// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_HEAP_H_ #define V8_HEAP_HEAP_H_ #include <cmath> #include <map> #include <unordered_map> #include <unordered_set> #include <vector> // Clients of this interface shouldn't depend on lots of heap internals. // Do not include anything from src/heap here! #include "include/v8.h" #include "src/accessors.h" #include "src/allocation.h" #include "src/assert-scope.h" #include "src/base/atomic-utils.h" #include "src/external-reference-table.h" #include "src/globals.h" #include "src/heap-symbols.h" #include "src/objects.h" #include "src/objects/fixed-array.h" #include "src/objects/string-table.h" #include "src/roots.h" #include "src/visitors.h" namespace v8 { namespace debug { typedef void (*OutOfMemoryCallback)(void* data); } // namespace debug namespace internal { namespace heap { class HeapTester; class TestMemoryAllocatorScope; } // namespace heap class ObjectBoilerplateDescription; class BytecodeArray; class CodeDataContainer; class DeoptimizationData; class HandlerTable; class IncrementalMarking; class JSArrayBuffer; class ExternalString; using v8::MemoryPressureLevel; // Heap roots that are known to be immortal immovable, for which we can safely // skip write barriers. This list is not complete and has omissions. #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \ V(ArgumentsMarker) \ V(ArgumentsMarkerMap) \ V(ArrayBufferNeuteringProtector) \ V(ArrayIteratorProtector) \ V(BigIntMap) \ V(BlockContextMap) \ V(ObjectBoilerplateDescriptionMap) \ V(BooleanMap) \ V(ByteArrayMap) \ V(BytecodeArrayMap) \ V(CatchContextMap) \ V(CellMap) \ V(CodeMap) \ V(DebugEvaluateContextMap) \ V(DescriptorArrayMap) \ V(EphemeronHashTableMap) \ V(EmptyByteArray) \ V(EmptyDescriptorArray) \ V(EmptyFixedArray) \ V(EmptyFixedFloat32Array) \ V(EmptyFixedFloat64Array) \ V(EmptyFixedInt16Array) \ V(EmptyFixedInt32Array) \ V(EmptyFixedInt8Array) \ V(EmptyFixedUint16Array) \ V(EmptyFixedUint32Array) \ V(EmptyFixedUint8Array) \ V(EmptyFixedUint8ClampedArray) \ V(EmptyOrderedHashMap) \ V(EmptyOrderedHashSet) \ V(EmptyPropertyCell) \ V(EmptyScopeInfo) \ V(EmptyScript) \ V(EmptySloppyArgumentsElements) \ V(EmptySlowElementDictionary) \ V(EvalContextMap) \ V(Exception) \ V(FalseValue) \ V(FixedArrayMap) \ V(FixedCOWArrayMap) \ V(FixedDoubleArrayMap) \ V(ForeignMap) \ V(FreeSpaceMap) \ V(FunctionContextMap) \ V(GlobalDictionaryMap) \ V(GlobalPropertyCellMap) \ V(HashTableMap) \ V(HeapNumberMap) \ V(HoleNanValue) \ V(InfinityValue) \ V(IsConcatSpreadableProtector) \ V(JSMessageObjectMap) \ V(JsConstructEntryCode) \ V(JsEntryCode) \ V(ManyClosuresCell) \ V(ManyClosuresCellMap) \ V(MetaMap) \ V(MinusInfinityValue) \ V(MinusZeroValue) \ V(ModuleContextMap) \ V(ModuleInfoMap) \ V(MutableHeapNumberMap) \ V(NameDictionaryMap) \ V(NanValue) \ V(NativeContextMap) \ V(NoClosuresCellMap) \ V(NoElementsProtector) \ V(NullMap) \ V(NullValue) \ V(NumberDictionaryMap) \ V(OneClosureCellMap) \ V(OnePointerFillerMap) \ V(OptimizedOut) \ V(OrderedHashMapMap) \ V(OrderedHashSetMap) \ V(PreParsedScopeDataMap) \ V(PropertyArrayMap) \ V(ScopeInfoMap) \ V(ScriptContextMap) \ V(ScriptContextTableMap) \ V(SelfReferenceMarker) \ V(SharedFunctionInfoMap) \ V(SimpleNumberDictionaryMap) \ V(SloppyArgumentsElementsMap) \ V(SmallOrderedHashMapMap) \ V(SmallOrderedHashSetMap) \ V(ArraySpeciesProtector) \ V(TypedArraySpeciesProtector) \ V(PromiseSpeciesProtector) \ V(StaleRegister) \ V(StringLengthProtector) \ V(StringTableMap) \ V(SymbolMap) \ V(TerminationException) \ V(TheHoleMap) \ V(TheHoleValue) \ V(TransitionArrayMap) \ V(TrueValue) \ V(TwoPointerFillerMap) \ V(UndefinedMap) \ V(UndefinedValue) \ V(UninitializedMap) \ V(UninitializedValue) \ V(UncompiledDataWithoutPreParsedScopeMap) \ V(UncompiledDataWithPreParsedScopeMap) \ V(WeakFixedArrayMap) \ V(WeakArrayListMap) \ V(WithContextMap) \ V(empty_string) \ PRIVATE_SYMBOL_LIST(V) class AllocationObserver; class ArrayBufferCollector; class ArrayBufferTracker; class ConcurrentMarking; class GCIdleTimeAction; class GCIdleTimeHandler; class GCIdleTimeHeapState; class GCTracer; class HeapController; class HeapObjectAllocationTracker; class HeapObjectsFilter; class HeapStats; class HistogramTimer; class Isolate; class LocalEmbedderHeapTracer; class MemoryAllocator; class MemoryReducer; class MinorMarkCompactCollector; class ObjectIterator; class ObjectStats; class Page; class PagedSpace; class RootVisitor; class ScavengeJob; class Scavenger; class Space; class StoreBuffer; class StressScavengeObserver; class TracePossibleWrapperReporter; class WeakObjectRetainer; typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to); enum ArrayStorageAllocationMode { DONT_INITIALIZE_ARRAY_ELEMENTS, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE }; enum class ClearRecordedSlots { kYes, kNo }; enum class ClearFreedMemoryMode { kClearFreedMemory, kDontClearFreedMemory }; enum class FixedArrayVisitationMode { kRegular, kIncremental }; enum class TraceRetainingPathMode { kEnabled, kDisabled }; enum class RetainingPathOption { kDefault, kTrackEphemeronPath }; enum class GarbageCollectionReason { kUnknown = 0, kAllocationFailure = 1, kAllocationLimit = 2, kContextDisposal = 3, kCountersExtension = 4, kDebugger = 5, kDeserializer = 6, kExternalMemoryPressure = 7, kFinalizeMarkingViaStackGuard = 8, kFinalizeMarkingViaTask = 9, kFullHashtable = 10, kHeapProfiler = 11, kIdleTask = 12, kLastResort = 13, kLowMemoryNotification = 14, kMakeHeapIterable = 15, kMemoryPressure = 16, kMemoryReducer = 17, kRuntime = 18, kSamplingProfiler = 19, kSnapshotCreator = 20, kTesting = 21, kExternalFinalize = 22 // If you add new items here, then update the incremental_marking_reason, // mark_compact_reason, and scavenge_reason counters in counters.h. // Also update src/tools/metrics/histograms/histograms.xml in chromium. }; enum class YoungGenerationHandling { kRegularScavenge = 0, kFastPromotionDuringScavenge = 1, // Histogram::InspectConstructionArguments in chromium requires us to have at // least three buckets. kUnusedBucket = 2, // If you add new items here, then update the young_generation_handling in // counters.h. // Also update src/tools/metrics/histograms/histograms.xml in chromium. }; class AllocationResult { public: static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) { return AllocationResult(space); } // Implicit constructor from Object*. AllocationResult(Object* object) // NOLINT : object_(object) { // AllocationResults can't return Smis, which are used to represent // failure and the space to retry in. CHECK(!object->IsSmi()); } AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {} inline bool IsRetry() { return object_->IsSmi(); } inline HeapObject* ToObjectChecked(); inline AllocationSpace RetrySpace(); template <typename T> bool To(T** obj) { if (IsRetry()) return false; *obj = T::cast(object_); return true; } private: explicit AllocationResult(AllocationSpace space) : object_(Smi::FromInt(static_cast<int>(space))) {} Object* object_; }; STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize); #ifdef DEBUG struct CommentStatistic { const char* comment; int size; int count; void Clear() { comment = nullptr; size = 0; count = 0; } // Must be small, since an iteration is used for lookup. static const int kMaxComments = 64; }; #endif class Heap { public: // Declare all the root indices. This defines the root list order. // clang-format off enum RootListIndex { #define DECL(type, name, camel_name) k##camel_name##RootIndex, STRONG_ROOT_LIST(DECL) #undef DECL #define DECL(name, str) k##name##RootIndex, INTERNALIZED_STRING_LIST(DECL) #undef DECL #define DECL(name) k##name##RootIndex, PRIVATE_SYMBOL_LIST(DECL) #undef DECL #define DECL(name, description) k##name##RootIndex, PUBLIC_SYMBOL_LIST(DECL) WELL_KNOWN_SYMBOL_LIST(DECL) #undef DECL #define DECL(accessor_name, AccessorName) k##AccessorName##AccessorRootIndex, ACCESSOR_INFO_LIST(DECL) #undef DECL #define DECL(NAME, Name, name) k##Name##MapRootIndex, STRUCT_LIST(DECL) #undef DECL #define DECL(NAME, Name, Size, name) k##Name##Size##MapRootIndex, ALLOCATION_SITE_LIST(DECL) #undef DECL #define DECL(NAME, Name, Size, name) k##Name##Size##MapRootIndex, DATA_HANDLER_LIST(DECL) #undef DECL kStringTableRootIndex, #define DECL(type, name, camel_name) k##camel_name##RootIndex, SMI_ROOT_LIST(DECL) #undef DECL kRootListLength, kStrongRootListLength = kStringTableRootIndex, kSmiRootsStart = kStringTableRootIndex + 1 }; // clang-format on enum FindMementoMode { kForRuntime, kForGC }; enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT, MINOR_MARK_COMPACT, TEAR_DOWN }; using PretenuringFeedbackMap = std::unordered_map<AllocationSite*, size_t>; // Taking this mutex prevents the GC from entering a phase that relocates // object references. base::Mutex* relocation_mutex() { return &relocation_mutex_; } // Support for partial snapshots. After calling this we have a linear // space to write objects in each space. struct Chunk { uint32_t size; Address start; Address end; }; typedef std::vector<Chunk> Reservation; static const int kInitalOldGenerationLimitFactor = 2; #if V8_OS_ANDROID // Don't apply pointer multiplier on Android since it has no swap space and // should instead adapt it's heap size based on available physical memory. static const int kPointerMultiplier = 1; #else static const int kPointerMultiplier = i::kPointerSize / 4; #endif // Semi-space size needs to be a multiple of page size. static const size_t kMinSemiSpaceSizeInKB = 1 * kPointerMultiplier * ((1 << kPageSizeBits) / KB); static const size_t kMaxSemiSpaceSizeInKB = 16 * kPointerMultiplier * ((1 << kPageSizeBits) / KB); static const int kTraceRingBufferSize = 512; static const int kStacktraceBufferSize = 512; static const int kNoGCFlags = 0; static const int kReduceMemoryFootprintMask = 1; static const int kAbortIncrementalMarkingMask = 2; static const int kFinalizeIncrementalMarkingMask = 4; // Making the heap iterable requires us to abort incremental marking. static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask; // The roots that have an index less than this are always in old space. static const int kOldSpaceRoots = 0x20; // The minimum size of a HeapObject on the heap. static const int kMinObjectSizeInWords = 2; static const int kMinPromotedPercentForFastPromotionMode = 90; STATIC_ASSERT(kUndefinedValueRootIndex == Internals::kUndefinedValueRootIndex); STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex); STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex); STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex); STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex); STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex); // Calculates the maximum amount of filler that could be required by the // given alignment. static int