// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/compiler/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" #include "src/frame-constants.h" namespace v8 { namespace internal { namespace compiler { enum class OperandMode : uint32_t { kNone = 0u, // Immediate mode kShift32Imm = 1u << 0, kShift64Imm = 1u << 1, kInt32Imm = 1u << 2, kInt32Imm_Negate = 1u << 3, kUint32Imm = 1u << 4, kInt20Imm = 1u << 5, kUint12Imm = 1u << 6, // Instr format kAllowRRR = 1u << 7, kAllowRM = 1u << 8, kAllowRI = 1u << 9, kAllowRRI = 1u << 10, kAllowRRM = 1u << 11, // Useful combination kAllowImmediate = kAllowRI | kAllowRRI, kAllowMemoryOperand = kAllowRM | kAllowRRM, kAllowDistinctOps = kAllowRRR | kAllowRRI | kAllowRRM, kBitWiseCommonMode = kAllowRI, kArithmeticCommonMode = kAllowRM | kAllowRI }; typedef base::Flags<OperandMode, uint32_t> OperandModes; DEFINE_OPERATORS_FOR_FLAGS(OperandModes); OperandModes immediateModeMask = OperandMode::kShift32Imm | OperandMode::kShift64Imm | OperandMode::kInt32Imm | OperandMode::kInt32Imm_Negate | OperandMode::kUint32Imm | OperandMode::kInt20Imm; #define AndCommonMode \ ((OperandMode::kAllowRM | \ (CpuFeatures::IsSupported(DISTINCT_OPS) ? OperandMode::kAllowRRR \ : OperandMode::kNone))) #define And64OperandMode AndCommonMode #define Or64OperandMode And64OperandMode #define Xor64OperandMode And64OperandMode #define And32OperandMode \ (AndCommonMode | OperandMode::kAllowRI | OperandMode::kUint32Imm) #define Or32OperandMode And32OperandMode #define Xor32OperandMode And32OperandMode #define Shift32OperandMode \ ((OperandMode::kAllowRI | OperandMode::kShift64Imm | \ (CpuFeatures::IsSupported(DISTINCT_OPS) \ ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \ : OperandMode::kNone))) #define Shift64OperandMode \ ((OperandMode::kAllowRI | OperandMode::kShift64Imm | \ OperandMode::kAllowRRR | OperandMode::kAllowRRI)) #define AddOperandMode \ ((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm | \ (CpuFeatures::IsSupported(DISTINCT_OPS) \ ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \ : OperandMode::kArithmeticCommonMode))) #define SubOperandMode \ ((OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm_Negate | \ (CpuFeatures::IsSupported(DISTINCT_OPS) \ ? (OperandMode::kAllowRRR | OperandMode::kAllowRRI) \ : OperandMode::kArithmeticCommonMode))) #define MulOperandMode \ (OperandMode::kArithmeticCommonMode | OperandMode::kInt32Imm) // Adds S390-specific methods for generating operands. class S390OperandGenerator final : public OperandGenerator { public: explicit S390OperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} InstructionOperand UseOperand(Node* node, OperandModes mode) { if (CanBeImmediate(node, mode)) { return UseImmediate(node); } return UseRegister(node); } InstructionOperand UseAnyExceptImmediate(Node* node) { if (NodeProperties::IsConstant(node)) return UseRegister(node); else return Use(node); } int64_t GetImmediate(Node* node) { if (node->opcode() == IrOpcode::kInt32Constant) return OpParameter<int32_t>(node->op()); else if (node->opcode() == IrOpcode::kInt64Constant) return OpParameter<int64_t>(node->op()); else UNIMPLEMENTED(); return 0L; } bool CanBeImmediate(Node* node, OperandModes mode) { int64_t value; if (node->opcode() == IrOpcode::kInt32Constant) value = OpParameter<int32_t>(node->op()); else if (node->opcode() == IrOpcode::kInt64Constant) value = OpParameter<int64_t>(node->op()); else return false; return CanBeImmediate(value, mode); } bool CanBeImmediate(int64_t value, OperandModes mode) { if (mode & OperandMode::kShift32Imm) return 0 <= value && value < 32; else if (mode & OperandMode::kShift64Imm) return 0 <= value && value < 64; else