValidator; friend class MinorMarkingState; friend class MinorNonAtomicMarkingState; friend class PagedSpace; }; static_assert(sizeof(std::atomic<intptr_t>) == kPointerSize, "sizeof(std::atomic<intptr_t>) == kPointerSize"); static_assert(kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory, "kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory"); // ----------------------------------------------------------------------------- // A page is a memory chunk of a size 512K. Large object pages may be larger. // // The only way to get a page pointer is by calling factory methods: // Page* p = Page::FromAddress(addr); or // Page* p = Page::FromTopOrLimit(top); class Page : public MemoryChunk { public: static const intptr_t kCopyAllFlags = ~0; // Page flags copied from from-space to to-space when flipping semispaces. static const intptr_t kCopyOnFlipFlagsMask = static_cast<intptr_t>(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | static_cast<intptr_t>(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) | static_cast<intptr_t>(MemoryChunk::INCREMENTAL_MARKING); // Returns the page containing a given address. The address ranges // from [page_addr .. page_addr + kPageSize[. This only works if the object // is in fact in a page. static Page* FromAddress(Address addr) { return reinterpret_cast<Page*>(OffsetFrom(addr) & ~kPageAlignmentMask); } static Page* FromHeapObject(const HeapObject* o) { return reinterpret_cast<Page*>(reinterpret_cast<Address>(o) & ~kAlignmentMask); } // Returns the page containing the address provided. The address can // potentially point righter after the page. To be also safe for tagged values // we subtract a hole word. The valid address ranges from // [page_addr + kObjectStartOffset .. page_addr + kPageSize + kPointerSize]. static Page* FromAllocationAreaAddress(Address address) { return Page::FromAddress(address - kPointerSize); } // Checks if address1 and address2 are on the same new space page. static bool OnSamePage(Address address1, Address address2) { return Page::FromAddress(address1) == Page::FromAddress(address2); } // Checks whether an address is page aligned. static bool IsAlignedToPageSize(Address addr) { return (OffsetFrom(addr) & kPageAlignmentMask) == 0; } static bool IsAtObjectStart(Address addr) { return (addr & kPageAlignmentMask) == kObjectStartOffset; } static Page* ConvertNewToOld(Page* old_page); inline void MarkNeverAllocateForTesting(); inline void MarkEvacuationCandidate(); inline void ClearEvacuationCandidate(); Page* next_page() { return static_cast<Page*>(list_node_.next()); } Page* prev_page() { return static_cast<Page*>(list_node_.prev()); } template <typename Callback> inline void ForAllFreeListCategories(Callback callback) { for (int i = kFirstCategory; i < kNumberOfCategories; i++) { callback(categories_[i]); } } // Returns the offset of a given address to this page. inline size_t Offset(Address a) { return static_cast<size_t>(a - address()); } // Returns the address for a given offset to the this page. Address OffsetToAddress(size_t offset) { DCHECK_PAGE_OFFSET(offset); return address() + offset; } // WaitUntilSweepingCompleted only works when concurrent sweeping is in // progress. In particular, when we know that right before this call a // sweeper thread was sweeping this page. void WaitUntilSweepingCompleted() { mutex_->Lock(); mutex_->Unlock(); DCHECK(SweepingDone()); } void AllocateLocalTracker(); inline LocalArrayBufferTracker* local_tracker() { return local_tracker_; } bool contains_array_buffers(); void ResetFreeListStatistics(); size_t AvailableInFreeList(); size_t AvailableInFreeListFromAllocatedBytes() { DCHECK_GE(area_size(), wasted_memory() + allocated_bytes()); return area_size() - wasted_memory() - allocated_bytes(); } FreeListCategory* free_list_category(FreeListCategoryType type) { return categories_[type]; } size_t wasted_memory() { return wasted_memory_; } void add_wasted_memory(size_t waste) { wasted_memory_ += waste; } size_t allocated_bytes() { return allocated_bytes_; } void IncreaseAllocatedBytes(size_t bytes) { DCHECK_LE(bytes, area_size()); allocated_bytes_ += bytes; } void DecreaseAllocatedBytes(size_t bytes) { DCHECK_LE(bytes, area_size()); DCHECK_GE(allocated_bytes(), bytes); allocated_bytes_ -= bytes; } void ResetAllocatedBytes(); size_t ShrinkToHighWaterMark(); V8_EXPORT_PRIVATE void CreateBlackArea(Address start, Address end); void DestroyBlackArea(Address start, Address end); void InitializeFreeListCategories(); void AllocateFreeListCategories(); void ReleaseFreeListCategories(); #ifdef DEBUG void Print(); #endif // DEBUG private: enum InitializationMode { kFreeMemory, kDoNotFreeMemory }; friend class MemoryAllocator; }; class ReadOnlyPage : public Page { public: // Clears any pointers in the header that point out of the page that would // otherwise make the header non-relocatable. void MakeHeaderRelocatable(); }; class LargePage : public MemoryChunk { public: HeapObject* GetObject() { return HeapObject::FromAddress(area_start()); } inline LargePage* next_page() { return static_cast<LargePage*>(list_node_.next()); } // Uncommit memory that is not in use anymore by the object. If the object // cannot be shrunk 0 is returned. Address GetAddressToShrink(Address object_address, size_t object_size); void ClearOutOfLiveRangeSlots(Address free_start); // A limit to guarantee that we do not overflow typed slot offset in // the old to old remembered set. // Note that this limit is higher than what assembler already imposes on // x64 and ia32 architectures. static const int kMaxCodePageSize = 512 * MB; private: static LargePage* Initialize(Heap* heap, MemoryChunk* chunk, Executability executable); friend class MemoryAllocator; }; // ---------------------------------------------------------------------------- // Space is the abstract superclass for all allocation spaces. class Space : public Malloced { public: Space(Heap* heap, AllocationSpace id) : allocation_observers_paused_(false), heap_(heap), id_(id), committed_(0), max_committed_(0) { external_backing_store_bytes_ = new std::atomic<size_t>[ExternalBackingStoreType::kNumTypes]; external_backing_store_bytes_[ExternalBackingStoreType::kArrayBuffer] = 0; external_backing_store_bytes_[ExternalBackingStoreType::kExternalString] = 0; } virtual ~Space() { delete[] external_backing_store_bytes_; external_backing_store_bytes_ = nullptr; } Heap* heap() const { return heap_; } // Identity used in error reporting. AllocationSpace identity() { return id_; } const char* name() { return AllocationSpaceName(id_); } V8_EXPORT_PRIVATE virtual void AddAllocationObserver( AllocationObserver* observer); V8_EXPORT_PRIVATE virtual void RemoveAllocationObserver( AllocationObserver* observer); V8_EXPORT_PRIVATE virtual void PauseAllocationObservers(); V8_EXPORT_PRIVATE virtual void ResumeAllocationObservers(); V8_EXPORT_PRIVATE virtual void StartNextInlineAllocationStep() {} void AllocationStep(int bytes_since_last, Address soon_object, int size); // Return the total amount committed memory for this space, i.e., allocatable // memory and page headers. virtual size_t CommittedMemory() { return committed_; } virtual size_t MaximumCommittedMemory() { return max_committed_; } // Returns allocated size. virtual size_t Size() = 0; // Returns size of objects. Can differ from the allocated size // (e.g. see LargeObjectSpace). virtual size_t SizeOfObjects() { return Size(); } // Returns amount of off-heap memory in-use by objects in this Space. virtual size_t ExternalBackingStoreBytes( ExternalBackingStoreType type) const { return external_backing_store_bytes_[type]; } // Approximate amount of physical memory committed for this space. virtual size_t CommittedPhysicalMemory() = 0; // Return the available bytes without growing. virtual size_t Available() = 0; virtual int RoundSizeDownToObjectAlignment(int size) { if (id_ == CODE_SPACE) { return RoundDown(size, kCodeAlignment); } else { return RoundDown(size, kPointerSize); } } virtual std::unique_ptr<ObjectIterator> GetObjectIterator() = 0; void AccountCommitted(size_t bytes) { DCHECK_GE(committed_ + bytes, committed_); committed_ += bytes; if (committed_ > max_committed_) { max_committed_ = committed_; } } void AccountUncommitted(size_t bytes) { DCHECK_GE(committed_, committed_ - bytes); committed_ -= bytes; } void IncrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount) { external_backing_store_bytes_[type] += amount; } void DecrementExternalBackingStoreBytes(ExternalBackingStoreType type, size_t amount) { DCHECK_GE(external_backing_store_bytes_[type], amount); external_backing_store_bytes_[type] -= amount; } V8_EXPORT_PRIVATE void* GetRandomMmapAddr(); MemoryChunk* first_page() { return memory_chunk_list_.front(); } MemoryChunk* last_page() { return memory_chunk_list_.back(); } base::List<MemoryChunk>& memory_chunk_list() { return memory_chunk_list_; } #ifdef DEBUG virtual void Print() = 0; #endif protected: intptr_t GetNextInlineAllocationStepSize(); bool AllocationObserversActive() { return !allocation_observers_paused_ && !allocation_observers_.empty(); } std::vector<AllocationObserver*> allocation_observers_; // The List manages the pages that belong to the given space. base::List<MemoryChunk> memory_chunk_list_; // Tracks off-heap memory used by this