GetMaximumFillToAlign(AllocationAlignment alignment); // Calculates the actual amount of filler required for a given address at the // given alignment. static int GetFillToAlign(Address address, AllocationAlignment alignment); void FatalProcessOutOfMemory(const char* location); V8_EXPORT_PRIVATE static bool RootIsImmortalImmovable(int root_index); // Checks whether the space is valid. static bool IsValidAllocationSpace(AllocationSpace space); // Generated code can embed direct references to non-writable roots if // they are in new space. static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index); // Zapping is needed for verify heap, and always done in debug builds. static inline bool ShouldZapGarbage() { #ifdef DEBUG return true; #else #ifdef VERIFY_HEAP return FLAG_verify_heap; #else return false; #endif #endif } static uintptr_t ZapValue() { return FLAG_clear_free_memory ? kClearedFreeMemoryValue : kZapValue; } static inline bool IsYoungGenerationCollector(GarbageCollector collector) { return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR; } static inline GarbageCollector YoungGenerationCollector() { #if ENABLE_MINOR_MC return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER; #else return SCAVENGER; #endif // ENABLE_MINOR_MC } static inline const char* CollectorName(GarbageCollector collector) { switch (collector) { case SCAVENGER: return "Scavenger"; case MARK_COMPACTOR: return "Mark-Compact"; case MINOR_MARK_COMPACTOR: return "Minor Mark-Compact"; } return "Unknown collector"; } // Copy block of memory from src to dst. Size of block should be aligned // by pointer size. static inline void CopyBlock(Address dst, Address src, int byte_size); V8_EXPORT_PRIVATE static void WriteBarrierForCodeSlow(Code* host); V8_EXPORT_PRIVATE static void GenerationalBarrierSlow(HeapObject* object, Address slot, HeapObject* value); V8_EXPORT_PRIVATE static void GenerationalBarrierForElementsSlow( Heap* heap, FixedArray* array, int offset, int length); V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow( Code* host, RelocInfo* rinfo, HeapObject* value); V8_EXPORT_PRIVATE static void MarkingBarrierSlow(HeapObject* object, Address slot, HeapObject* value); V8_EXPORT_PRIVATE static void MarkingBarrierForElementsSlow( Heap* heap, HeapObject* object); V8_EXPORT_PRIVATE static void MarkingBarrierForCodeSlow(Code* host, RelocInfo* rinfo, HeapObject* value); V8_EXPORT_PRIVATE static bool PageFlagsAreConsistent(HeapObject* object); // Notifies the heap that is ok to start marking or other activities that // should not happen during deserialization. void NotifyDeserializationComplete(); inline Address* NewSpaceAllocationTopAddress(); inline Address* NewSpaceAllocationLimitAddress(); inline Address* OldSpaceAllocationTopAddress(); inline Address* OldSpaceAllocationLimitAddress(); // FreeSpace objects have a null map after deserialization. Update the map. void RepairFreeListsAfterDeserialization(); // Move len elements within a given array from src_index index to dst_index // index. void MoveElements(FixedArray* array, int dst_index, int src_index, int len, WriteBarrierMode mode = UPDATE_WRITE_BARRIER); // Initialize a filler object to keep the ability to iterate over the heap // when introducing gaps within pages. If slots could have been recorded in // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise, // pass ClearRecordedSlots::kNo. If the memory after the object header of // the filler should be cleared, pass in kClearFreedMemory. The default is // kDontClearFreedMemory. V8_EXPORT_PRIVATE HeapObject* CreateFillerObjectAt( Address addr, int size, ClearRecordedSlots clear_slots_mode, ClearFreedMemoryMode clear_memory_mode = ClearFreedMemoryMode::kDontClearFreedMemory); template <typename T> void CreateFillerForArray(T* object, int elements_to_trim, int bytes_to_trim); bool CanMoveObjectStart(HeapObject* object); static bool IsImmovable(HeapObject* object); // Trim the given array from the left. Note that this relocates the object // start and hence is only valid if there is only a single reference to it. FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); // Trim the given array from the right. void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); void RightTrimWeakFixedArray(WeakFixedArray* obj, int elements_to_trim); // Converts the given boolean condition to JavaScript boolean value. inline Oddball* ToBoolean(bool condition); // Notify the heap that a context has been disposed. int NotifyContextDisposed(bool dependant_context); void set_native_contexts_list(Object* object) { native_contexts_list_ = object; } Object* native_contexts_list() const { return native_contexts_list_; } void set_allocation_sites_list(Object* object) { allocation_sites_list_ = object; } Object* allocation_sites_list() { return allocation_sites_list_; } // Used in CreateAllocationSiteStub and the (de)serializer. Object** allocation_sites_list_address() { return &allocation_sites_list_; } // Traverse all the allocaions_sites [nested_site and weak_next] in the list // and foreach call the visitor void ForeachAllocationSite(Object* list, std::function<void(AllocationSite*)> visitor); // Number of mark-sweeps. int ms_count() const { return ms_count_; } // Checks whether the given object is allowed to be migrated from it's // current space into the given destination space. Used for debugging. bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest); void CheckHandleCount(); // Number of "runtime allocations" done so far. uint32_t allocations_count() { return allocations_count_; } // Print short heap statistics. void PrintShortHeapStatistics(); bool write_protect_code_memory() const { return write_protect_code_memory_; } uintptr_t code_space_memory_modification_scope_depth() { return code_space_memory_modification_scope_depth_; } void increment_code_space_memory_modification_scope_depth() { code_space_memory_modification_scope_depth_++; } void decrement_code_space_memory_modification_scope_depth() { code_space_memory_modification_scope_depth_--; } void UnprotectAndRegisterMemoryChunk(MemoryChunk* chunk); void UnprotectAndRegisterMemoryChunk(HeapObject* object); void UnregisterUnprotectedMemoryChunk(MemoryChunk* chunk); V8_EXPORT_PRIVATE void ProtectUnprotectedMemoryChunks(); void EnableUnprotectedMemoryChunksRegistry() { unprotected_memory_chunks_registry_enabled_ = true; } void DisableUnprotectedMemoryChunksRegistry() { unprotected_memory_chunks_registry_enabled_ = false; } bool unprotected_memory_chunks_registry_enabled() { return unprotected_memory_chunks_registry_enabled_; } inline HeapState gc_state() { return gc_state_; } void SetGCState(HeapState state); bool IsTearingDown() const { return gc_state_ == TEAR_DOWN; } inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; } // If an object has an AllocationMemento trailing it, return it, otherwise // return nullptr; template <FindMementoMode mode> inline AllocationMemento* FindAllocationMemento(Map* map, HeapObject* object); // Returns false if not able to reserve. bool ReserveSpace(Reservation* reservations, std::vector<Address>* maps); // // Support for the API. // void CreateApiObjects(); // Implements the corresponding V8 API function. bool IdleNotification(double deadline_in_seconds); bool IdleNotification(int idle_time_in_ms); void MemoryPressureNotification(MemoryPressureLevel level, bool is_isolate_locked); void CheckMemoryPressure(); void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data); void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback, size_t heap_limit); double MonotonicallyIncreasingTimeInMs(); void RecordStats(HeapStats* stats, bool take_snapshot = false); // Check new space expansion criteria and expand semispaces if it was hit. void CheckNewSpaceExpansionCriteria(); void VisitExternalResources(v8::ExternalResourceVisitor* visitor); // An object should be promoted if the object has survived a // scavenge operation. inline bool ShouldBePromoted(Address old_address); void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature); inline uint64_t HashSeed(); inline int NextScriptId(); inline int NextDebuggingId(); inline int GetNextTemplateSerialNumber(); void SetSerializedObjects(FixedArray* objects); void SetSerializedGlobalProxySizes(FixedArray* sizes); // For post mortem debugging. void RememberUnmappedPage(Address page, bool compacted); int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; } int64_t external_memory() { return external_memory_; } void update_external_memory(int64_t delta) { external_memory_ += delta; } void update_external_memory_concurrently_freed(intptr_t freed) { external_memory_concurrently_freed_ += freed; } void account_external_memory_concurrently_freed() { external_memory_ -= external_memory_concurrently_freed_; external_memory_concurrently_freed_ = 0; } void ProcessMovedExternalString(Page* old_page, Page* new_page, ExternalString* string); void CompactWeakArrayLists(PretenureFlag pretenure); void AddRetainedMap(Handle<Map> map); // This event is triggered after successful allocation of a new object made // by runtime. Allocations of target space for object evacuation do not // trigger the event. In order to track ALL allocations one must turn off // FLAG_inline_new. inline void OnAllocationEvent(HeapObject* object, int size_in_bytes); // This event is triggered after object is moved to a new place. inline void OnMoveEvent(HeapObject* target, HeapObject* source, int size_in_bytes); inline bool CanAllocateInReadOnlySpace(); bool deserialization_complete() const { return deserialization_complete_; } bool HasLowAllocationRate(); bool HasHighFragmentation(); bool HasHighFragmentation(size_t used, size_t committed); void ActivateMemoryReducerIfNeeded(); bool ShouldOptimizeForMemoryUsage(); bool HighMemoryPressure() { return memory_pressure_level_ != MemoryPressureLevel::kNone; } void RestoreHeapLimit(size_t heap_limit) { // Do not set the limit lower than the live size + some slack. size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4; max_old_generation_size_ = Min(max_old_generation_size_, Max(heap_limit, min_limit)); } // =========================================================================== // Initialization. =========================================================== // =========================================================================== // Configure heap sizes // max_semi_space_size_in_kb: maximum semi-space size in KB // max_old_generation_size_in_mb: maximum old generation size in MB // code_range_size_in_mb: code range size in MB void ConfigureHeap(size_t max_semi_space_size_in_kb, size_t max_old_generation_size_in_mb, size_t code_range_size_in_mb); void ConfigureHeapDefault(); // Prepares the heap, setting up memory areas that are needed in the isolate // without actually creating any