if (mode & OperandMode::kInt32Imm) return is_int32(value); else if (mode & OperandMode::kInt32Imm_Negate) return is_int32(-value); else if (mode & OperandMode::kUint32Imm) return is_uint32(value); else if (mode & OperandMode::kInt20Imm) return is_int20(value); else if (mode & OperandMode::kUint12Imm) return is_uint12(value); else return false; } bool CanBeMemoryOperand(InstructionCode opcode, Node* user, Node* input, int effect_level) { if (input->opcode() != IrOpcode::kLoad || !selector()->CanCover(user, input)) { return false; } if (effect_level != selector()->GetEffectLevel(input)) { return false; } MachineRepresentation rep = LoadRepresentationOf(input->op()).representation(); switch (opcode) { case kS390_Cmp64: case kS390_LoadAndTestWord64: return rep == MachineRepresentation::kWord64 || IsAnyTagged(rep); case kS390_LoadAndTestWord32: case kS390_Cmp32: return rep == MachineRepresentation::kWord32; default: break; } return false; } AddressingMode GenerateMemoryOperandInputs(Node* index, Node* base, Node* displacement, DisplacementMode displacement_mode, InstructionOperand inputs[], size_t* input_count) { AddressingMode mode = kMode_MRI; if (base != nullptr) { inputs[(*input_count)++] = UseRegister(base); if (index != nullptr) { inputs[(*input_count)++] = UseRegister(index); if (displacement != nullptr) { inputs[(*input_count)++] = displacement_mode ? UseNegatedImmediate(displacement) : UseImmediate(displacement); mode = kMode_MRRI; } else { mode = kMode_MRR; } } else { if (displacement == nullptr) { mode = kMode_MR; } else { inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement ? UseNegatedImmediate(displacement) : UseImmediate(displacement); mode = kMode_MRI; } } } else { DCHECK_NOT_NULL(index); inputs[(*input_count)++] = UseRegister(index); if (displacement != nullptr) { inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement ? UseNegatedImmediate(displacement) : UseImmediate(displacement); mode = kMode_MRI; } else { mode = kMode_MR; } } return mode; } AddressingMode GetEffectiveAddressMemoryOperand( Node* operand, InstructionOperand inputs[], size_t* input_count, OperandModes immediate_mode = OperandMode::kInt20Imm) { #if V8_TARGET_ARCH_S390X BaseWithIndexAndDisplacement64Matcher m(operand, AddressOption::kAllowInputSwap); #else BaseWithIndexAndDisplacement32Matcher m(operand, AddressOption::kAllowInputSwap); #endif DCHECK(m.matches()); if ((m.displacement() == nullptr || CanBeImmediate(m.displacement(), immediate_mode))) { DCHECK_EQ(0, m.scale()); return GenerateMemoryOperandInputs(m.index(), m.base(), m.displacement(), m.displacement_mode(), inputs, input_count); } else { inputs[(*input_count)++] = UseRegister(operand->InputAt(0)); inputs[(*input_count)++] = UseRegister(operand->InputAt(1)); return kMode_MRR; } } bool CanBeBetterLeftOperand(Node* node) const { return !selector()->IsLive(node); } MachineRepresentation GetRepresentation(Node* node) { return sequence()->GetRepresentation(selector()->GetVirtualRegister(node)); } bool Is64BitOperand(Node* node) { return MachineRepresentation::kWord64 == GetRepresentation(node); } // Use the stack pointer if the node is LoadStackPointer, otherwise assign a // register. InstructionOperand UseRegisterOrStackPointer(Node* node) { if (node->opcode() == IrOpcode::kLoadStackPointer) { return LocationOperand(LocationOperand::EXPLICIT, LocationOperand::REGISTER, MachineRepresentation::kWord32, sp.code()); } return UseRegister(node); } }; namespace { bool S390OpcodeOnlySupport12BitDisp(ArchOpcode opcode) { switch (opcode) { case kS390_AddFloat: case kS390_AddDouble: case kS390_CmpFloat: case kS390_CmpDouble: case kS390_Float32ToDouble: return