space. std::atomic<size_t>* external_backing_store_bytes_; private: bool allocation_observers_paused_; Heap* heap_; AllocationSpace id_; // Keeps track of committed memory in a space. size_t committed_; size_t max_committed_; DISALLOW_COPY_AND_ASSIGN(Space); }; class MemoryChunkValidator { // Computed offsets should match the compiler generated ones. STATIC_ASSERT(MemoryChunk::kSizeOffset == offsetof(MemoryChunk, size_)); // Validate our estimates on the header size. STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize); STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize); }; // ---------------------------------------------------------------------------- // All heap objects containing executable code (code objects) must be allocated // from a 2 GB range of memory, so that they can call each other using 32-bit // displacements. This happens automatically on 32-bit platforms, where 32-bit // displacements cover the entire 4GB virtual address space. On 64-bit // platforms, we support this using the CodeRange object, which reserves and // manages a range of virtual memory. class CodeRange { public: CodeRange(Isolate* isolate, size_t requested_size); ~CodeRange(); bool valid() { return virtual_memory_.IsReserved(); } Address start() { DCHECK(valid()); return virtual_memory_.address(); } size_t size() { DCHECK(valid()); return virtual_memory_.size(); } bool contains(Address address) { if (!valid()) return false; Address start = virtual_memory_.address(); return start <= address && address < start + virtual_memory_.size(); } // Allocates a chunk of memory from the large-object portion of // the code range. On platforms with no separate code range, should // not be called. V8_WARN_UNUSED_RESULT Address AllocateRawMemory(const size_t requested_size, const size_t commit_size, size_t* allocated); void FreeRawMemory(Address buf, size_t length); private: class FreeBlock { public: FreeBlock() : start(0), size(0) {} FreeBlock(Address start_arg, size_t size_arg) : start(start_arg), size(size_arg) { DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); DCHECK(size >= static_cast<size_t>(Page::kPageSize)); } FreeBlock(void* start_arg, size_t size_arg) : start(reinterpret_cast<Address>(start_arg)), size(size_arg) { DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); DCHECK(size >= static_cast<size_t>(Page::kPageSize)); } Address start; size_t size; }; // Finds a block on the allocation list that contains at least the // requested amount of memory. If none is found, sorts and merges // the existing free memory blocks, and searches again. // If none can be found, returns false. bool GetNextAllocationBlock(size_t requested); // Compares the start addresses of two free blocks. static bool CompareFreeBlockAddress(const FreeBlock& left, const FreeBlock& right); bool ReserveBlock(const size_t requested_size, FreeBlock* block); void ReleaseBlock(const FreeBlock* block); Isolate* isolate_; // The reserved range of virtual memory that all code objects are put in. VirtualMemory virtual_memory_; // The global mutex guards free_list_ and allocation_list_ as GC threads may // access both lists concurrently to the main thread. base::Mutex code_range_mutex_; // Freed blocks of memory are added to the free list. When the allocation // list is exhausted, the free list is sorted and merged to make the new // allocation list. std::vector<FreeBlock> free_list_; // Memory is allocated from the free blocks on the allocation list. // The block at current_allocation_block_index_ is the current block. std::vector<FreeBlock> allocation_list_; size_t current_allocation_block_index_; size_t requested_code_range_size_; DISALLOW_COPY_AND_ASSIGN(CodeRange); }; // The process-wide singleton that keeps track of code range regions with the // intention to reuse free code range regions as a workaround for CFG memory // leaks (see crbug.com/870054). class CodeRangeAddressHint { public: // Returns the most recently freed code range start address for the given // size. If there is no such entry, then a random address is returned. V8_EXPORT_PRIVATE void* GetAddressHint(size_t code_range_size); V8_EXPORT_PRIVATE void NotifyFreedCodeRange(void* code_range_start, size_t code_range_size); private: base::Mutex mutex_; // A map from code range size to an array of recently freed code range // addresses. There should be O(1) different code range sizes. // The length of each array is limited by the peak number of code ranges, // which should be also O(1). std::map<size_t, std::vector<void*>> recently_freed_; }; class SkipList { public: SkipList() { Clear(); } void Clear() { for (int idx = 0; idx < kSize; idx++) { starts_[idx] = static_cast<Address>(-1); } } Address StartFor(Address addr) { return starts_[RegionNumber(addr)]; } void AddObject(Address addr, int size) { int start_region = RegionNumber(addr); int end_region = RegionNumber(addr + size - kPointerSize); for (int idx = start_region; idx <= end_region; idx++) { if (starts_[idx] > addr) { starts_[idx] = addr; } else { // In the first region, there may already be an object closer to the // start of the region. Do not change the start in that case. If this // is not the first region, you probably added overlapping objects. DCHECK_EQ(start_region, idx); } } } static inline int RegionNumber(Address addr) { return (OffsetFrom(addr) & kPageAlignmentMask) >> kRegionSizeLog2; } static void Update(Address addr, int size) { Page* page = Page::FromAddress(addr); SkipList* list = page->skip_list(); if (list == nullptr) { list = new SkipList(); page->set_skip_list(list); } list->AddObject(addr, size); } private: static const int kRegionSizeLog2 = 13; static const int kRegionSize = 1 << kRegionSizeLog2; static const int kSize = Page::kPageSize / kRegionSize; STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); Address starts_[kSize]; }; // ---------------------------------------------------------------------------- // A space acquires chunks of memory from the operating system. The memory // allocator allocates and deallocates pages for the paged heap spaces and large // pages for large object space. class V8_EXPORT_PRIVATE MemoryAllocator { public: // Unmapper takes care of concurrently unmapping and uncommitting memory // chunks. class Unmapper { public: class UnmapFreeMemoryTask; Unmapper(Heap* heap, MemoryAllocator* allocator) : heap_(heap), allocator_(allocator), pending_unmapping_tasks_semaphore_(0), pending_unmapping_tasks_(0), active_unmapping_tasks_(0) { chunks_[kRegular].reserve(kReservedQueueingSlots); chunks_[kPooled].reserve(kReservedQueueingSlots); } void AddMemoryChunkSafe(MemoryChunk* chunk) { if (chunk->IsPagedSpace() && chunk->executable() != EXECUTABLE) { AddMemoryChunkSafe<kRegular>(chunk); } else { AddMemoryChunkSafe<kNonRegular>(chunk); } } MemoryChunk* TryGetPooledMemoryChunkSafe() { // Procedure: // (1) Try to get a chunk that was declared as pooled and already has // been uncommitted. // (2) Try to steal any memory chunk of kPageSize that would've been // unmapped. MemoryChunk* chunk = GetMemoryChunkSafe<kPooled>(); if (chunk == nullptr) { chunk = GetMemoryChunkSafe<kRegular>(); if (chunk != nullptr) { // For stolen chunks we need to manually free any allocated memory. chunk->ReleaseAllocatedMemory(); } } return chunk; } void FreeQueuedChunks(); void CancelAndWaitForPendingTasks(); void PrepareForMarkCompact(); void EnsureUnmappingCompleted(); void TearDown(); int NumberOfChunks(); size_t CommittedBufferedMemory(); private: static const int kReservedQueueingSlots = 64; static const int kMaxUnmapperTasks = 4; enum ChunkQueueType { kRegular, // Pages of kPageSize that do not live in a CodeRange and // can thus be used for stealing. kNonRegular, // Large chunks and executable chunks. kPooled, // Pooled chunks, already uncommited and ready for reuse. kNumberOfChunkQueues, }; enum class FreeMode { kUncommitPooled, kReleasePooled, }; template <ChunkQueueType type> void AddMemoryChunkSafe(MemoryChunk* chunk) { base::LockGuard<base::Mutex> guard(&mutex_); chunks_[type].push_back(chunk); } template <ChunkQueueType type> MemoryChunk* GetMemoryChunkSafe() { base::LockGuard<base::Mutex> guard(&mutex_); if (chunks_[type].empty()) return nullptr; MemoryChunk* chunk = chunks_[type].back(); chunks_[type].pop_back(); return chunk; } bool MakeRoomForNewTasks(); template <FreeMode mode> void PerformFreeMemoryOnQueuedChunks(); void PerformFreeMemoryOnQueuedNonRegularChunks(); Heap* const heap_; MemoryAllocator* const allocator_; base::Mutex mutex_; std::vector<MemoryChunk*> chunks_[kNumberOfChunkQueues]; CancelableTaskManager::Id task_ids_[kMaxUnmapperTasks]; base::Semaphore pending_unmapping_tasks_semaphore_; intptr_t pending_unmapping_tasks_; std::atomic<intptr_t> active_unmapping_tasks_; friend class MemoryAllocator; }; enum AllocationMode { kRegular, kPooled, }; enum FreeMode { kFull, kAlreadyPooled, kPreFreeAndQueue, kPooledAndQueue, }; static size_t CodePageGuardStartOffset(); static size_t CodePageGuardSize(); static size_t CodePageAreaStartOffset(); static size_t CodePageAreaEndOffset(); static size_t CodePageAreaSize() { return CodePageAreaEndOffset() - CodePageAreaStartOffset(); } static size_t PageAreaSize(AllocationSpace space) { DCHECK_NE(LO_SPACE, space); return (space == CODE_SPACE) ? CodePageAreaSize() : Page::kAllocatableMemory; } static intptr_t GetCommitPageSize(); MemoryAllocator(Isolate* isolate, size_t max_capacity, size_t code_range_size); void TearDown(); // Allocates a Page from the allocator. AllocationMode is used to indicate // whether pooled allocation, which only works for MemoryChunk::kPageSize, // should be tried first. template <MemoryAllocator::AllocationMode alloc_mode = kRegular, typename SpaceType> Page* AllocatePage(size_t size, SpaceType* owner, Executability executable); LargePage* AllocateLargePage(size_t size, LargeObjectSpace* owner, Executability executable); template <MemoryAllocator::FreeMode mode = kFull> void Free(MemoryChunk* chunk); // Returns allocated spaces in bytes. size_t Size() { return size_; } // Returns allocated executable spaces in bytes. size_t SizeExecutable() { return size_executable_; } // Returns the maximum available bytes of heaps. size_t Available() { const size_t size = Size(); return capacity_ < size ? 