objects. void SetUp(); // (Re-)Initialize hash seed from flag or RNG. void InitializeHashSeed(); // Bootstraps the object heap with the core set of objects required to run. // Returns whether it succeeded. bool CreateHeapObjects(); // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr. void CreateObjectStats(); // Sets the TearDown state, so no new GC tasks get posted. void StartTearDown(); // Destroys all memory allocated by the heap. void TearDown(); // Returns whether SetUp has been called. bool HasBeenSetUp(); // =========================================================================== // Getters for spaces. ======================================================= // =========================================================================== inline Address NewSpaceTop(); NewSpace* new_space() { return new_space_; } OldSpace* old_space() { return old_space_; } CodeSpace* code_space() { return code_space_; } MapSpace* map_space() { return map_space_; } LargeObjectSpace* lo_space() { return lo_space_; } NewLargeObjectSpace* new_lo_space() { return new_lo_space_; } ReadOnlySpace* read_only_space() { return read_only_space_; } inline PagedSpace* paged_space(int idx); inline Space* space(int idx); // Returns name of the space. const char* GetSpaceName(int idx); // =========================================================================== // Getters to other components. ============================================== // =========================================================================== GCTracer* tracer() { return tracer_; } MemoryAllocator* memory_allocator() { return memory_allocator_; } inline Isolate* isolate(); MarkCompactCollector* mark_compact_collector() { return mark_compact_collector_; } MinorMarkCompactCollector* minor_mark_compact_collector() { return minor_mark_compact_collector_; } ArrayBufferCollector* array_buffer_collector() { return array_buffer_collector_; } // =========================================================================== // Root set access. ========================================================== // =========================================================================== friend class ReadOnlyRoots; public: // Heap root getters. #define ROOT_ACCESSOR(type, name, camel_name) inline type* name(); MUTABLE_ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR #define DATA_HANDLER_MAP_ACCESSOR(NAME, Name, Size, name) \ inline Map* name##_map(); DATA_HANDLER_LIST(DATA_HANDLER_MAP_ACCESSOR) #undef DATA_HANDLER_MAP_ACCESSOR #define ACCESSOR_INFO_ACCESSOR(accessor_name, AccessorName) \ inline AccessorInfo* accessor_name##_accessor(); ACCESSOR_INFO_LIST(ACCESSOR_INFO_ACCESSOR) #undef ACCESSOR_INFO_ACCESSOR Object* root(RootListIndex index) { return roots_[index]; } Handle<Object> root_handle(RootListIndex index) { return Handle<Object>(&roots_[index]); } template <typename T> bool IsRootHandle(Handle<T> handle, RootListIndex* index) const { Object** const handle_location = bit_cast<Object**>(handle.address()); if (handle_location >= &roots_[kRootListLength]) return false; if (handle_location < &roots_[0]) return false; *index = static_cast<RootListIndex>(handle_location - &roots_[0]); return true; } // Generated code can embed this address to get access to the roots. Object** roots_array_start() { return roots_; } ExternalReferenceTable* external_reference_table() { DCHECK(external_reference_table_.is_initialized()); return &external_reference_table_; } static constexpr int roots_to_external_reference_table_offset() { return kRootsExternalReferenceTableOffset; } static constexpr int roots_to_builtins_offset() { return kRootsBuiltinsOffset; } static constexpr int root_register_addressable_end_offset() { return kRootRegisterAddressableEndOffset; } Address root_register_addressable_end() { return reinterpret_cast<Address>(roots_array_start()) + kRootRegisterAddressableEndOffset; } // Sets the stub_cache_ (only used when expanding the dictionary). void SetRootCodeStubs(SimpleNumberDictionary* value); void SetRootMaterializedObjects(FixedArray* objects) { roots_[kMaterializedObjectsRootIndex] = objects; } void SetRootScriptList(Object* value) { roots_[kScriptListRootIndex] = value; } void SetRootStringTable(StringTable* value) { roots_[kStringTableRootIndex] = value; } void SetRootNoScriptSharedFunctionInfos(Object* value) { roots_[kNoScriptSharedFunctionInfosRootIndex] = value; } void SetMessageListeners(TemplateList* value) { roots_[kMessageListenersRootIndex] = value; } // Set the stack limit in the roots_ array. Some architectures generate // code that looks here, because it is faster than loading from the static // jslimit_/real_jslimit_ variable in the StackGuard. void SetStackLimits(); // The stack limit is thread-dependent. To be able to reproduce the same // snapshot blob, we need to reset it before serializing. void ClearStackLimits(); // Generated code can treat direct references to this root as constant. bool RootCanBeTreatedAsConstant(RootListIndex root_index); Map* MapForFixedTypedArray(ExternalArrayType array_type); Map* MapForFixedTypedArray(ElementsKind elements_kind); FixedTypedArrayBase* EmptyFixedTypedArrayForMap(const Map* map); void RegisterStrongRoots(Object** start, Object** end); void UnregisterStrongRoots(Object** start); bool IsDeserializeLazyHandler(Code* code); void SetDeserializeLazyHandler(Code* code); void SetDeserializeLazyHandlerWide(Code* code); void SetDeserializeLazyHandlerExtraWide(Code* code); void SetBuiltinsConstantsTable(FixedArray* cache); // =========================================================================== // Inline allocation. ======================================================== // =========================================================================== // Indicates whether inline bump-pointer allocation has been disabled. bool inline_allocation_disabled() { return inline_allocation_disabled_; } // Switch whether inline bump-pointer allocation should be used. void EnableInlineAllocation(); void DisableInlineAllocation(); // =========================================================================== // Methods triggering GCs. =================================================== // =========================================================================== // Performs garbage collection operation. // Returns whether there is a chance that another major GC could // collect more garbage. V8_EXPORT_PRIVATE bool CollectGarbage( AllocationSpace space, GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is // non-zero, then the slower precise sweeper is used, which leaves the heap // in a state where we can iterate over the heap visiting all objects. V8_EXPORT_PRIVATE void CollectAllGarbage( int flags, GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Last hope GC, should try to squeeze as much as possible. void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason); // Reports and external memory pressure event, either performs a major GC or // completes incremental marking in order to free external resources. void ReportExternalMemoryPressure(); typedef v8::Isolate::GetExternallyAllocatedMemoryInBytesCallback GetExternallyAllocatedMemoryInBytesCallback; void SetGetExternallyAllocatedMemoryInBytesCallback( GetExternallyAllocatedMemoryInBytesCallback callback) { external_memory_callback_ = callback; } // Invoked when GC was requested via the stack guard. void HandleGCRequest(); // =========================================================================== // Builtins. ================================================================= // =========================================================================== Code* builtin(int index); Address builtin_address(int index); void set_builtin(int index, HeapObject* builtin); // =========================================================================== // Iterators. ================================================================ // =========================================================================== void IterateRoots(RootVisitor* v, VisitMode mode); void IterateStrongRoots(RootVisitor* v, VisitMode mode); // Iterates over entries in the smi roots list. Only interesting to the // serializer/deserializer, since GC does not care about smis. void IterateSmiRoots(RootVisitor* v); // Iterates over weak string tables. void IterateWeakRoots(RootVisitor* v, VisitMode mode); // Iterates over weak global handles. void IterateWeakGlobalHandles(RootVisitor* v); // Iterates over builtins. void IterateBuiltins(RootVisitor* v); // =========================================================================== // Store buffer API. ========================================================= // =========================================================================== // Used for query incremental marking status in generated code. Address* IsMarkingFlagAddress() { return reinterpret_cast<Address*>(&is_marking_flag_); } void SetIsMarkingFlag(uint8_t flag) { is_marking_flag_ = flag; } Address* store_buffer_top_address(); static intptr_t store_buffer_mask_constant(); static Address store_buffer_overflow_function_address(); void ClearRecordedSlot(HeapObject* object, Object** slot); void ClearRecordedSlotRange(Address start, Address end); bool HasRecordedSlot(HeapObject* object, Object** slot); // =========================================================================== // Incremental marking API. ================================================== // =========================================================================== int GCFlagsForIncrementalMarking() { return ShouldOptimizeForMemoryUsage() ? kReduceMemoryFootprintMask : kNoGCFlags; } // Start incremental marking and ensure that idle time handler can perform // incremental steps. void StartIdleIncrementalMarking( GarbageCollectionReason gc_reason, GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); // Starts incremental marking assuming incremental marking is currently // stopped. void StartIncrementalMarking( int gc_flags, GarbageCollectionReason gc_reason, GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); void StartIncrementalMarkingIfAllocationLimitIsReached( int gc_flags, GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags); void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason); // Synchronously finalizes incremental marking. void FinalizeIncrementalMarkingAtomically(GarbageCollectionReason gc_reason); void RegisterDeserializedObjectsForBlackAllocation( Reservation* reservations, const std::vector<HeapObject*>& large_objects, const std::vector<Address>& maps); IncrementalMarking* incremental_marking() { return incremental_marking_; } // =========================================================================== // Concurrent marking