true; default: return false; } } bool S390OpcodeOnlySupport12BitDisp(InstructionCode op) { ArchOpcode opcode = ArchOpcodeField::decode(op); return S390OpcodeOnlySupport12BitDisp(opcode); } #define OpcodeImmMode(op) \ (S390OpcodeOnlySupport12BitDisp(op) ? OperandMode::kUint12Imm \ : OperandMode::kInt20Imm) ArchOpcode SelectLoadOpcode(Node* node) { NodeMatcher m(node); DCHECK(m.IsLoad() || m.IsPoisonedLoad()); LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kS390_LoadFloat32; break; case MachineRepresentation::kFloat64: opcode = kS390_LoadDouble; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kS390_LoadWordS8 : kS390_LoadWordU8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kS390_LoadWordS16 : kS390_LoadWordU16; break; #if !V8_TARGET_ARCH_S390X case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. #endif case MachineRepresentation::kWord32: opcode = kS390_LoadWordU32; break; #if V8_TARGET_ARCH_S390X case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kS390_LoadWord64; break; #else case MachineRepresentation::kWord64: // Fall through. #endif case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: default: UNREACHABLE(); } return opcode; } #define RESULT_IS_WORD32_LIST(V) \ /* Float unary op*/ \ V(BitcastFloat32ToInt32) \ /* V(TruncateFloat64ToWord32) */ \ V(RoundFloat64ToInt32) \ V(TruncateFloat32ToInt32) \ V(TruncateFloat32ToUint32) \ V(TruncateFloat64ToUint32) \ V(ChangeFloat64ToInt32) \ V(ChangeFloat64ToUint32) \ /* Word32 unary op */ \ V(Word32Clz) \ V(Word32Popcnt) \ V(Float64ExtractLowWord32) \ V(Float64ExtractHighWord32) \ V(SignExtendWord8ToInt32) \ V(SignExtendWord16ToInt32) \ /* Word32 bin op */ \ V(Int32Add) \ V(Int32Sub) \ V(Int32Mul) \ V(Int32AddWithOverflow) \ V(Int32SubWithOverflow) \ V(Int32MulWithOverflow) \ V(Int32MulHigh) \ V(Uint32MulHigh) \ V(Int32Div) \ V(Uint32Div) \ V(Int32Mod) \ V(Uint32Mod) \ V(Word32Ror) \ V(Word32And) \ V(Word32Or) \ V(Word32Xor) \ V(Word32Shl) \ V(Word32Shr) \ V(Word32Sar) bool ProduceWord32Result(Node* node) { #if !V8_TARGET_ARCH_S390X return true; #else switch (node->opcode()) { #define VISITOR(name) case IrOpcode::k##name: RESULT_IS_WORD32_LIST(VISITOR) #undef VISITOR return true; // TODO(john.yan): consider the following case to be valid // case IrOpcode::kWord32Equal: // case IrOpcode::kInt32LessThan: // case IrOpcode::kInt32LessThanOrEqual: // case IrOpcode::kUint32LessThan: // case IrOpcode::kUint32LessThanOrEqual: // case IrOpcode::kUint32MulHigh: // // These 32-bit operations implicitly zero-extend to 64-bit on x64, so // the // // zero-extension is a no-op. // return true; // case IrOpcode::kProjection: { // Node* const value = node->InputAt(0); // switch (value->opcode()) { // case IrOpcode::kInt32AddWithOverflow: // case IrOpcode::kInt32SubWithOverflow: // case IrOpcode::kInt32MulWithOverflow: // return true; // default: // return false; // } // } case IrOpcode::kLoad: { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); switch (load_rep.representation()) { case MachineRepresentation::kWord32: return true; case MachineRepresentation::kWord8: if (load_rep.IsSigned()) return false; else return true; default: return false; } } default: return false; } #endif } static inline bool DoZeroExtForResult(Node* node) { #if V8_TARGET_ARCH_S390X return ProduceWord32Result(node); #else return false; #endif } // TODO(john.yan): Create VisiteShift to match dst = src shift (R+I) #if 0 void VisitShift() { } #endif #if V8_TARGET_ARCH_S390X void VisitTryTruncateDouble(InstructionSelector* selector, ArchOpcode opcode, Node* node) { S390OperandGenerator g(selector); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } selector->Emit(opcode, output_count, outputs, 