0 : capacity_ - size; } // Returns maximum available bytes that the old space can have. size_t MaxAvailable() { return (Available() / Page::kPageSize) * Page::kAllocatableMemory; } // Returns an indication of whether a pointer is in a space that has // been allocated by this MemoryAllocator. V8_INLINE bool IsOutsideAllocatedSpace(Address address) { return address < lowest_ever_allocated_ || address >= highest_ever_allocated_; } // Returns a MemoryChunk in which the memory region from commit_area_size to // reserve_area_size of the chunk area is reserved but not committed, it // could be committed later by calling MemoryChunk::CommitArea. MemoryChunk* AllocateChunk(size_t reserve_area_size, size_t commit_area_size, Executability executable, Space* space); Address ReserveAlignedMemory(size_t requested, size_t alignment, void* hint, VirtualMemory* controller); Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size, size_t alignment, Executability executable, void* hint, VirtualMemory* controller); bool CommitMemory(Address addr, size_t size); void FreeMemory(VirtualMemory* reservation, Executability executable); void FreeMemory(Address addr, size_t size, Executability executable); // Partially release |bytes_to_free| bytes starting at |start_free|. Note that // internally memory is freed from |start_free| to the end of the reservation. // Additional memory beyond the page is not accounted though, so // |bytes_to_free| is computed by the caller. void PartialFreeMemory(MemoryChunk* chunk, Address start_free, size_t bytes_to_free, Address new_area_end); // Commit a contiguous block of memory from the initial chunk. Assumes that // the address is not kNullAddress, the size is greater than zero, and that // the block is contained in the initial chunk. Returns true if it succeeded // and false otherwise. bool CommitBlock(Address start, size_t size); // Checks if an allocated MemoryChunk was intended to be used for executable // memory. bool IsMemoryChunkExecutable(MemoryChunk* chunk) { return executable_memory_.find(chunk) != executable_memory_.end(); } // Uncommit a contiguous block of memory [start..(start+size)[. // start is not kNullAddress, the size is greater than zero, and the // block is contained in the initial chunk. Returns true if it succeeded // and false otherwise. bool UncommitBlock(Address start, size_t size); // Zaps a contiguous block of memory [start..(start+size)[ with // a given zap value. void ZapBlock(Address start, size_t size, uintptr_t zap_value); V8_WARN_UNUSED_RESULT bool CommitExecutableMemory(VirtualMemory* vm, Address start, size_t commit_size, size_t reserved_size); CodeRange* code_range() { return code_range_; } Unmapper* unmapper() { return &unmapper_; } private: // PreFree logically frees the object, i.e., it takes care of the size // bookkeeping and calls the allocation callback. void PreFreeMemory(MemoryChunk* chunk); // FreeMemory can be called concurrently when PreFree was executed before. void PerformFreeMemory(MemoryChunk* chunk); // See AllocatePage for public interface. Note that currently we only support // pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize. template <typename SpaceType> MemoryChunk* AllocatePagePooled(SpaceType* owner); // Initializes pages in a chunk. Returns the first page address. // This function and GetChunkId() are provided for the mark-compact // collector to rebuild page headers in the from space, which is // used as a marking stack and its page headers are destroyed. Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, PagedSpace* owner); void UpdateAllocatedSpaceLimits(Address low, Address high) { // The use of atomic primitives does not guarantee correctness (wrt. // desired semantics) by default. The loop here ensures that we update the // values only if they did not change in between. Address ptr = kNullAddress; do { ptr = lowest_ever_allocated_; } while ((low < ptr) && !lowest_ever_allocated_.compare_exchange_weak(ptr, low)); do { ptr = highest_ever_allocated_; } while ((high > ptr) && !highest_ever_allocated_.compare_exchange_weak(ptr, high)); } void RegisterExecutableMemoryChunk(MemoryChunk* chunk) { DCHECK(chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE)); DCHECK_EQ(executable_memory_.find(chunk), executable_memory_.end()); executable_memory_.insert(chunk); } void UnregisterExecutableMemoryChunk(MemoryChunk* chunk) { DCHECK_NE(executable_memory_.find(chunk), executable_memory_.end()); executable_memory_.erase(chunk); chunk->heap()->UnregisterUnprotectedMemoryChunk(chunk); } Isolate* isolate_; CodeRange* code_range_; // Maximum space size in bytes. size_t capacity_; // Allocated space size in bytes. std::atomic<size_t> size_; // Allocated executable space size in bytes. std::atomic<size_t> size_executable_; // We keep the lowest and highest addresses allocated as a quick way // of determining that pointers are outside the heap. The estimate is // conservative, i.e. not all addresses in 'allocated' space are allocated // to our heap. The range is [lowest, highest[, inclusive on the low end // and exclusive on the high end. std::atomic<Address> lowest_ever_allocated_; std::atomic<Address> highest_ever_allocated_; VirtualMemory last_chunk_; Unmapper unmapper_; // Data structure to remember allocated executable memory chunks. std::unordered_set<MemoryChunk*> executable_memory_; friend class heap::TestCodeRangeScope; DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); }; extern template Page* MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>( size_t size, PagedSpace* owner, Executability executable); extern template Page* MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>( size_t size, SemiSpace* owner, Executability executable); extern template Page* MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>( size_t size, SemiSpace* owner, Executability executable); // ----------------------------------------------------------------------------- // Interface for heap object iterator to be implemented by all object space // object iterators. // // NOTE: The space specific object iterators also implements the own next() // method which is used to avoid using virtual functions // iterating a specific space. class V8_EXPORT_PRIVATE ObjectIterator : public Malloced { public: virtual ~ObjectIterator() {} virtual HeapObject* Next() = 0; }; template <class PAGE_TYPE> class PageIteratorImpl : public base::iterator<std::forward_iterator_tag, PAGE_TYPE> { public: explicit PageIteratorImpl(PAGE_TYPE* p) : p_(p) {} PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE>& other) : p_(other.p_) {} PAGE_TYPE* operator*() { return p_; } bool operator==(const PageIteratorImpl<PAGE_TYPE>& rhs) { return rhs.p_ == p_; } bool operator!=(const PageIteratorImpl<PAGE_TYPE>& rhs) { return rhs.p_ != p_; } inline PageIteratorImpl<PAGE_TYPE>& operator++(); inline PageIteratorImpl<PAGE_TYPE> operator++(int); private: PAGE_TYPE* p_; }; typedef PageIteratorImpl<Page> PageIterator; typedef PageIteratorImpl<LargePage> LargePageIterator; class PageRange { public: typedef PageIterator iterator; PageRange(Page* begin, Page* end) : begin_(begin), end_(end) {} explicit PageRange(Page* page) : PageRange(page, page->next_page()) {} inline PageRange(Address start, Address limit); iterator begin() { return iterator(begin_); } iterator end() { return iterator(end_); } private: Page* begin_; Page* end_; }; // ----------------------------------------------------------------------------- // Heap object iterator in new/old/map spaces. // // A HeapObjectIterator iterates objects from the bottom of the given space // to its top or from the bottom of the given page to its top. // // If objects are allocated in the page during iteration the iterator may // or may not iterate over those objects. The caller must create a new // iterator in order to be sure to visit these new objects. class V8_EXPORT_PRIVATE HeapObjectIterator : public ObjectIterator { public: // Creates a new object iterator in a given space. explicit HeapObjectIterator(PagedSpace* space); explicit HeapObjectIterator(Page* page); // Advance to the next object, skipping free spaces and other fillers and // skipping the special garbage section of which there is one per space. // Returns nullptr when the iteration has ended. inline HeapObject* Next() override; private: // Fast (inlined) path of next(). inline