API. =================================================== // =========================================================================== ConcurrentMarking* concurrent_marking() { return concurrent_marking_; } // The runtime uses this function to notify potentially unsafe object layout // changes that require special synchronization with the concurrent marker. // The old size is the size of the object before layout change. void NotifyObjectLayoutChange(HeapObject* object, int old_size, const DisallowHeapAllocation&); #ifdef VERIFY_HEAP // This function checks that either // - the map transition is safe, // - or it was communicated to GC using NotifyObjectLayoutChange. void VerifyObjectLayoutChange(HeapObject* object, Map* new_map); #endif // =========================================================================== // Deoptimization support API. =============================================== // =========================================================================== // Setters for code offsets of well-known deoptimization targets. void SetArgumentsAdaptorDeoptPCOffset(int pc_offset); void SetConstructStubCreateDeoptPCOffset(int pc_offset); void SetConstructStubInvokeDeoptPCOffset(int pc_offset); void SetInterpreterEntryReturnPCOffset(int pc_offset); // Invalidates references in the given {code} object that are directly // embedded within the instruction stream. Mutates write-protected code. void InvalidateCodeEmbeddedObjects(Code* code); // Invalidates references in the given {code} object that are referenced // transitively from the deoptimization data. Mutates write-protected code. void InvalidateCodeDeoptimizationData(Code* code); void DeoptMarkedAllocationSites(); bool DeoptMaybeTenuredAllocationSites(); // =========================================================================== // Embedder heap tracer support. ============================================= // =========================================================================== LocalEmbedderHeapTracer* local_embedder_heap_tracer() { return local_embedder_heap_tracer_; } void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer); void TracePossibleWrapper(JSObject* js_object); void RegisterExternallyReferencedObject(Object** object); void SetEmbedderStackStateForNextFinalizaton( EmbedderHeapTracer::EmbedderStackState stack_state); // =========================================================================== // External string table API. ================================================ // =========================================================================== // Registers an external string. inline void RegisterExternalString(String* string); // Called when a string's resource is changed. The size of the payload is sent // as argument of the method. inline void UpdateExternalString(String* string, size_t old_payload, size_t new_payload); // Finalizes an external string by deleting the associated external // data and clearing the resource pointer. inline void FinalizeExternalString(String* string); // =========================================================================== // Methods checking/returning the space of a given object/address. =========== // =========================================================================== // Returns whether the object resides in new space. static inline bool InNewSpace(Object* object); static inline bool InNewSpace(MaybeObject* object); static inline bool InNewSpace(HeapObject* heap_object); static inline bool InFromSpace(Object* object); static inline bool InFromSpace(MaybeObject* object); static inline bool InFromSpace(HeapObject* heap_object); static inline bool InToSpace(Object* object); static inline bool InToSpace(MaybeObject* object); static inline bool InToSpace(HeapObject* heap_object); // Returns whether the object resides in old space. inline bool InOldSpace(Object* object); // Returns whether the object resides in read-only space. inline bool InReadOnlySpace(Object* object); // Checks whether an address/object in the heap (including auxiliary // area and unused area). bool Contains(HeapObject* value); // Checks whether an address/object in a space. // Currently used by tests, serialization and heap verification only. bool InSpace(HeapObject* value, AllocationSpace space); // Slow methods that can be used for verification as they can also be used // with off-heap Addresses. bool ContainsSlow(Address addr); bool InSpaceSlow(Address addr, AllocationSpace space); inline bool InNewSpaceSlow(Address address); inline bool InOldSpaceSlow(Address address); // Find the heap which owns this HeapObject. Should never be called for // objects in RO space. static inline Heap* FromWritableHeapObject(const HeapObject* obj); // =========================================================================== // Object statistics tracking. =============================================== // =========================================================================== // Returns the number of buckets used by object statistics tracking during a // major GC. Note that the following methods fail gracefully when the bounds // are exceeded though. size_t NumberOfTrackedHeapObjectTypes(); // Returns object statistics about count and size at the last major GC. // Objects are being grouped into buckets that roughly resemble existing // instance types. size_t ObjectCountAtLastGC(size_t index); size_t ObjectSizeAtLastGC(size_t index); // Retrieves names of buckets used by object statistics tracking. bool GetObjectTypeName(size_t index, const char** object_type, const char** object_sub_type); // The total number of native contexts object on the heap. size_t NumberOfNativeContexts(); // The total number of native contexts that were detached but were not // garbage collected yet. size_t NumberOfDetachedContexts(); // =========================================================================== // Code statistics. ========================================================== // =========================================================================== // Collect code (Code and BytecodeArray objects) statistics. void CollectCodeStatistics(); // =========================================================================== // GC statistics. ============================================================ // =========================================================================== // Returns the maximum amount of memory reserved for the heap. size_t MaxReserved(); size_t MaxSemiSpaceSize() { return max_semi_space_size_; } size_t InitialSemiSpaceSize() { return initial_semispace_size_; } size_t MaxOldGenerationSize() { return max_old_generation_size_; } V8_EXPORT_PRIVATE static size_t ComputeMaxOldGenerationSize( uint64_t physical_memory); static size_t ComputeMaxSemiSpaceSize(uint64_t physical_memory) { const uint64_t min_physical_memory = 512 * MB; const uint64_t max_physical_memory = 3 * static_cast<uint64_t>(GB); uint64_t capped_physical_memory = Max(Min(physical_memory, max_physical_memory), min_physical_memory); // linearly scale max semi-space size: (X-A)/(B-A)*(D-C)+C size_t semi_space_size_in_kb = static_cast<size_t>(((capped_physical_memory - min_physical_memory) * (kMaxSemiSpaceSizeInKB - kMinSemiSpaceSizeInKB)) / (max_physical_memory - min_physical_memory) + kMinSemiSpaceSizeInKB); return RoundUp(semi_space_size_in_kb, (1 << kPageSizeBits) / KB); } // Returns the capacity of the heap in bytes w/o growing. Heap grows when // more spaces are needed until it reaches the limit. size_t Capacity(); // Returns the capacity of the old generation. size_t OldGenerationCapacity(); // Returns the amount of memory currently committed for the heap and memory // held alive by the unmapper. size_t CommittedMemoryOfHeapAndUnmapper(); // Returns the amount of memory currently committed for the heap. size_t CommittedMemory(); // Returns the amount of memory currently committed for the old space. size_t CommittedOldGenerationMemory(); // Returns the amount of executable memory currently committed for the heap. size_t CommittedMemoryExecutable(); // Returns the amount of phyical memory currently committed for the heap. size_t CommittedPhysicalMemory(); // Returns the maximum amount of memory ever committed for the heap. size_t MaximumCommittedMemory() { return maximum_committed_; } // Updates the maximum committed memory for the heap. Should be called // whenever a space grows. void UpdateMaximumCommitted(); // Returns the available bytes in space w/o growing. // Heap doesn't guarantee that it can allocate an object that requires // all available bytes. Check MaxHeapObjectSize() instead. size_t Available(); // Returns of size of all objects residing in the heap. size_t SizeOfObjects(); void UpdateSurvivalStatistics(int start_new_space_size); inline void IncrementPromotedObjectsSize(size_t object_size) { promoted_objects_size_ += object_size; } inline size_t promoted_objects_size() { return promoted_objects_size_; } inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) { semi_space_copied_object_size_ += object_size; } inline size_t semi_space_copied_object_size() { return semi_space_copied_object_size_; } inline size_t SurvivedNewSpaceObjectSize() { return promoted_objects_size_ + semi_space_copied_object_size_; } inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; } inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; } inline void IncrementNodesPromoted() { nodes_promoted_++; } inline void IncrementYoungSurvivorsCounter(size_t survived) { survived_last_scavenge_ = survived; survived_since_last_expansion_ += survived; } inline uint64_t OldGenerationObjectsAndPromotedExternalMemorySize() { return OldGenerationSizeOfObjects() + PromotedExternalMemorySize(); } inline void UpdateNewSpaceAllocationCounter(); inline size_t NewSpaceAllocationCounter(); // This should be used only for testing. void set_new_space_allocation_counter(size_t new_value) { new_space_allocation_counter_ = new_value; } void UpdateOldGenerationAllocationCounter() { old_generation_allocation_counter_at_last_gc_ = OldGenerationAllocationCounter(); old_generation_size_at_last_gc_ = 0; } size_t OldGenerationAllocationCounter() { return old_generation_allocation_counter_at_last_gc_ + PromotedSinceLastGC(); } // This should be used only for testing. void set_old_generation_allocation_counter_at_last_gc(size_t new_value) { old_generation_allocation_counter_at_last_gc_ = new_value; } size_t PromotedSinceLastGC() { size_t old_generation_size = OldGenerationSizeOfObjects(); DCHECK_GE(old_generation_size, old_generation_size_at_last_gc_); return old_generation_size - old_generation_size_at_last_gc_; } // This is called by the sweeper when it discovers more free space // than expected at the end of the preceding GC. void NotifyRefinedOldGenerationSize(size_t decreased_bytes) { if (old_generation_size_at_last_gc_ != 0) { // OldGenerationSizeOfObjects() is now smaller by |decreased_bytes|. // Adjust old_generation_size_at_last_gc_ too, so that PromotedSinceLastGC // continues to increase monotonically, rather than decreasing here. DCHECK_GE(old_generation_size_at_last_gc_, decreased_bytes); old_generation_size_at_last_gc_ -= decreased_bytes; } } int gc_count() const { return gc_count_; } // Returns the size of objects residing in non-new spaces. // Excludes external memory held by those objects. size_t OldGenerationSizeOfObjects(); // =========================================================================== // Prologue/epilogue callback methods.