1, inputs); } #endif template <class CanCombineWithLoad> void GenerateRightOperands(InstructionSelector* selector, Node* node, Node* right, InstructionCode& opcode, OperandModes& operand_mode, InstructionOperand* inputs, size_t& input_count, CanCombineWithLoad canCombineWithLoad) { S390OperandGenerator g(selector); if ((operand_mode & OperandMode::kAllowImmediate) && g.CanBeImmediate(right, operand_mode)) { inputs[input_count++] = g.UseImmediate(right); // Can only be RI or RRI operand_mode &= OperandMode::kAllowImmediate; } else if (operand_mode & OperandMode::kAllowMemoryOperand) { NodeMatcher mright(right); if (mright.IsLoad() && selector->CanCover(node, right) && canCombineWithLoad(SelectLoadOpcode(right))) { AddressingMode mode = g.GetEffectiveAddressMemoryOperand( right, inputs, &input_count, OpcodeImmMode(opcode)); opcode |= AddressingModeField::encode(mode); operand_mode &= ~OperandMode::kAllowImmediate; if (operand_mode & OperandMode::kAllowRM) operand_mode &= ~OperandMode::kAllowDistinctOps; } else if (operand_mode & OperandMode::kAllowRM) { DCHECK(!(operand_mode & OperandMode::kAllowRRM)); inputs[input_count++] = g.UseAnyExceptImmediate(right); // Can not be Immediate operand_mode &= ~OperandMode::kAllowImmediate & ~OperandMode::kAllowDistinctOps; } else if (operand_mode & OperandMode::kAllowRRM) { DCHECK(!(operand_mode & OperandMode::kAllowRM)); inputs[input_count++] = g.UseAnyExceptImmediate(right); // Can not be Immediate operand_mode &= ~OperandMode::kAllowImmediate; } else { UNREACHABLE(); } } else { inputs[input_count++] = g.UseRegister(right); // Can only be RR or RRR operand_mode &= OperandMode::kAllowRRR; } } template <class CanCombineWithLoad> void GenerateBinOpOperands(InstructionSelector* selector, Node* node, Node* left, Node* right, InstructionCode& opcode, OperandModes& operand_mode, InstructionOperand* inputs, size_t& input_count, CanCombineWithLoad canCombineWithLoad) { S390OperandGenerator g(selector); // left is always register InstructionOperand const left_input = g.UseRegister(left); inputs[input_count++] = left_input; if (left == right) { inputs[input_count++] = left_input; // Can only be RR or RRR operand_mode &= OperandMode::kAllowRRR; } else { GenerateRightOperands(selector, node, right, opcode, operand_mode, inputs, input_count, canCombineWithLoad); } } template <class CanCombineWithLoad> void VisitUnaryOp(InstructionSelector* selector, Node* node, InstructionCode opcode, OperandModes operand_mode, FlagsContinuation* cont, CanCombineWithLoad canCombineWithLoad); template <class CanCombineWithLoad> void VisitBinOp(InstructionSelector* selector, Node* node, InstructionCode opcode, OperandModes operand_mode, FlagsContinuation* cont, CanCombineWithLoad canCombineWithLoad); // Generate The following variations: // VisitWord32UnaryOp, VisitWord32BinOp, // VisitWord64UnaryOp, VisitWord64BinOp, // VisitFloat32UnaryOp, VisitFloat32BinOp, // VisitFloat64UnaryOp, VisitFloat64BinOp #define VISIT_OP_LIST_32(V) \ V(Word32, Unary, [](ArchOpcode opcode) { \ return opcode == kS390_LoadWordS32 || opcode == kS390_LoadWordU32; \ }) \ V(Word64, Unary, \ [](ArchOpcode opcode) { return opcode == kS390_LoadWord64; }) \ V(Float32, Unary, \ [](ArchOpcode opcode) { return opcode == kS390_LoadFloat32; }) \ V(Float64, Unary, \ [](ArchOpcode opcode) { return opcode == kS390_LoadDouble; }) \ V(Word32, Bin, [](ArchOpcode opcode) { \ return opcode == kS390_LoadWordS32 || opcode == kS390_LoadWordU32; \ }) \ V(Float32, Bin, \ [](ArchOpcode opcode) { return opcode == kS390_LoadFloat32; }) \ V(Float64, Bin, [](ArchOpcode opcode) { return opcode == kS390_LoadDouble; }) #if V8_TARGET_ARCH_S390X #define VISIT_OP_LIST(V) \ VISIT_OP_LIST_32(V) \ V(Word64, Bin, [](ArchOpcode opcode) { return opcode == kS390_LoadWord64; }) #else #define VISIT_OP_LIST VISIT_OP_LIST_32 #endif #define DECLARE_VISIT_HELPER_FUNCTIONS(type1, type2, canCombineWithLoad) \ static inline void Visit##type1##type2##Op( \ InstructionSelector* selector, Node* node, InstructionCode opcode, \ OperandModes operand_mode, FlagsContinuation* cont) { \ Visit##type2##Op(selector, node, opcode, operand_mode, cont, \ canCombineWithLoad); \ } \ static inline void Visit##type1##type2##Op( \ InstructionSelector* selector, Node* node, InstructionCode opcode, \ OperandModes operand_mode) { \ FlagsContinuation cont; \ Visit##type1##type2##Op(selector, node, opcode, operand_mode, &cont); \ } VISIT_OP_LIST(DECLARE_VISIT_HELPER_FUNCTIONS); #undef DECLARE_VISIT_HELPER_FUNCTIONS #undef VISIT_OP_LIST_32 #undef VISIT_OP_LIST template <class CanCombineWithLoad> void VisitUnaryOp(InstructionSelector* selector, Node* node, InstructionCode opcode, OperandModes operand_mode, FlagsContinuation* cont, CanCombineWithLoad canCombineWithLoad) { S390OperandGenerator g(selector); InstructionOperand inputs[8]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; Node* input = node->InputAt(0); GenerateRightOperands(selector, node, input, opcode, operand_mode, inputs, input_count, canCombineWithLoad); bool input_is_word32 = ProduceWord32Result(input); bool doZeroExt = DoZeroExtForResult(node); bool canEliminateZeroExt = input_is_word32; if (doZeroExt) { // Add zero-ext indication inputs[input_count++] = g.TempImmediate(!canEliminateZeroExt); } if (!cont->IsDeoptimize()) { // If we can deoptimize as a result of the binop, we need to make sure // that the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. if (doZeroExt && canEliminateZeroExt) { // we have to make sure result and left use the same register outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } } else { outputs[output_count++] = g.DefineSameAsFirst(node); } DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } template <class CanCombineWithLoad> void VisitBinOp(InstructionSelector* selector, Node* node, InstructionCode opcode, OperandModes operand_mode, FlagsContinuation* cont, CanCombineWithLoad canCombineWithLoad) { S390OperandGenerator g(selector); Int32BinopMatcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); InstructionOperand inputs[8]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; if (node->op()->HasProperty(Operator::kCommutative) && !g.CanBeImmediate(right, operand_mode) && (g.CanBeBetterLeftOperand(right))) { std::swap(left, right); } GenerateBinOpOperands(selector, node, left, right, opcode, operand_mode, inputs, input_count, canCombineWithLoad); bool left_is_word32 = ProduceWord32Result(left); bool doZeroExt = DoZeroExtForResult(node); bool canEliminateZeroExt = left_is_word32; if (doZeroExt) { // Add zero-ext indication inputs[input_count++] = g.TempImmediate(!canEliminateZeroExt); } if ((operand_mode & OperandMode::kAllowDistinctOps) && // If we can deoptimize as a result of the binop, we need to make sure // that the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. !cont->IsDeoptimize()) { if (doZeroExt && canEliminateZeroExt) { // we have to make sure result and left use the same register outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } } else { outputs[output_count++] = g.DefineSameAsFirst(node); } DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } } // namespace void InstructionSelector::VisitStackSlot(Node* node) { StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); int slot = frame_->AllocateSpillSlot(rep.size()); OperandGenerator