HeapObject* FromCurrentPage(); // Slow path of next(), goes into the next page. Returns false if the // iteration has ended. bool AdvanceToNextPage(); Address cur_addr_; // Current iteration point. Address cur_end_; // End iteration point. PagedSpace* space_; PageRange page_range_; PageRange::iterator current_page_; }; // ----------------------------------------------------------------------------- // A space has a circular list of pages. The next page can be accessed via // Page::next_page() call. // An abstraction of allocation and relocation pointers in a page-structured // space. class LinearAllocationArea { public: LinearAllocationArea() : top_(kNullAddress), limit_(kNullAddress) {} LinearAllocationArea(Address top, Address limit) : top_(top), limit_(limit) {} void Reset(Address top, Address limit) { set_top(top); set_limit(limit); } V8_INLINE void set_top(Address top) { SLOW_DCHECK(top == kNullAddress || (top & kHeapObjectTagMask) == 0); top_ = top; } V8_INLINE Address top() const { SLOW_DCHECK(top_ == kNullAddress || (top_ & kHeapObjectTagMask) == 0); return top_; } Address* top_address() { return &top_; } V8_INLINE void set_limit(Address limit) { limit_ = limit; } V8_INLINE Address limit() const { return limit_; } Address* limit_address() { return &limit_; } #ifdef DEBUG bool VerifyPagedAllocation() { return (Page::FromAllocationAreaAddress(top_) == Page::FromAllocationAreaAddress(limit_)) && (top_ <= limit_); } #endif private: // Current allocation top. Address top_; // Current allocation limit. Address limit_; }; // An abstraction of the accounting statistics of a page-structured space. // // The stats are only set by functions that ensure they stay balanced. These // functions increase or decrease one of the non-capacity stats in conjunction // with capacity, or else they always balance increases and decreases to the // non-capacity stats. class AllocationStats BASE_EMBEDDED { public: AllocationStats() { Clear(); } // Zero out all the allocation statistics (i.e., no capacity). void Clear() { capacity_ = 0; max_capacity_ = 0; ClearSize(); } void ClearSize() { size_ = 0; #ifdef DEBUG allocated_on_page_.clear(); #endif } // Accessors for the allocation statistics. size_t Capacity() { return capacity_; } size_t MaxCapacity() { return max_capacity_; } size_t Size() { return size_; } #ifdef DEBUG size_t AllocatedOnPage(Page* page) { return allocated_on_page_[page]; } #endif void IncreaseAllocatedBytes(size_t bytes, Page* page) { DCHECK_GE(size_ + bytes, size_); size_ += bytes; #ifdef DEBUG allocated_on_page_[page] += bytes; #endif } void DecreaseAllocatedBytes(size_t bytes, Page* page) { DCHECK_GE(size_, bytes); size_ -= bytes; #ifdef DEBUG DCHECK_GE(allocated_on_page_[page], bytes); allocated_on_page_[page] -= bytes; #endif } void DecreaseCapacity(size_t bytes) { DCHECK_GE(capacity_, bytes); DCHECK_GE(capacity_ - bytes, size_); capacity_ -= bytes; } void IncreaseCapacity(size_t bytes) { DCHECK_GE(capacity_ + bytes, capacity_); capacity_ += bytes; if (capacity_ > max_capacity_) { max_capacity_ = capacity_; } } private: // |capacity_|: The number of object-area bytes (i.e., not including page // bookkeeping structures) currently in the space. // During evacuation capacity of the main spaces is accessed from multiple // threads to check the old generation hard limit. std::atomic<size_t> capacity_; // |max_capacity_|: The maximum capacity ever observed. size_t max_capacity_; // |size_|: The number of allocated bytes. size_t size_; #ifdef DEBUG std::unordered_map<Page*, size_t, Page::Hasher> allocated_on_page_; #endif }; // A free list maintaining free blocks of memory. The free list is organized in // a way to encourage objects allocated around the same time to be near each // other. The normal way to allocate is intended to be by bumping a 'top' // pointer until it hits a 'limit' pointer. When the limit is hit we need to // find a new space to allocate from. This is done with the free list, which is // divided up into rough categories to cut down on waste. Having finer // categories would scatter allocation more. // The free list is organized in categories as follows: // kMinBlockSize-10 words (tiniest): The tiniest blocks are only used for // allocation, when categories >= small do not have entries anymore. // 11-31 words (tiny): The tiny blocks are only used for allocation, when // categories >= small do not have entries anymore. // 32-255 words (small): Used for allocating free space between 1-31 words in // size. // 256-2047 words (medium): Used for allocating free space between 32-255 words // in size. // 1048-16383 words (large): Used for allocating free space between 256-2047 // words in size. // At least 16384 words (huge): This list is for objects of 2048 words or // larger. Empty pages are also added to this list. class V8_EXPORT_PRIVATE FreeList { public: // This method returns how much memory can be allocated after freeing // maximum_freed memory. static inline size_t GuaranteedAllocatable(size_t maximum_freed) { if (maximum_freed <= kTiniestListMax) { // Since we are not iterating over all list entries, we cannot guarantee // that we can find the maximum freed block in that free list. return 0; } else if (maximum_freed <= kTinyListMax) { return kTinyAllocationMax; } else if (maximum_freed <= kSmallListMax) { return kSmallAllocationMax; } else if (maximum_freed <= kMediumListMax) { return kMediumAllocationMax; } else if (maximum_freed <= kLargeListMax) { return kLargeAllocationMax; } return maximum_freed; } static FreeListCategoryType SelectFreeListCategoryType(size_t size_in_bytes) { if (size_in_bytes <= kTiniestListMax) { return kTiniest; } else if (size_in_bytes <= kTinyListMax) { return kTiny; } else if (size_in_bytes <= kSmallListMax) { return kSmall; } else if (size_in_bytes <= kMediumListMax) { return kMedium; } else if (size_in_bytes <= kLargeListMax) { return kLarge; } return kHuge; } FreeList(); // Adds a node on the free list. The block of size {size_in_bytes} starting // at {start} is placed on the free list. The return value is the number of // bytes that were not added to the free list, because they freed memory block // was too small. Bookkeeping information will be written to the block, i.e., // its contents will be destroyed. The start address should be word aligned, // and the size should be a non-zero multiple of the word size. size_t Free(Address start, size_t size_in_bytes, FreeMode mode); // Allocates a free space node frome the free list of at least size_in_bytes // bytes. Returns the actual node size in node_size which can be bigger than // size_in_bytes. This method returns null if the allocation request cannot be // handled by the free list. V8_WARN_UNUSED_RESULT FreeSpace* Allocate(size_t size_in_bytes, size_t* node_size); // Clear the free list. void Reset(); void ResetStats() { wasted_bytes_ = 0; ForAllFreeListCategories( [](FreeListCategory* category) { category->ResetStats(); }); } // Return the number of bytes available on the free list. size_t Available() { size_t available = 0; ForAllFreeListCategories([&available](FreeListCategory* category) { available += category->available(); }); return available; } bool IsEmpty() { bool empty = true; ForAllFreeListCategories([&empty](FreeListCategory* category) { if (!category->is_empty()) empty = false; }); return empty; } // Used after booting the VM. void RepairLists(Heap* heap); size_t EvictFreeListItems(Page* page); bool ContainsPageFreeListItems(Page* page); size_t wasted_bytes() { return wasted_bytes_; } template <typename Callback> void ForAllFreeListCategories(FreeListCategoryType type, Callback callback) { FreeListCategory* current = categories_[type]; while (current != nullptr) { FreeListCategory* next = current->next(); callback(current); current = next; } } template <typename Callback> void ForAllFreeListCategories(Callback callback) { for (int i = kFirstCategory; i < kNumberOfCategories; i++) { ForAllFreeListCategories(static_cast<FreeListCategoryType>(i), callback); } } bool AddCategory(FreeListCategory* category); void RemoveCategory(FreeListCategory* category); void PrintCategories(FreeListCategoryType type); // Returns a page containing an entry for a given type, or nullptr otherwise. inline Page* GetPageForCategoryType(FreeListCategoryType type); #ifdef DEBUG size_t SumFreeLists(); bool IsVeryLong(); #endif private: class FreeListCategoryIterator { public: FreeListCategoryIterator(FreeList* free_list, FreeListCategoryType type) : current_(free_list->categories_[type]) {} bool HasNext() { return current_ != nullptr; } FreeListCategory* Next() { DCHECK(HasNext()); FreeListCategory* tmp = current_; current_ = current_->next(); return tmp; } private: FreeListCategory* current_; }; // The size range of blocks, in bytes. static const size_t kMinBlockSize = 3 * kPointerSize; static const size_t kMaxBlockSize = Page::kAllocatableMemory; static const size_t kTiniestListMax = 0xa * kPointerSize; static const size_t kTinyListMax = 0x1f * kPointerSize; static const size_t kSmallListMax = 0xff * kPointerSize; static const size_t kMediumListMax = 0x7ff * kPointerSize; static const size_t kLargeListMax = 0x3fff * kPointerSize; static const size_t kTinyAllocationMax = kTiniestListMax; static const size_t kSmallAllocationMax = kTinyListMax; static const size_t kMediumAllocationMax = kSmallListMax; static const size_t kLargeAllocationMax = kMediumListMax; // Walks all available categories for a given |type| and tries to retrieve // a node. Returns nullptr if the category is empty. FreeSpace* FindNodeIn(FreeListCategoryType type, size_t minimum_size, size_t* node_size); // Tries to retrieve a node from the first category in a given |type|. // Returns nullptr if the category is empty or the top entry is smaller // than minimum_size. FreeSpace* TryFindNodeIn(FreeListCategoryType type, size_t minimum_size, size_t* node_size); // Searches a given |type| for a node of at least |minimum_size|. FreeSpace* SearchForNodeInList(FreeListCategoryType type, size_t* node_size, size_t minimum_size); // The tiny categories are not used for fast allocation. FreeListCategoryType SelectFastAllocationFreeListCategoryType( size_t size_in_bytes) { if (size_in_bytes <= kSmallAllocationMax) { return kSmall; } else if (size_in_bytes <= kMediumAllocationMax) { return kMedium; } else if (size_in_bytes <= kLargeAllocationMax) { return kLarge; } return kHuge; } FreeListCategory* top(FreeListCategoryType type) const { return categories_[type]; } std::atomic<size_t> wasted_bytes_; FreeListCategory* categories_[kNumberOfCategories]; friend class FreeListCategory; }; // LocalAllocationBuffer represents a linear allocation area that is created // from a given {AllocationResult} and can be used to allocate memory without // synchronization. // // The buffer is properly closed upon destruction and reassignment. // Example: // { // AllocationResult result = ...; // LocalAllocationBuffer a(heap, result, size); // LocalAllocationBuffer b = a; // CHECK(!a.IsValid()); // CHECK(b.IsValid()); // // {a} is invalid now and cannot be used for further allocations. // } // // Since {b} went out of scope, the LAB is closed, resulting in creating a // // filler object for the remaining area. class LocalAllocationBuffer { public: // Indicates that a buffer cannot be used for allocations anymore. Can result // from either reassigning a buffer, or trying to construct it from an // invalid {AllocationResult}. static LocalAllocationBuffer InvalidBuffer() { return LocalAllocationBuffer( nullptr, LinearAllocationArea(kNullAddress, kNullAddress)); } // Creates a new LAB from a given {AllocationResult}. Results in // InvalidBuffer if the result indicates a retry. static inline LocalAllocationBuffer FromResult(Heap* heap, AllocationResult result, intptr_t size); ~LocalAllocationBuffer() { Close(); } // Convert to C++11 move-semantics once allowed by the style guide. LocalAllocationBuffer(const LocalAllocationBuffer& other); LocalAllocationBuffer& operator=(const LocalAllocationBuffer& other); V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned( int size_in_bytes, AllocationAlignment alignment); inline bool IsValid() { return allocation_info_.top() != kNullAddress; } // Try to merge LABs, which is only possible when they are adjacent in memory. // Returns true if the merge was successful, false otherwise. inline bool TryMerge(LocalAllocationBuffer* other); inline bool TryFreeLast(HeapObject* object, int object_size); // Close a LAB, effectively invalidating it. Returns the unused area. LinearAllocationArea Close(); private: LocalAllocationBuffer(Heap* heap, LinearAllocationArea allocation_info); Heap* heap_; LinearAllocationArea allocation_info_; }; class SpaceWithLinearArea : public Space { public: SpaceWithLinearArea(Heap* heap, AllocationSpace id) : Space(heap, id), top_on_previous_step_(0) { allocation_info_.Reset(kNullAddress, kNullAddress); } virtual bool SupportsInlineAllocation() = 0; // Returns the allocation pointer in this space. Address top() { return allocation_info_.top(); } Address limit() { return allocation_info_.limit(); } // The allocation top address. Address* allocation_top_address() { return allocation_info_.top_address(); } // The allocation limit address. Address* allocation_limit_address() { return allocation_info_.limit_address(); } V8_EXPORT_PRIVATE void AddAllocationObserver( AllocationObserver* observer) override; V8_EXPORT_PRIVATE void RemoveAllocationObserver( AllocationObserver* observer) override; V8_EXPORT_PRIVATE void ResumeAllocationObservers() override; V8_EXPORT_PRIVATE void PauseAllocationObservers() override; // When allocation observers are active we may use a lower limit to allow the // observers to 'interrupt' earlier than the natural limit. Given a linear // area bounded by [start, end), this function computes the limit to use to // allow proper observation based on existing observers. min_size specifies // the minimum size that the limited area should have. Address ComputeLimit(Address start, Address end, size_t min_size); V8_EXPORT_PRIVATE virtual void UpdateInlineAllocationLimit( size_t min_size) = 0; protected: // If we are doing inline allocation in steps, this method performs the 'step' // operation. top is the memory address of the bump pointer at the last // inline allocation (i.e. it determines the numbers of bytes actually // allocated since the last step.) top_for_next_step is the address of the // bump pointer where the next byte is going to be allocated from. top and // top_for_next_step may be different when we cross a page boundary or reset // the space. // TODO(ofrobots): clarify the precise difference between this and // Space::AllocationStep. void InlineAllocationStep(Address top, Address top_for_next_step, Address soon_object, size_t size); V8_EXPORT_PRIVATE void StartNextInlineAllocationStep() override; // TODO(ofrobots): make these private after refactoring is complete. LinearAllocationArea allocation_info_; Address top_on_previous_step_; }; class V8_EXPORT_PRIVATE PagedSpace : NON_EXPORTED_BASE(public SpaceWithLinearArea) { public: typedef PageIterator iterator; static const size_t kCompactionMemoryWanted = 500 * KB; // Creates a space with an id. PagedSpace(Heap* heap, AllocationSpace id, Executability executable); ~PagedSpace() override { TearDown(); } // Checks whether an object/address is in this space. inline bool Contains(Address a); inline bool Contains(Object* o); bool ContainsSlow(Address addr); // Does the space need executable memory? Executability executable() { return executable_; } // During boot the free_space_map is created, and afterwards we may need // to write it into the free list nodes that were already created. void RepairFreeListsAfterDeserialization(); // Prepares for a mark-compact GC. void PrepareForMarkCompact(); // Current capacity without growing (Size() + Available()). size_t Capacity() { return accounting_stats_.Capacity(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; void ResetFreeListStatistics(); // Sets the capacity, the available space and the wasted space to zero. // The stats are rebuilt during sweeping by adding each page to the // capacity and the size when it is encountered. As free spaces are // discovered during the sweeping they are subtracted from the size and added // to the available and wasted totals. void ClearStats() { accounting_stats_.ClearSize(); free_list_.ResetStats(); ResetFreeListStatistics(); } // Available bytes without growing. These are the bytes on the free list. // The bytes in the linear allocation area are not included in this total // because updating the stats would slow down allocation. New pages are // immediately added to the free list so they show up here. size_t Available() override { return free_list_.Available(); } // Allocated bytes in this space. Garbage bytes that were not found due to // concurrent sweeping are counted as being allocated! The bytes in the // current linear allocation area (between top and limit) are also counted // here. size_t Size() override { return accounting_stats_.Size(); } // As size, but the bytes in lazily swept pages are estimated and the bytes // in the current linear allocation area are not included. size_t SizeOfObjects() override; // Wasted bytes in this space. These are just the bytes that were thrown away // due to being too small to use for allocation. virtual size_t Waste() { return free_list_.wasted_bytes(); } enum UpdateSkipList { UPDATE_SKIP_LIST, IGNORE_SKIP_LIST }; // Allocate the requested number of bytes in the space if possible, return a // failure object if not. Only use IGNORE_SKIP_LIST if the skip list is going // to be manually updated later. V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawUnaligned( int size_in_bytes, UpdateSkipList update_skip_list = UPDATE_SKIP_LIST); // Allocate the requested number of bytes in the space double aligned if // possible, return a failure object if not. V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned( int size_in_bytes, AllocationAlignment alignment); // Allocate the requested number of bytes in the space and consider allocation // alignment if needed. V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw( int size_in_bytes, AllocationAlignment alignment); size_t Free(Address start, size_t size_in_bytes, SpaceAccountingMode mode) { if (size_in_bytes == 0) return 0; heap()->CreateFillerObjectAt(start, static_cast<int>(size_in_bytes), ClearRecordedSlots::kNo); if (mode == SpaceAccountingMode::kSpaceAccounted) { return AccountedFree(start, size_in_bytes); } else { return UnaccountedFree(start, size_in_bytes); } } // Give a