======================================== // =========================================================================== void AddGCPrologueCallback(v8::Isolate::GCCallbackWithData callback, GCType gc_type_filter, void* data); void RemoveGCPrologueCallback(v8::Isolate::GCCallbackWithData callback, void* data); void AddGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback, GCType gc_type_filter, void* data); void RemoveGCEpilogueCallback(v8::Isolate::GCCallbackWithData callback, void* data); void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags); void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags); // =========================================================================== // Allocation methods. ======================================================= // =========================================================================== // Creates a filler object and returns a heap object immediately after it. V8_WARN_UNUSED_RESULT HeapObject* PrecedeWithFiller(HeapObject* object, int filler_size); // Creates a filler object if needed for alignment and returns a heap object // immediately after it. If any space is left after the returned object, // another filler object is created so the over allocated memory is iterable. V8_WARN_UNUSED_RESULT HeapObject* AlignWithFiller( HeapObject* object, int object_size, int allocation_size, AllocationAlignment alignment); // =========================================================================== // ArrayBuffer tracking. ===================================================== // =========================================================================== // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external // in the registration/unregistration APIs. Consider dropping the "New" from // "RegisterNewArrayBuffer" because one can re-register a previously // unregistered buffer, too, and the name is confusing. void RegisterNewArrayBuffer(JSArrayBuffer* buffer); void UnregisterArrayBuffer(JSArrayBuffer* buffer); // =========================================================================== // Allocation site tracking. ================================================= // =========================================================================== // Updates the AllocationSite of a given {object}. The entry (including the // count) is cached on the local pretenuring feedback. inline void UpdateAllocationSite( Map* map, HeapObject* object, PretenuringFeedbackMap* pretenuring_feedback); // Merges local pretenuring feedback into the global one. Note that this // method needs to be called after evacuation, as allocation sites may be // evacuated and this method resolves forward pointers accordingly. void MergeAllocationSitePretenuringFeedback( const PretenuringFeedbackMap& local_pretenuring_feedback); // =========================================================================== // Allocation tracking. ====================================================== // =========================================================================== // Adds {new_space_observer} to new space and {observer} to any other space. void AddAllocationObserversToAllSpaces( AllocationObserver* observer, AllocationObserver* new_space_observer); // Removes {new_space_observer} from new space and {observer} from any other // space. void RemoveAllocationObserversFromAllSpaces( AllocationObserver* observer, AllocationObserver* new_space_observer); bool allocation_step_in_progress() { return allocation_step_in_progress_; } void set_allocation_step_in_progress(bool val) { allocation_step_in_progress_ = val; } // =========================================================================== // Heap object allocation tracking. ========================================== // =========================================================================== void AddHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker); void RemoveHeapObjectAllocationTracker(HeapObjectAllocationTracker* tracker); bool has_heap_object_allocation_tracker() const { return !allocation_trackers_.empty(); } // =========================================================================== // Retaining path tracking. ================================================== // =========================================================================== // Adds the given object to the weak table of retaining path targets. // On each GC if the marker discovers the object, it will print the retaining // path. This requires --track-retaining-path flag. void AddRetainingPathTarget(Handle<HeapObject> object, RetainingPathOption option); // =========================================================================== // Stack frame support. ====================================================== // =========================================================================== // Returns the Code object for a given interior pointer. Returns nullptr if // {inner_pointer} is not contained within a Code object. Code* GcSafeFindCodeForInnerPointer(Address inner_pointer); // Returns true if {addr} is contained within {code} and false otherwise. // Mostly useful for debugging. bool GcSafeCodeContains(HeapObject* code, Address addr); // ============================================================================= #ifdef VERIFY_HEAP // Verify the heap is in its normal state before or after a GC. void Verify(); void VerifyRememberedSetFor(HeapObject* object); #endif #ifdef V8_ENABLE_ALLOCATION_TIMEOUT void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; } #endif #ifdef DEBUG void VerifyCountersAfterSweeping(); void VerifyCountersBeforeConcurrentSweeping(); void Print(); void PrintHandles(); // Report code statistics. void ReportCodeStatistics(const char* title); #endif void* GetRandomMmapAddr() { void* result = v8::internal::GetRandomMmapAddr(); #if V8_TARGET_ARCH_X64 #if V8_OS_MACOSX // The Darwin kernel [as of macOS 10.12.5] does not clean up page // directory entries [PDE] created from mmap or mach_vm_allocate, even // after the region is destroyed. Using a virtual address space that is // too large causes a leak of about 1 wired [can never be paged out] page // per call to mmap(). The page is only reclaimed when the process is // killed. Confine the hint to a 32-bit section of the virtual address // space. See crbug.com/700928. uintptr_t offset = reinterpret_cast<uintptr_t>(v8::internal::GetRandomMmapAddr()) & kMmapRegionMask; result = reinterpret_cast<void*>(mmap_region_base_ + offset); #endif // V8_OS_MACOSX #endif // V8_TARGET_ARCH_X64 return result; } static const char* GarbageCollectionReasonToString( GarbageCollectionReason gc_reason); // Calculates the nof entries for the full sized number to string cache. inline int MaxNumberToStringCacheSize() const; private: class SkipStoreBufferScope; typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap, Object** pointer); // External strings table is a place where all external strings are // registered. We need to keep track of such strings to properly // finalize them. class ExternalStringTable { public: explicit ExternalStringTable(Heap* heap) : heap_(heap) {} // Registers an external string. inline void AddString(String* string); bool Contains(HeapObject* obj); void IterateAll(RootVisitor* v); void IterateNewSpaceStrings(RootVisitor* v); void PromoteAllNewSpaceStrings(); // Restores internal invariant and gets rid of collected strings. Must be // called after each Iterate*() that modified the strings. void CleanUpAll(); void CleanUpNewSpaceStrings(); // Finalize all registered external strings and clear tables. void TearDown(); void UpdateNewSpaceReferences( Heap::ExternalStringTableUpdaterCallback updater_func); void UpdateReferences( Heap::ExternalStringTableUpdaterCallback updater_func); private: void Verify(); void VerifyNewSpace(); Heap* const heap_; // To speed up scavenge collections new space string are kept // separate from old space strings. std::vector<Object*> new_space_strings_; std::vector<Object*> old_space_strings_; DISALLOW_COPY_AND_ASSIGN(ExternalStringTable); }; struct StrongRootsList; struct StringTypeTable { InstanceType type; int size; RootListIndex index; }; struct ConstantStringTable { const char* contents; RootListIndex index; }; struct StructTable { InstanceType type; int size; RootListIndex index; }; struct GCCallbackTuple { GCCallbackTuple(v8::Isolate::GCCallbackWithData callback, GCType gc_type, void* data) : callback(callback), gc_type(gc_type), data(data) {} bool operator==(const GCCallbackTuple& other) const; GCCallbackTuple& operator=(const GCCallbackTuple& other); v8::Isolate::GCCallbackWithData callback; GCType gc_type; void* data; }; static const int kInitialStringTableSize = StringTable::kMinCapacity; static const int kInitialEvalCacheSize = 64; static const int kInitialNumberStringCacheSize = 256; static const int kRememberedUnmappedPages = 128; static const StringTypeTable string_type_table[]; static const ConstantStringTable constant_string_table[]; static const StructTable struct_table[]; static const int kYoungSurvivalRateHighThreshold = 90; static const int kYoungSurvivalRateAllowedDeviation = 15; static const int kOldSurvivalRateLowThreshold = 10; static const int kMaxMarkCompactsInIdleRound = 7; static const int kIdleScavengeThreshold = 5; static const int kInitialFeedbackCapacity = 256; static const int kMaxScavengerTasks = 8; Heap(); static String* UpdateNewSpaceReferenceInExternalStringTableEntry( Heap* heap, Object** pointer); // Selects the proper allocation space based on the pretenuring decision. static AllocationSpace SelectSpace(PretenureFlag pretenure) { switch (pretenure) { case TENURED_READ_ONLY: return RO_SPACE; case TENURED: return OLD_SPACE; case NOT_TENURED: return NEW_SPACE; default: UNREACHABLE(); } } static size_t DefaultGetExternallyAllocatedMemoryInBytesCallback() { return 0; } #define ROOT_ACCESSOR(type, name, camel_name) \ inline void set_##name(type* value); ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR StoreBuffer* store_buffer() { return store_buffer_; } void set_current_gc_flags(int flags) { current_gc_flags_ = flags; DCHECK(!ShouldFinalizeIncrementalMarking() || !ShouldAbortIncrementalMarking()); } inline bool