g(this); Emit(kArchStackSlot, g.DefineAsRegister(node), sequence()->AddImmediate(Constant(slot)), 0, nullptr); } void InstructionSelector::VisitDebugAbort(Node* node) { S390OperandGenerator g(this); Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), r3)); } void InstructionSelector::VisitLoad(Node* node) { S390OperandGenerator g(this); InstructionCode opcode = SelectLoadOpcode(node); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionOperand inputs[3]; size_t input_count = 0; AddressingMode mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); opcode |= AddressingModeField::encode(mode); if (node->opcode() == IrOpcode::kPoisonedLoad) { CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); opcode |= MiscField::encode(kMemoryAccessPoisoned); } Emit(opcode, 1, outputs, input_count, inputs); } void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { S390OperandGenerator g(this); Node* base = node->InputAt(0); Node* offset = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); if (write_barrier_kind != kNoWriteBarrier) { DCHECK(CanBeTaggedPointer(rep)); AddressingMode addressing_mode; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); // OutOfLineRecordWrite uses the offset in an 'AddP' instruction as well as // for the store itself, so we must check compatibility with both. if (g.CanBeImmediate(offset, OperandMode::kInt20Imm)) { inputs[input_count++] = g.UseImmediate(offset); addressing_mode = kMode_MRI; } else { inputs[input_count++] = g.UseUniqueRegister(offset); addressing_mode = kMode_MRR; } inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; switch (write_barrier_kind) { case kNoWriteBarrier: UNREACHABLE(); break; case kMapWriteBarrier: record_write_mode = RecordWriteMode::kValueIsMap; break; case kPointerWriteBarrier: record_write_mode = RecordWriteMode::kValueIsPointer; break; case kFullWriteBarrier: record_write_mode = RecordWriteMode::kValueIsAny; break; } InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t const temp_count = arraysize(temps); InstructionCode code = kArchStoreWithWriteBarrier; code |= AddressingModeField::encode(addressing_mode); code |= MiscField::encode(static_cast<int>(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); } else { ArchOpcode opcode = kArchNop; NodeMatcher m(value); switch (rep) { case MachineRepresentation::kFloat32: opcode = kS390_StoreFloat32; break; case MachineRepresentation::kFloat64: opcode = kS390_StoreDouble; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kS390_StoreWord8; break; case MachineRepresentation::kWord16: opcode = kS390_StoreWord16; break; #if !V8_TARGET_ARCH_S390X case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. #endif case MachineRepresentation::kWord32: opcode = kS390_StoreWord32; if (m.IsWord32ReverseBytes()) { opcode = kS390_StoreReverse32; value = value->InputAt(0); } break; #if V8_TARGET_ARCH_S390X case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kS390_StoreWord64; if (m.IsWord64ReverseBytes()) { opcode = kS390_StoreReverse64; value = value->InputAt(0); } break; #else case MachineRepresentation::kWord64: // Fall through. #endif case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand inputs[4]; size_t input_count = 0; AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); InstructionOperand value_operand = g.UseRegister(value); inputs[input_count++] = value_operand; Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, inputs); } } void InstructionSelector::VisitProtectedStore(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } // Architecture supports unaligned access, therefore VisitLoad is used instead void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } // Architecture