block of memory to the space's free list. It might be added to // the free list or accounted as waste. // If add_to_freelist is false then just accounting stats are updated and // no attempt to add area to free list is made. size_t AccountedFree(Address start, size_t size_in_bytes) { size_t wasted = free_list_.Free(start, size_in_bytes, kLinkCategory); Page* page = Page::FromAddress(start); accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page); DCHECK_GE(size_in_bytes, wasted); return size_in_bytes - wasted; } size_t UnaccountedFree(Address start, size_t size_in_bytes) { size_t wasted = free_list_.Free(start, size_in_bytes, kDoNotLinkCategory); DCHECK_GE(size_in_bytes, wasted); return size_in_bytes - wasted; } inline bool TryFreeLast(HeapObject* object, int object_size); void ResetFreeList(); // Empty space linear allocation area, returning unused area to free list. void FreeLinearAllocationArea(); void MarkLinearAllocationAreaBlack(); void UnmarkLinearAllocationArea(); void DecreaseAllocatedBytes(size_t bytes, Page* page) { accounting_stats_.DecreaseAllocatedBytes(bytes, page); } void IncreaseAllocatedBytes(size_t bytes, Page* page) { accounting_stats_.IncreaseAllocatedBytes(bytes, page); } void DecreaseCapacity(size_t bytes) { accounting_stats_.DecreaseCapacity(bytes); } void IncreaseCapacity(size_t bytes) { accounting_stats_.IncreaseCapacity(bytes); } void RefineAllocatedBytesAfterSweeping(Page* page); Page* InitializePage(MemoryChunk* chunk, Executability executable); void ReleasePage(Page* page); // Adds the page to this space and returns the number of bytes added to the // free list of the space. size_t AddPage(Page* page); void RemovePage(Page* page); // Remove a page if it has at least |size_in_bytes| bytes available that can // be used for allocation. Page* RemovePageSafe(int size_in_bytes); void SetReadAndExecutable(); void SetReadAndWritable(); #ifdef VERIFY_HEAP // Verify integrity of this space. virtual void Verify(Isolate* isolate, ObjectVisitor* visitor); void VerifyLiveBytes(); // Overridden by subclasses to verify space-specific object // properties (e.g., only maps or free-list nodes are in map space). virtual void VerifyObject(HeapObject* obj) {} #endif #ifdef DEBUG void VerifyCountersAfterSweeping(); void VerifyCountersBeforeConcurrentSweeping(); // Print meta info and objects in this space. void Print() override; // Report code object related statistics static void ReportCodeStatistics(Isolate* isolate); static void ResetCodeStatistics(Isolate* isolate); #endif bool CanExpand(size_t size); // Returns the number of total pages in this space. int CountTotalPages(); // Return size of allocatable area on a page in this space. inline int AreaSize() { return static_cast<int>(area_size_); } virtual bool is_local() { return false; } // Merges {other} into the current space. Note that this modifies {other}, // e.g., removes its bump pointer area and resets statistics. void MergeCompactionSpace(CompactionSpace* other); // Refills the free list from the corresponding free list filled by the // sweeper. virtual void RefillFreeList(); FreeList* free_list() { return &free_list_; } base::Mutex* mutex() { return &space_mutex_; } inline void UnlinkFreeListCategories(Page* page); inline size_t RelinkFreeListCategories(Page* page); Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); } iterator begin() { return iterator(first_page()); } iterator end() { return iterator(nullptr); } // Shrink immortal immovable pages of the space to be exactly the size needed // using the high water mark. void ShrinkImmortalImmovablePages(); size_t ShrinkPageToHighWaterMark(Page* page); std::unique_ptr<ObjectIterator> GetObjectIterator() override; void SetLinearAllocationArea(Address top, Address limit); private: // Set space linear allocation area. void SetTopAndLimit(Address top, Address limit) { DCHECK(top == limit || Page::FromAddress(top) == Page::FromAddress(limit - 1)); MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); allocation_info_.Reset(top, limit); } void DecreaseLimit(Address new_limit); void UpdateInlineAllocationLimit(size_t min_size) override; bool SupportsInlineAllocation() override { return identity() == OLD_SPACE && !is_local(); } protected: // PagedSpaces that should be included in snapshots have different, i.e., // smaller, initial pages. virtual bool snapshotable() { return true; } bool HasPages() { return first_page() != nullptr; } // Cleans up the space, frees all pages in this space except those belonging // to the initial chunk, uncommits addresses in the initial chunk. void TearDown(); // Expands the space by allocating a fixed number of pages. Returns false if // it cannot allocate requested number of pages from OS, or if the hard heap // size limit has been hit. bool Expand(); // Sets up a linear allocation area that fits the given number of bytes. // Returns false if there is not enough space and the caller has to retry // after collecting garbage. inline bool EnsureLinearAllocationArea(int size_in_bytes); // Allocates an object from the linear allocation area. Assumes that the // linear allocation area is large enought to fit the object. inline HeapObject* AllocateLinearly(int size_in_bytes); // Tries to allocate an aligned object from the linear allocation area. // Returns nullptr if the linear allocation area does not fit the object. // Otherwise, returns the object pointer and writes the allocation size // (object size + alignment filler size) to the size_in_bytes. inline HeapObject* TryAllocateLinearlyAligned(int* size_in_bytes, AllocationAlignment alignment); V8_WARN_UNUSED_RESULT bool RefillLinearAllocationAreaFromFreeList( size_t size_in_bytes); // If sweeping is still in progress try to sweep unswept pages. If that is // not successful, wait for the sweeper threads and retry free-list // allocation. Returns false if there is not enough space and the caller // has to retry after collecting garbage. V8_WARN_UNUSED_RESULT virtual bool SweepAndRetryAllocation(int size_in_bytes); // Slow path of AllocateRaw. This function is space-dependent. Returns false // if there is not enough space and the caller has to retry after // collecting garbage. V8_WARN_UNUSED_RESULT virtual bool SlowRefillLinearAllocationArea( int size_in_bytes); // Implementation of SlowAllocateRaw. Returns false if there is not enough // space and the caller has to retry after collecting garbage. V8_WARN_UNUSED_RESULT bool RawSlowRefillLinearAllocationArea( int size_in_bytes); Executability executable_; size_t area_size_; // Accounting information for this space. AllocationStats accounting_stats_; // The space's free list. FreeList free_list_; // Mutex guarding any concurrent access to the space. base::Mutex space_mutex_; friend class IncrementalMarking; friend class MarkCompactCollector; // Used in cctest. friend class heap::HeapTester; }; enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 }; // ----------------------------------------------------------------------------- // SemiSpace in young generation // // A SemiSpace is a contiguous chunk of memory holding page-like memory chunks. // The mark-compact collector uses the memory of the first page in the from // space as a marking stack when tracing live objects. class SemiSpace : public Space { public: typedef PageIterator iterator; static void Swap(SemiSpace* from, SemiSpace* to); SemiSpace(Heap* heap, SemiSpaceId semispace) : Space(heap, NEW_SPACE), current_capacity_(0), maximum_capacity_(0), minimum_capacity_(0), age_mark_(kNullAddress), committed_(false), id_(semispace), current_page_(nullptr), pages_used_(0) {} inline bool Contains(HeapObject* o); inline bool Contains(Object* o); inline bool ContainsSlow(Address a); void SetUp(size_t initial_capacity, size_t maximum_capacity); void TearDown(); bool Commit(); bool Uncommit(); bool is_committed() { return committed_; } // Grow the semispace to the new capacity. The new capacity requested must // be larger than the current capacity and less than the maximum capacity. bool GrowTo(size_t new_capacity); // Shrinks the semispace to the new capacity. The new capacity requested // must be more than the amount of used memory in the semispace and less // than the current capacity. bool ShrinkTo(size_t new_capacity); bool EnsureCurrentCapacity(); Address space_end() { return memory_chunk_list_.back()->area_end(); } // Returns the start address of the first page of the space. Address space_start() { DCHECK_NE(memory_chunk_list_.front(), nullptr); return memory_chunk_list_.front()->area_start(); } Page* current_page() { return current_page_; } int pages_used() { return pages_used_; } // Returns the start address of the current page of the space. Address page_low() { return current_page_->area_start(); } // Returns one past the end address of the current page of the space. Address page_high() { return current_page_->area_end(); } bool AdvancePage() { Page* next_page = current_page_->next_page(); // We cannot expand if we reached the maximum number of pages already. Note // that we need to account for the next page already for this check as we // could potentially fill the whole page after advancing. const bool reached_max_pages = (pages_used_ + 1) == max_pages(); if (next_page == nullptr || reached_max_pages) { return false; } current_page_ = next_page; pages_used_++; return true; } // Resets the space to using the first page. void Reset(); void RemovePage(Page* page); void PrependPage(Page* page); Page* InitializePage(MemoryChunk* chunk, Executability executable); // Age mark accessors. Address age_mark() { return age_mark_; } void set_age_mark(Address mark); // Returns the current capacity of the semispace. size_t current_capacity() { return current_capacity_; } // Returns the maximum capacity of the semispace. size_t maximum_capacity() { return maximum_capacity_; } // Returns the initial capacity of the semispace. size_t minimum_capacity() { return minimum_capacity_; } SemiSpaceId id() { return id_; } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; // If we don't have these here then SemiSpace will be abstract. However // they should never be called: size_t Size() override { UNREACHABLE(); } size_t SizeOfObjects() override { return Size(); } size_t Available() override { UNREACHABLE(); } Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); } Page* last_page() { return reinterpret_cast<Page*>(Space::last_page()); } iterator begin() { return iterator(first_page()); } iterator end() { return iterator(nullptr); } std::unique_ptr<ObjectIterator> GetObjectIterator() override; #ifdef DEBUG void Print() override; // Validate a range of of addresses in a SemiSpace. // The "from" address must be on a page prior to the "to" address, // in the linked page order, or it must be earlier on the same page. static void AssertValidRange(Address from, Address to); #else // Do nothing. inline static void AssertValidRange(Address from, Address to) {} #endif #ifdef VERIFY_HEAP virtual void Verify(); #endif private: void RewindPages(int num_pages); inline int max_pages() { return static_cast<int>(current_capacity_ / Page::kPageSize); } // Copies the flags into the masked positions on all pages in the space. void FixPagesFlags(intptr_t flags, intptr_t flag_mask); // The currently committed space capacity. size_t current_capacity_; // The maximum capacity that can be used by this space. A space cannot grow // beyond that size. size_t maximum_capacity_; // The minimum capacity for the space. A space cannot shrink below this size. size_t minimum_capacity_; // Used to govern object promotion during mark-compact collection. Address age_mark_; bool committed_; SemiSpaceId id_; Page* current_page_; int pages_used_; friend class NewSpace; friend class SemiSpaceIterator; }; // A SemiSpaceIterator is an ObjectIterator that iterates over the active // semispace of the heap's new space. It iterates over the objects in the // semispace from a given start address (defaulting to the bottom of the // semispace) to the top of the semispace. New objects allocated after the // iterator is created are not iterated. class SemiSpaceIterator : public ObjectIterator { public: // Create an iterator over the allocated objects in the given to-space. explicit SemiSpaceIterator(NewSpace* space); inline HeapObject* Next() override; private: void Initialize(Address start, Address end); // The current iteration point. Address current_; // The end of iteration. Address limit_; }; // ----------------------------------------------------------------------------- // The young generation space. // // The new space consists of a contiguous pair of semispaces. It simply // forwards most functions to the appropriate semispace. class NewSpace : public SpaceWithLinearArea { public: typedef PageIterator iterator; NewSpace(Heap* heap, size_t initial_semispace_capacity, size_t max_semispace_capacity); ~NewSpace() override { TearDown(); } inline bool Contains(HeapObject* o); inline bool ContainsSlow(Address a); inline bool Contains(Object* o); // Tears down the space. Heap memory was not allocated by the space, so it // is not deallocated here. void TearDown(); // Flip the pair of spaces. void Flip(); // Grow the capacity of the semispaces. Assumes that they are not at // their maximum capacity. void Grow(); // Shrink the capacity of the semispaces. void Shrink(); // Return the allocated bytes in the active semispace. size_t Size() override { DCHECK_GE(top(), to_space_.page_low()); return to_space_.pages_used() * Page::kAllocatableMemory + static_cast<size_t>(top() - to_space_.page_low()); } size_t SizeOfObjects() override { return Size(); } // Return the allocatable capacity of a semispace. size_t Capacity() { SLOW_DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); return (to_space_.current_capacity() / Page::kPageSize) * Page::kAllocatableMemory; } // Return the current size of a semispace, allocatable and non-allocatable // memory. size_t TotalCapacity() { DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); return to_space_.current_capacity(); } // Committed memory for NewSpace is the committed memory of both semi-spaces // combined. size_t CommittedMemory() override { return from_space_.CommittedMemory() + to_space_.CommittedMemory(); } size_t MaximumCommittedMemory() override { return from_space_.MaximumCommittedMemory() + to_space_.MaximumCommittedMemory(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; // Return the available bytes without growing. size_t Available() override { DCHECK_GE(Capacity(), Size()); return Capacity() - Size(); } size_t ExternalBackingStoreBytes( ExternalBackingStoreType type) const override { DCHECK_EQ(0, from_space_.ExternalBackingStoreBytes(type)); return to_space_.ExternalBackingStoreBytes(type); } size_t AllocatedSinceLastGC() { const Address age_mark = to_space_.age_mark(); DCHECK_NE(age_mark, kNullAddress); DCHECK_NE(top(), kNullAddress); Page* const age_mark_page = Page::FromAllocationAreaAddress(age_mark); Page* const last_page = Page::FromAllocationAreaAddress(top()); Page* current_page = age_mark_page; size_t allocated = 0; if (current_page != last_page) { DCHECK_EQ(current_page, age_mark_page); DCHECK_GE(age_mark_page->area_end(), age_mark); allocated += age_mark_page->area_end() - age_mark; current_page = current_page->next_page(); } else { DCHECK_GE(top(), age_mark); return top() - age_mark; } while (current_page != last_page) { DCHECK_NE(current_page, age_mark_page); allocated += Page::kAllocatableMemory; current_page = current_page->next_page(); } DCHECK_GE(top(), current_page->area_start()); allocated += top() - current_page->area_start(); DCHECK_LE(allocated, Size()); return allocated; } void MovePageFromSpaceToSpace(Page* page) { DCHECK(page->InFromSpace()); from_space_.RemovePage(page); to_space_.PrependPage(page); } bool Rebalance(); // Return the maximum capacity of a semispace. size_t MaximumCapacity() { DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity()); return to_space_.maximum_capacity(); } bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); } // Returns the initial capacity of a semispace. size_t InitialTotalCapacity() { DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity()); return to_space_.minimum_capacity(); } void ResetOriginalTop() { DCHECK_GE(top(), original_top()); DCHECK_LE(top(), original_limit()); original_top_ = top(); } Address original_top() { return original_top_; } Address original_limit() { return original_limit_; } // Return the address of the first allocatable address in the active // semispace. This may be the address where the first object resides. Address first_allocatable_address() { return to_space_.space_start(); } // Get the age mark of the inactive semispace. Address age_mark() { return from_space_.age_mark(); } // Set the age mark in the active semispace. void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult AllocateRawAligned(int size_in_bytes, AllocationAlignment alignment); V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult AllocateRawUnaligned(int size_in_bytes); V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult AllocateRaw(int size_in_bytes, AllocationAlignment alignment); V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawSynchronized( int size_in_bytes, AllocationAlignment alignment); // Reset the allocation pointer to the beginning of the active semispace. void ResetLinearAllocationArea(); // When inline allocation stepping is active, either because of incremental // marking, idle scavenge, or allocation statistics gathering, we 'interrupt' // inline allocation every once in a while. This is done by setting // allocation_info_.limit to be lower than the actual limit and and increasing // it in steps to guarantee that the observers are notified periodically. void UpdateInlineAllocationLimit(size_t size_in_bytes) override; inline bool ToSpaceContainsSlow(Address a); inline bool FromSpaceContainsSlow(Address a); inline bool ToSpaceContains(Object* o); inline bool FromSpaceContains(Object* o); // Try to switch the active semispace to a new, empty, page. // Returns false if this isn't possible or reasonable (i.e., there // are no pages, or the current page is already empty), or true // if successful. bool AddFreshPage(); bool AddFreshPageSynchronized(); #ifdef VERIFY_HEAP // Verify the active semispace. virtual void Verify(Isolate* isolate); #endif #ifdef DEBUG // Print the active semispace. void Print() override { to_space_.Print(); } #endif // Return whether the operation succeeded. bool CommitFromSpaceIfNeeded() { if (from_space_.is_committed()) return true; return from_space_.Commit(); } bool