ShouldReduceMemory() const { return (current_gc_flags_ & kReduceMemoryFootprintMask) != 0; } inline bool ShouldAbortIncrementalMarking() const { return (current_gc_flags_ & kAbortIncrementalMarkingMask) != 0; } inline bool ShouldFinalizeIncrementalMarking() const { return (current_gc_flags_ & kFinalizeIncrementalMarkingMask) != 0; } int NumberOfScavengeTasks(); // Checks whether a global GC is necessary GarbageCollector SelectGarbageCollector(AllocationSpace space, const char** reason); // Make sure there is a filler value behind the top of the new space // so that the GC does not confuse some unintialized/stale memory // with the allocation memento of the object at the top void EnsureFillerObjectAtTop(); // Ensure that we have swept all spaces in such a way that we can iterate // over all objects. May cause a GC. void MakeHeapIterable(); // Performs garbage collection // Returns whether there is a chance another major GC could // collect more garbage. bool PerformGarbageCollection( GarbageCollector collector, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); inline void UpdateOldSpaceLimits(); bool CreateInitialMaps(); void CreateInternalAccessorInfoObjects(); void CreateInitialObjects(); // These five Create*EntryStub functions are here and forced to not be inlined // because of a gcc-4.4 bug that assigns wrong vtable entries. V8_NOINLINE void CreateJSEntryStub(); V8_NOINLINE void CreateJSConstructEntryStub(); V8_NOINLINE void CreateJSRunMicrotasksEntryStub(); void CreateFixedStubs(); // Commits from space if it is uncommitted. void EnsureFromSpaceIsCommitted(); // Uncommit unused semi space. bool UncommitFromSpace(); // Fill in bogus values in from space void ZapFromSpace(); // Zaps the memory of a code object. void ZapCodeObject(Address start_address, int size_in_bytes); // Deopts all code that contains allocation instruction which are tenured or // not tenured. Moreover it clears the pretenuring allocation site statistics. void ResetAllAllocationSitesDependentCode(PretenureFlag flag); // Evaluates local pretenuring for the old space and calls // ResetAllTenuredAllocationSitesDependentCode if too many objects died in // the old space. void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc); // Record statistics after garbage collection. void ReportStatisticsAfterGC(); // Flush the number to string cache. void FlushNumberStringCache(); void ConfigureInitialOldGenerationSize(); bool HasLowYoungGenerationAllocationRate(); bool HasLowOldGenerationAllocationRate(); double YoungGenerationMutatorUtilization(); double OldGenerationMutatorUtilization(); void ReduceNewSpaceSize(); GCIdleTimeHeapState ComputeHeapState(); bool PerformIdleTimeAction(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double deadline_in_ms); void IdleNotificationEpilogue(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double start_ms, double deadline_in_ms); int NextAllocationTimeout(int current_timeout = 0); inline void UpdateAllocationsHash(HeapObject* object); inline void UpdateAllocationsHash(uint32_t value); void PrintAllocationsHash(); void PrintMaxMarkingLimitReached(); void PrintMaxNewSpaceSizeReached(); int NextStressMarkingLimit(); void AddToRingBuffer(const char* string); void GetFromRingBuffer(char* buffer); void CompactRetainedMaps(WeakArrayList* retained_maps); void CollectGarbageOnMemoryPressure(); bool InvokeNearHeapLimitCallback(); void ComputeFastPromotionMode(); // Attempt to over-approximate the weak closure by marking object groups and // implicit references from global handles, but don't atomically complete // marking. If we continue to mark incrementally, we might have marked // objects that die later. void FinalizeIncrementalMarkingIncrementally( GarbageCollectionReason gc_reason); // Returns the timer used for a given GC type. // - GCScavenger: young generation GC // - GCCompactor: full GC // - GCFinalzeMC: finalization of incremental full GC // - GCFinalizeMCReduceMemory: finalization of incremental full GC with // memory reduction HistogramTimer* GCTypeTimer(GarbageCollector collector); HistogramTimer* GCTypePriorityTimer(GarbageCollector collector); // =========================================================================== // Pretenuring. ============================================================== // =========================================================================== // Pretenuring decisions are made based on feedback collected during new space // evacuation. Note that between feedback collection and calling this method // object in old space must not move. void ProcessPretenuringFeedback(); // Removes an entry from the global pretenuring storage. void RemoveAllocationSitePretenuringFeedback(AllocationSite* site); // =========================================================================== // Actual GC. ================================================================ // =========================================================================== // Code that should be run before and after each GC. Includes some // reporting/verification activities when compiled with DEBUG set. void GarbageCollectionPrologue(); void GarbageCollectionEpilogue(); // Performs a major collection in the whole heap. void MarkCompact(); // Performs a minor collection of just the young generation. void MinorMarkCompact(); // Code to be run before and after mark-compact. void MarkCompactPrologue(); void MarkCompactEpilogue(); // Performs a minor collection in new generation. void Scavenge(); void EvacuateYoungGeneration(); void UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func); void UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func); void ProcessAllWeakReferences(WeakObjectRetainer* retainer); void ProcessYoungWeakReferences(WeakObjectRetainer* retainer); void ProcessNativeContexts(WeakObjectRetainer* retainer); void ProcessAllocationSites(WeakObjectRetainer* retainer); void ProcessWeakListRoots(WeakObjectRetainer* retainer); // =========================================================================== // GC statistics. ============================================================ // =========================================================================== inline size_t OldGenerationSpaceAvailable() { if (old_generation_allocation_limit_ <= OldGenerationObjectsAndPromotedExternalMemorySize()) return 0; return old_generation_allocation_limit_ - static_cast<size_t>( OldGenerationObjectsAndPromotedExternalMemorySize()); } // We allow incremental marking to overshoot the allocation limit for // performace reasons. If the overshoot is too large then we are more // eager to finalize incremental marking. inline bool AllocationLimitOvershotByLargeMargin() { // This guards against too eager finalization in small heaps. // The number is chosen based on v8.browsing_mobile on Nexus 7v2. size_t kMarginForSmallHeaps = 32u * MB; if (old_generation_allocation_limit_ >= OldGenerationObjectsAndPromotedExternalMemorySize()) return false; uint64_t overshoot = OldGenerationObjectsAndPromotedExternalMemorySize() - old_generation_allocation_limit_; // Overshoot margin is 50% of allocation limit or half-way to the max heap // with special handling of small heaps. uint64_t margin = Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps), (max_old_generation_size_ - old_generation_allocation_limit_) / 2); return overshoot >= margin; } void UpdateTotalGCTime(double duration); bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; } bool IsIneffectiveMarkCompact(size_t old_generation_size, double mutator_utilization); void CheckIneffectiveMarkCompact(size_t old_generation_size, double mutator_utilization); // =========================================================================== // Growing strategy. ========================================================= // =========================================================================== HeapController* heap_controller() { return heap_controller_; } MemoryReducer* memory_reducer() { return memory_reducer_; } // For some webpages RAIL mode does not switch from PERFORMANCE_LOAD. // This constant limits the effect of load RAIL mode on GC. // The value is arbitrary and chosen as the largest load time observed in // v8 browsing benchmarks. static const int kMaxLoadTimeMs = 7000; bool ShouldOptimizeForLoadTime(); size_t old_generation_allocation_limit() const { return old_generation_allocation_limit_; } bool always_allocate() { return always_allocate_scope_count_ != 0; } bool CanExpandOldGeneration(size_t size); bool ShouldExpandOldGenerationOnSlowAllocation(); enum class HeapGrowingMode { kSlow, kConservative, kMinimal, kDefault }; HeapGrowingMode CurrentHeapGrowingMode(); enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit }; IncrementalMarkingLimit IncrementalMarkingLimitReached(); // =========================================================================== // Idle notification. ======================================================== // =========================================================================== bool RecentIdleNotificationHappened(); void ScheduleIdleScavengeIfNeeded(int bytes_allocated); // =========================================================================== // HeapIterator helpers. ===================================================== // =========================================================================== void heap_iterator_start() { heap_iterator_depth_++; } void heap_iterator_end() { heap_iterator_depth_--; } bool in_heap_iterator() { return heap_iterator_depth_ > 0; } // =========================================================================== // Allocation methods. ======================================================= // =========================================================================== // Allocates a JS Map in the heap. V8_WARN_UNUSED_RESULT AllocationResult AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND, int inobject_properties = 0); // Allocate an uninitialized object. The memory is non-executable if the // hardware and OS allow. This is the single choke-point for allocations // performed by the runtime and should not be bypassed (to extend this to // inlined allocations, use the Heap::DisableInlineAllocation() support). V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw( int size_in_bytes, AllocationSpace space, AllocationAlignment aligment = kWordAligned); // This method will try to perform an allocation of a given size in a given // space. If the allocation fails, a regular full garbage collection is // triggered and the allocation is retried. This is performed multiple times. // If after that retry procedure the allocation still fails nullptr is // returned. HeapObject* AllocateRawWithLightRetry( int size, AllocationSpace space, AllocationAlignment alignment = kWordAligned); // This method will try to perform an allocation of a given size in a given // space. If the allocation fails, a regular full garbage collection is // triggered and the allocation is retried. This is performed multiple times. // If after that retry procedure the allocation still fails a "hammer" // garbage collection is triggered which tries to significantly reduce memory. // If the allocation still fails after that a fatal error is thrown. HeapObject* AllocateRawWithRetryOrFail( int size, AllocationSpace space, AllocationAlignment alignment = kWordAligned); HeapObject* AllocateRawCodeInLargeObjectSpace(int size); // Allocates a heap object based on the map. V8_WARN_UNUSED_RESULT AllocationResult Allocate(Map* map, AllocationSpace space); // Takes a code object and checks if it is on memory which is not subject to // compaction. This method will return a new code object on an immovable // memory location if the original code object was movable. HeapObject* EnsureImmovableCode(HeapObject* heap_object, int object_size); // Allocates a partial map for bootstrapping. V8_WARN_UNUSED_RESULT AllocationResult AllocatePartialMap(InstanceType instance_type, int instance_size); void FinalizePartialMap(Map* map); // Allocate empty fixed typed array of given type. V8_WARN_UNUSED_RESULT AllocationResult AllocateEmptyFixedTypedArray(ExternalArrayType array_type); void set_force_oom(bool value) { force_oom_ = value; } // =========================================================================== // Retaining path tracing ==================================================== // =========================================================================== void AddRetainer(HeapObject* retainer, HeapObject* object); void AddEphemeronRetainer(HeapObject* retainer, HeapObject* object); void AddRetainingRoot(Root root, HeapObject* object); // Returns true if the given object is a target of retaining path tracking. // Stores the option corresponding to the object in the provided *option. bool IsRetainingPathTarget(HeapObject* object, RetainingPathOption* option); void PrintRetainingPath(HeapObject* object, RetainingPathOption option); // The amount of external memory registered through the API. int64_t external_memory_; // The limit when to trigger memory pressure from the API. int64_t external_memory_limit_; // Caches the amount of external memory registered at the last MC. int64_t external_memory_at_last_mark_compact_; // The amount of memory that has been freed concurrently. std::atomic<intptr_t> external_memory_concurrently_freed_; // This can be calculated directly from a pointer to the heap; however, it is // more expedient to get at the isolate directly from within Heap methods. Isolate* isolate_; Object* roots_[kRootListLength]; // This table is accessed from builtin code compiled into the snapshot, and // thus its offset from roots_ must remain static. This is verified in // Isolate::Init() using runtime checks. static constexpr int kRootsExternalReferenceTableOffset = kRootListLength * kPointerSize; ExternalReferenceTable external_reference_table_; // As external references above, builtins are accessed through an offset from // the roots register. Its offset from roots_ must remain static. This is // verified in Isolate::Init() using runtime checks. static constexpr int kRootsBuiltinsOffset = kRootsExternalReferenceTableOffset + ExternalReferenceTable::SizeInBytes(); Object* builtins_[Builtins::builtin_count]; // kRootRegister may be used to address any location that starts at the // Isolate and ends at this point. Fields past this point are not guaranteed // to live at a static offset from kRootRegister. static constexpr int kRootRegisterAddressableEndOffset = kRootsBuiltinsOffset + Builtins::builtin_count * kPointerSize; size_t code_range_size_; size_t max_semi_space_size_; size_t initial_semispace_size_; size_t max_old_generation_size_; size_t initial_max_old_generation_size_; size_t initial_old_generation_size_; bool old_generation_size_configured_; size_t maximum_committed_; // For keeping track of how much data has survived // scavenge since last new space expansion. size_t survived_since_last_expansion_; // ... and since the last scavenge. size_t survived_last_scavenge_; // This is not the depth of nested AlwaysAllocateScope's but rather a single // count, as scopes can be acquired from multiple tasks (read: threads). std::atomic<size_t> always_allocate_scope_count_; // Stores the memory pressure level that set by MemoryPressureNotification // and reset by a mark-compact garbage collection. std::atomic<MemoryPressureLevel> memory_pressure_level_; std::vector<std::pair<v8::NearHeapLimitCallback, void*> > near_heap_limit_callbacks_; // For keeping track of context disposals. int contexts_disposed_; // The length of the retained_maps array at the time of context disposal. // This separates maps in the retained_maps array that were created before // and after context disposal. int number_of_disposed_maps_; NewSpace* new_space_; OldSpace* old_space_; CodeSpace* code_space_; MapSpace* map_space_; LargeObjectSpace* lo_space_; NewLargeObjectSpace* new_lo_space_; ReadOnlySpace* read_only_space_; // Map from the space id to the space. Space* space_[LAST_SPACE + 1]; // Determines whether code space is write-protected. This is essentially a // race-free copy of the {FLAG_write_protect_code_memory} flag. bool write_protect_code_memory_; // Holds the number of open CodeSpaceMemoryModificationScopes. uintptr_t code_space_memory_modification_scope_depth_; HeapState gc_state_; int gc_post_processing_depth_; // Returns the amount of external memory registered since last global gc. uint64_t PromotedExternalMemorySize(); // How many "runtime allocations" happened. uint32_t allocations_count_; // Running hash over allocations performed. uint32_t raw_allocations_hash_; // Starts marking when stress_marking_percentage_% of the marking start limit // is reached. int stress_marking_percentage_; // Observer that causes more frequent checks for reached incremental marking // limit. AllocationObserver* stress_marking_observer_; // Observer that can cause early scavenge start. StressScavengeObserver* stress_scavenge_observer_; bool allocation_step_in_progress_; // The maximum percent of the marking limit reached wihout causing marking. // This is tracked when specyfing --fuzzer-gc-analysis. double max_marking_limit_reached_; // How many mark-sweep collections happened. unsigned int ms_count_; // How many gc happened. unsigned int gc_count_; // The number of Mark-Compact garbage collections that are considered as // ineffective. See IsIneffectiveMarkCompact() predicate. int consecutive_ineffective_mark_compacts_; static const uintptr_t kMmapRegionMask = 0xFFFFFFFFu; uintptr_t mmap_region_base_; // For post mortem debugging. int remembered_unmapped_pages_index_; Address remembered_unmapped_pages_[kRememberedUnmappedPages]; // Limit that triggers a global GC on the next (normally caused) GC. This // is checked when we have already decided to do a GC to help determine // which collector to invoke, before expanding a paged space in the old // generation and on every allocation in large object space. size_t old_generation_allocation_limit_; // Indicates that inline bump-pointer allocation has been globally disabled // for all spaces. This is used to disable allocations in generated code. bool inline_allocation_disabled_; // Weak list heads, threaded through the objects. // List heads are initialized lazily and contain the undefined_value at start. Object* native_contexts_list_; Object* allocation_sites_list_; std::vector<GCCallbackTuple> gc_epilogue_callbacks_; std::vector<GCCallbackTuple> gc_prologue_callbacks_; GetExternallyAllocatedMemoryInBytesCallback external_memory_callback_; int deferred_counters_[v8::Isolate::kUseCounterFeatureCount]; GCTracer* tracer_; size_t promoted_objects_size_; double promotion_ratio_; double promotion_rate_; size_t semi_space_copied_object_size_; size_t previous_semi_space_copied_object_size_; double semi_space_copied_rate_; int nodes_died_in_new_space_; int nodes_copied_in_new_space_; int nodes_promoted_; // This is the pretenuring trigger for allocation sites that are in maybe // tenure state. When we switched to the maximum new space size we deoptimize // the code that belongs to the allocation site and derive the lifetime // of the allocation site. unsigned int maximum_size_scavenges_; // Total time spent in GC. double total_gc_time_ms_; // Last time an idle notification happened. double last_idle_notification_time_; // Last time a garbage collection happened. double last_gc_time_; MarkCompactCollector* mark_compact_collector_; MinorMarkCompactCollector* minor_mark_compact_collector_; ArrayBufferCollector* array_buffer_collector_; MemoryAllocator* memory_allocator_; StoreBuffer* store_buffer_; HeapController* heap_controller_; IncrementalMarking* incremental_marking_; ConcurrentMarking* concurrent_marking_; GCIdleTimeHandler* gc_idle_time_handler_; MemoryReducer* memory_reducer_; ObjectStats* live_object_stats_; ObjectStats* dead_object_stats_; ScavengeJob* scavenge_job_; base::Semaphore parallel_scavenge_semaphore_; AllocationObserver* idle_scavenge_observer_; // This counter is increased before each GC and never reset. // To account for the bytes allocated since the last GC, use the // NewSpaceAllocationCounter() function. size_t new_space_allocation_counter_; // This counter is increased before each GC and never reset. To // account for the bytes allocated since the last GC, use the // OldGenerationAllocationCounter() function. size_t old_generation_allocation_counter_at_last_gc_; // The size of objects in old generation after the last MarkCompact GC. size_t old_generation_size_at_last_gc_; // The feedback storage is used to store allocation sites (keys) and how often // they have been visited (values) by finding a memento behind an object. The // storage is only alive temporary during a GC. The invariant is that all // pointers in this map are already fixed, i.e., they do not point to // forwarding pointers. PretenuringFeedbackMap global_pretenuring_feedback_; char trace_ring_buffer_[kTraceRingBufferSize]; // Used as boolean. uint8_t is_marking_flag_; // If it's not full then the data is from 0 to ring_buffer_end_. If it's // full then the data is from ring_buffer_end_ to the end of the buffer and // from 0 to ring_buffer_end_. bool ring_buffer_full_; size_t ring_buffer_end_; // Flag is set when the heap has been configured. The heap can be repeatedly // configured through the API until it is set up. bool configured_; // Currently set GC flags that are respected by all GC components. int current_gc_flags_; // Currently set GC callback flags that are used to pass information between // the embedder and V8's GC. GCCallbackFlags