UncommitFromSpace() { if (!from_space_.is_committed()) return true; return from_space_.Uncommit(); } bool IsFromSpaceCommitted() { return from_space_.is_committed(); } SemiSpace* active_space() { return &to_space_; } Page* first_page() { return to_space_.first_page(); } Page* last_page() { return to_space_.last_page(); } iterator begin() { return to_space_.begin(); } iterator end() { return to_space_.end(); } std::unique_ptr<ObjectIterator> GetObjectIterator() override; SemiSpace& from_space() { return from_space_; } SemiSpace& to_space() { return to_space_; } private: // Update linear allocation area to match the current to-space page. void UpdateLinearAllocationArea(); base::Mutex mutex_; // The top and the limit at the time of setting the linear allocation area. // These values can be accessed by background tasks. std::atomic<Address> original_top_; std::atomic<Address> original_limit_; // The semispaces. SemiSpace to_space_; SemiSpace from_space_; VirtualMemory reservation_; bool EnsureAllocation(int size_in_bytes, AllocationAlignment alignment); bool SupportsInlineAllocation() override { return true; } friend class SemiSpaceIterator; }; class PauseAllocationObserversScope { public: explicit PauseAllocationObserversScope(Heap* heap); ~PauseAllocationObserversScope(); private: Heap* heap_; DISALLOW_COPY_AND_ASSIGN(PauseAllocationObserversScope); }; // ----------------------------------------------------------------------------- // Compaction space that is used temporarily during compaction. class V8_EXPORT_PRIVATE CompactionSpace : public PagedSpace { public: CompactionSpace(Heap* heap, AllocationSpace id, Executability executable) : PagedSpace(heap, id, executable) {} bool is_local() override { return true; } protected: // The space is temporary and not included in any snapshots. bool snapshotable() override { return false; } V8_WARN_UNUSED_RESULT bool SweepAndRetryAllocation( int size_in_bytes) override; V8_WARN_UNUSED_RESULT bool SlowRefillLinearAllocationArea( int size_in_bytes) override; }; // A collection of |CompactionSpace|s used by a single compaction task. class CompactionSpaceCollection : public Malloced { public: explicit CompactionSpaceCollection(Heap* heap) : old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE), code_space_(heap, CODE_SPACE, Executability::EXECUTABLE) {} CompactionSpace* Get(AllocationSpace space) { switch (space) { case OLD_SPACE: return &old_space_; case CODE_SPACE: return &code_space_; default: UNREACHABLE(); } UNREACHABLE(); } private: CompactionSpace old_space_; CompactionSpace code_space_; }; // ----------------------------------------------------------------------------- // Old generation regular object space. class OldSpace : public PagedSpace { public: // Creates an old space object. The constructor does not allocate pages // from OS. explicit OldSpace(Heap* heap) : PagedSpace(heap, OLD_SPACE, NOT_EXECUTABLE) {} }; // ----------------------------------------------------------------------------- // Old generation code object space. class CodeSpace : public PagedSpace { public: // Creates an old space object. The constructor does not allocate pages // from OS. explicit CodeSpace(Heap* heap) : PagedSpace(heap, CODE_SPACE, EXECUTABLE) {} }; // For contiguous spaces, top should be in the space (or at the end) and limit // should be the end of the space. #define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \ SLOW_DCHECK((space).page_low() <= (info).top() && \ (info).top() <= (space).page_high() && \ (info).limit() <= (space).page_high()) // ----------------------------------------------------------------------------- // Old space for all map objects class MapSpace : public PagedSpace { public: // Creates a map space object. explicit MapSpace(Heap* heap) : PagedSpace(heap, MAP_SPACE, NOT_EXECUTABLE) {} int RoundSizeDownToObjectAlignment(int size) override { if (base::bits::IsPowerOfTwo(Map::kSize)) { return RoundDown(size, Map::kSize); } else { return (size / Map::kSize) * Map::kSize; } } #ifdef VERIFY_HEAP void VerifyObject(HeapObject* obj) override; #endif }; // ----------------------------------------------------------------------------- // Read Only space for all Immortal Immovable and Immutable objects class ReadOnlySpace : public PagedSpace { public: class WritableScope { public: explicit WritableScope(ReadOnlySpace* space) : space_(space) { space_->MarkAsReadWrite(); } ~WritableScope() { space_->MarkAsReadOnly(); } private: ReadOnlySpace* space_; }; explicit ReadOnlySpace(Heap* heap); bool writable() const { return !is_marked_read_only_; } void ClearStringPaddingIfNeeded(); void MarkAsReadOnly(); private: void MarkAsReadWrite(); void SetPermissionsForPages(PageAllocator::Permission access); bool is_marked_read_only_ = false; // // String padding must be cleared just before serialization and therefore the // string padding in the space will already have been cleared if the space was // deserialized. bool is_string_padding_cleared_; }; // ----------------------------------------------------------------------------- // Large objects ( > kMaxRegularHeapObjectSize ) are allocated and // managed by the large object space. A large object is allocated from OS // heap with extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). // A large object always starts at Page::kObjectStartOffset to a page. // Large objects do not move during garbage collections. class LargeObjectSpace : public Space { public: typedef LargePageIterator iterator; explicit LargeObjectSpace(Heap* heap); LargeObjectSpace(Heap* heap, AllocationSpace id); ~LargeObjectSpace() override { TearDown(); } // Releases internal resources, frees objects in this space. void TearDown(); static size_t ObjectSizeFor(size_t chunk_size) { if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; return chunk_size - Page::kPageSize - Page::kObjectStartOffset; } V8_WARN_UNUSED_RESULT AllocationResult AllocateRaw(int object_size, Executability executable); // Available bytes for objects in this space. size_t Available() override; size_t Size() override { return size_; } size_t SizeOfObjects() override { return objects_size_; } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory() override; int PageCount() { return page_count_; } // Finds an object for a given address, returns a Smi if it is not found. // The function iterates through all objects in this space, may be slow. Object* FindObject(Address a); // Takes the chunk_map_mutex_ and calls FindPage after that. LargePage* FindPageThreadSafe(Address a); // Finds a large object page containing the given address, returns nullptr // if such a page doesn't exist. LargePage* FindPage(Address a); // Clears the marking state of live objects. void ClearMarkingStateOfLiveObjects(); // Frees unmarked objects. void FreeUnmarkedObjects(); void InsertChunkMapEntries(LargePage* page); void RemoveChunkMapEntries(LargePage* page); void RemoveChunkMapEntries(LargePage* page, Address free_start); // Checks whether a heap object is in this space; O(1). bool Contains(HeapObject* obj); // Checks whether an address is in the object area in this space. Iterates // all objects in the space. May be slow. bool ContainsSlow(Address addr) { return FindObject(addr)->IsHeapObject(); } // Checks whether the space is empty. bool IsEmpty() { return first_page() == nullptr; } LargePage* first_page() { return reinterpret_cast<LargePage*>(Space::first_page()); } // Collect code statistics. void CollectCodeStatistics(); iterator begin() { return iterator(first_page()); } iterator end() { return iterator(nullptr); } std::unique_ptr<ObjectIterator> GetObjectIterator() override; base::Mutex* chunk_map_mutex() { return &chunk_map_mutex_; } #ifdef VERIFY_HEAP virtual void Verify(Isolate* isolate); #endif #ifdef DEBUG void Print() override; #endif protected: LargePage* AllocateLargePage(int object_size, Executability executable); private: size_t size_; // allocated bytes int page_count_; // number of chunks size_t objects_size_; // size of objects // The chunk_map_mutex_ has to be used when the chunk map is accessed // concurrently. base::Mutex chunk_map_mutex_; // Page-aligned addresses to their corresponding LargePage. std::unordered_map<Address, LargePage*> chunk_map_; friend class LargeObjectIterator; }; class NewLargeObjectSpace : public LargeObjectSpace { public: explicit NewLargeObjectSpace(Heap* heap); V8_WARN_UNUSED_RESULT AllocationResult AllocateRaw(int object_size); // Available bytes for objects in this space. size_t Available() override; }; class LargeObjectIterator : public ObjectIterator { public: explicit LargeObjectIterator(LargeObjectSpace* space); HeapObject* Next() override; private: LargePage* current_; }; // Iterates over the chunks (pages and large object pages) that can contain // pointers to new space or to evacuation candidates. class MemoryChunkIterator BASE_EMBEDDED { public: inline explicit MemoryChunkIterator(Heap* heap); // Return nullptr when the iterator is done. inline MemoryChunk* next(); private: enum State { kOldSpaceState, kMapState, kCodeState, kLargeObjectState, kFinishedState }; Heap* heap_; State state_; PageIterator old_iterator_; PageIterator code_iterator_; PageIterator map_iterator_; LargePageIterator lo_iterator_; }; } // namespace internal } // namespace v8 #endif // V8_HEAP_SPACES_H_