current_gc_callback_flags_; ExternalStringTable external_string_table_; base::Mutex relocation_mutex_; int gc_callbacks_depth_; bool deserialization_complete_; StrongRootsList* strong_roots_list_; // The depth of HeapIterator nestings. int heap_iterator_depth_; LocalEmbedderHeapTracer* local_embedder_heap_tracer_; bool fast_promotion_mode_; // Used for testing purposes. bool force_oom_; bool delay_sweeper_tasks_for_testing_; HeapObject* pending_layout_change_object_; base::Mutex unprotected_memory_chunks_mutex_; std::unordered_set<MemoryChunk*> unprotected_memory_chunks_; bool unprotected_memory_chunks_registry_enabled_; #ifdef V8_ENABLE_ALLOCATION_TIMEOUT // If the --gc-interval flag is set to a positive value, this // variable holds the value indicating the number of allocations // remain until the next failure and garbage collection. int allocation_timeout_; #endif // V8_ENABLE_ALLOCATION_TIMEOUT std::map<HeapObject*, HeapObject*> retainer_; std::map<HeapObject*, Root> retaining_root_; // If an object is retained by an ephemeron, then the retaining key of the // ephemeron is stored in this map. std::map<HeapObject*, HeapObject*> ephemeron_retainer_; // For each index inthe retaining_path_targets_ array this map // stores the option of the corresponding target. std::map<int, RetainingPathOption> retaining_path_target_option_; std::vector<HeapObjectAllocationTracker*> allocation_trackers_; // Classes in "heap" can be friends. friend class AlwaysAllocateScope; friend class ConcurrentMarking; friend class EphemeronHashTableMarkingTask; friend class GCCallbacksScope; friend class GCTracer; friend class MemoryController; friend class HeapIterator; friend class IdleScavengeObserver; friend class IncrementalMarking; friend class IncrementalMarkingJob; friend class LargeObjectSpace; template <FixedArrayVisitationMode fixed_array_mode, TraceRetainingPathMode retaining_path_mode, typename MarkingState> friend class MarkingVisitor; friend class MarkCompactCollector; friend class MarkCompactCollectorBase; friend class MinorMarkCompactCollector; friend class NewSpace; friend class ObjectStatsCollector; friend class Page; friend class PagedSpace; friend class Scavenger; friend class StoreBuffer; friend class Sweeper; friend class heap::TestMemoryAllocatorScope; // The allocator interface. friend class Factory; // The Isolate constructs us. friend class Isolate; // Used in cctest. friend class heap::HeapTester; FRIEND_TEST(HeapControllerTest, OldGenerationAllocationLimit); DISALLOW_COPY_AND_ASSIGN(Heap); }; class HeapStats { public: static const int kStartMarker = 0xDECADE00; static const int kEndMarker = 0xDECADE01; intptr_t* start_marker; // 0 size_t* ro_space_size; // 1 size_t* ro_space_capacity; // 2 size_t* new_space_size; // 3 size_t* new_space_capacity; // 4 size_t* old_space_size; // 5 size_t* old_space_capacity; // 6 size_t* code_space_size; // 7 size_t* code_space_capacity; // 8 size_t* map_space_size; // 9 size_t* map_space_capacity; // 10 size_t* lo_space_size; // 11 size_t* global_handle_count; // 12 size_t* weak_global_handle_count; // 13 size_t* pending_global_handle_count; // 14 size_t* near_death_global_handle_count; // 15 size_t* free_global_handle_count; // 16 size_t* memory_allocator_size; // 17 size_t* memory_allocator_capacity; // 18 size_t* malloced_memory; // 19 size_t* malloced_peak_memory; // 20 size_t* objects_per_type; // 21 size_t* size_per_type; // 22 int* os_error; // 23 char* last_few_messages; // 24 char* js_stacktrace; // 25 intptr_t* end_marker; // 26 }; class AlwaysAllocateScope { public: explicit inline AlwaysAllocateScope(Isolate* isolate); inline ~AlwaysAllocateScope(); private: Heap* heap_; }; // The CodeSpaceMemoryModificationScope can only be used by the main thread. class CodeSpaceMemoryModificationScope { public: explicit inline CodeSpaceMemoryModificationScope(Heap* heap); inline ~CodeSpaceMemoryModificationScope(); private: Heap* heap_; }; // The CodePageCollectionMemoryModificationScope can only be used by the main // thread. It will not be enabled if a CodeSpaceMemoryModificationScope is // already active. class CodePageCollectionMemoryModificationScope { public: explicit inline CodePageCollectionMemoryModificationScope(Heap* heap); inline ~CodePageCollectionMemoryModificationScope(); private: Heap* heap_; }; // The CodePageMemoryModificationScope does not check if tansitions to // writeable and back to executable are actually allowed, i.e. the MemoryChunk // was registered to be executable. It can be used by concurrent threads. class CodePageMemoryModificationScope { public: explicit inline CodePageMemoryModificationScope(MemoryChunk* chunk); inline ~CodePageMemoryModificationScope(); private: MemoryChunk* chunk_; bool scope_active_; // Disallow any GCs inside this scope, as a relocation of the underlying // object would change the {MemoryChunk} that this scope targets. DisallowHeapAllocation no_heap_allocation_; }; // Visitor class to verify interior pointers in spaces that do not contain // or care about intergenerational references. All heap object pointers have to // point into the heap to a location that has a map pointer at its first word. // Caveat: Heap::Contains is an approximation because it can return true for // objects in a heap space but above the allocation pointer. class VerifyPointersVisitor : public ObjectVisitor, public RootVisitor { public: explicit VerifyPointersVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(HeapObject* host, Object** start, Object** end) override; void VisitPointers(HeapObject* host, MaybeObject** start, MaybeObject** end) override; void VisitRootPointers(Root root, const char* description, Object** start, Object** end) override; protected: virtual void VerifyPointers(HeapObject* host, MaybeObject** start, MaybeObject** end); Heap* heap_; }; // Verify that all objects are Smis. class VerifySmisVisitor : public RootVisitor { public: void VisitRootPointers(Root root, const char* description, Object** start, Object** end) override; }; // Space iterator for iterating over all the paged spaces of the heap: Map // space, old space, code space and optionally read only space. Returns each // space in turn, and null when it is done. class V8_EXPORT_PRIVATE PagedSpaces BASE_EMBEDDED { public: enum class SpacesSpecifier { kSweepablePagedSpaces, kAllPagedSpaces }; explicit PagedSpaces(Heap* heap, SpacesSpecifier specifier = SpacesSpecifier::kSweepablePagedSpaces) : heap_(heap), counter_(specifier == SpacesSpecifier::kAllPagedSpaces ? RO_SPACE : OLD_SPACE) {} PagedSpace* next(); private: Heap* heap_; int counter_; }; class SpaceIterator : public Malloced { public: explicit SpaceIterator(Heap* heap); virtual ~SpaceIterator(); bool has_next(); Space* next(); private: Heap* heap_; int current_space_; // from enum AllocationSpace. }; // A HeapIterator provides iteration over the whole heap. It // aggregates the specific iterators for the different spaces as // these can only iterate over one space only. // // HeapIterator ensures there is no allocation during its lifetime // (using an embedded DisallowHeapAllocation instance). // // HeapIterator can skip free list nodes (that is, de-allocated heap // objects that still remain in the heap). As implementation of free // nodes filtering uses GC marks, it can't be used during MS/MC GC // phases. Also, it is forbidden to interrupt iteration in this mode, // as this will leave heap objects marked (and thus, unusable). class HeapIterator BASE_EMBEDDED { public: enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable }; explicit HeapIterator(Heap* heap, HeapObjectsFiltering filtering = kNoFiltering); ~HeapIterator(); HeapObject* next(); private: HeapObject* NextObject(); DisallowHeapAllocation no_heap_allocation_; Heap* heap_; HeapObjectsFiltering filtering_; HeapObjectsFilter* filter_; // Space iterator for iterating all the spaces. SpaceIterator* space_iterator_; // Object iterator for the space currently being iterated. std::unique_ptr<ObjectIterator> object_iterator_; }; // Abstract base class for checking whether a weak object should be retained. class WeakObjectRetainer { public: virtual ~WeakObjectRetainer() {} // Return whether this object should be retained. If nullptr is returned the // object has no references. Otherwise the address of the retained object // should be returned as in some GC situations the object has been moved. virtual Object* RetainAs(Object* object) = 0; }; // ----------------------------------------------------------------------------- // Allows observation of allocations. class AllocationObserver { public: explicit AllocationObserver(intptr_t step_size) : step_size_(step_size), bytes_to_next_step_(step_size) { DCHECK_LE(kPointerSize, step_size); } virtual ~AllocationObserver() {} // Called each time the observed space does an allocation step. This may be // more frequently than the step_size we are monitoring (e.g. when there are // multiple observers, or when page or space boundary is encountered.) void AllocationStep(int bytes_allocated, Address soon_object, size_t size); protected: intptr_t step_size() const { return step_size_; } intptr_t bytes_to_next_step() const { return bytes_to_next_step_; } // Pure virtual method provided by the subclasses that gets called when at // least step_size bytes have been allocated. soon_object is the address just // allocated (but not yet initialized.) size is the size of the object as // requested (i.e. w/o the alignment fillers). Some complexities to be aware // of: // 1) soon_object will be nullptr in cases where we end up observing an // allocation that happens to be a filler space (e.g. page boundaries.) // 2) size is the requested size at the time of allocation. Right-trimming // may change the object size dynamically. // 3) soon_object may actually be the first object in an allocation-folding // group. In such a case size is the size of the group rather than the // first object. virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0; // Subclasses can override this method to make step size dynamic. virtual intptr_t GetNextStepSize() { return step_size_; } intptr_t step_size_; intptr_t bytes_to_next_step_; private: friend class Space; DISALLOW_COPY_AND_ASSIGN(AllocationObserver); }; V8_EXPORT_PRIVATE const char* AllocationSpaceName(AllocationSpace space); // ----------------------------------------------------------------------------- // Allows observation of heap object allocations. class HeapObjectAllocationTracker { public: virtual void AllocationEvent(Address addr, int size) = 0; virtual void MoveEvent(Address from, Address to, int size) {} virtual void UpdateObjectSizeEvent(Address addr, int size) {} virtual ~HeapObjectAllocationTracker() = default; }; } // namespace internal } // namespace v8 #endif // V8_HEAP_HEAP_H_