supports unaligned access, therefore VisitStore is used instead void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } #if 0 static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) { int mask_width = base::bits::CountPopulation(value); int mask_msb = base::bits::CountLeadingZeros32(value); int mask_lsb = base::bits::CountTrailingZeros32(value); if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32)) return false; *mb = mask_lsb + mask_width - 1; *me = mask_lsb; return true; } #endif #if V8_TARGET_ARCH_S390X static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) { int mask_width = base::bits::CountPopulation(value); int mask_msb = base::bits::CountLeadingZeros64(value); int mask_lsb = base::bits::CountTrailingZeros64(value); if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64)) return false; *mb = mask_lsb + mask_width - 1; *me = mask_lsb; return true; } #endif #if V8_TARGET_ARCH_S390X void InstructionSelector::VisitWord64And(Node* node) { S390OperandGenerator g(this); Int64BinopMatcher m(node); int mb = 0; int me = 0; if (m.right().HasValue() && IsContiguousMask64(m.right().Value(), &mb, &me)) { int sh = 0; Node* left = m.left().node(); if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) && CanCover(node, left)) { Int64BinopMatcher mleft(m.left().node()); if (mleft.right().IsInRange(0, 63)) { left = mleft.left().node(); sh = mleft.right().Value(); if (m.left().IsWord64Shr()) { // Adjust the mask such that it doesn't include any rotated bits. if (mb > 63 - sh) mb = 63 - sh; sh = (64 - sh) & 0x3F; } else { // Adjust the mask such that it doesn't include any rotated bits. if (me < sh) me = sh; } } } if (mb >= me) { bool match = false; ArchOpcode opcode; int mask; if (me == 0) { match = true; opcode = kS390_RotLeftAndClearLeft64; mask = mb; } else if (mb == 63) { match = true; opcode = kS390_RotLeftAndClearRight64; mask = me; } else if (sh && me <= sh && m.left().IsWord64Shl()) { match = true; opcode = kS390_RotLeftAndClear64; mask = mb; } if (match && CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left), g.TempImmediate(sh), g.TempImmediate(mask)); return; } } } VisitWord64BinOp(this, node, kS390_And64, And64OperandMode); } void InstructionSelector::VisitWord64Shl(Node* node) { S390OperandGenerator g(this); Int64BinopMatcher m(node); // TODO(mbrandy): eliminate left sign extension if right >= 32 if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { Int64BinopMatcher mleft(m.left().node()); int sh = m.right().Value(); int mb; int me; if (mleft.right().HasValue() && IsContiguousMask64(mleft.right().Value() << sh, &mb, &me)) { // Adjust the mask such that it doesn't include any rotated bits. if (me < sh) me = sh; if (mb >= me) { bool match = false; ArchOpcode opcode; int mask; if (me == 0) { match = true; opcode = kS390_RotLeftAndClearLeft64; mask = mb; } else if (mb == 63) { match = true; opcode = kS390_RotLeftAndClearRight64; mask = me; } else if (sh && me <= sh) { match = true; opcode = kS390_RotLeftAndClear64; mask = mb; } if (match && CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { Emit(opcode, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sh), g.TempImmediate(mask)); return; } } } } VisitWord64BinOp(this, node, kS390_ShiftLeft64, Shift64OperandMode); } void InstructionSelector::VisitWord64Shr(Node* node) { S390OperandGenerator g(this); Int64BinopMatcher m(node); if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { Int64BinopMatcher mleft(m.left().node()); int sh = m.right().Value(); int mb; int me; if (mleft.right().HasValue() && IsContiguousMask64((uint64_t)(mleft.right().Value()) >> sh, &mb, &me)) { // Adjust the mask such that it doesn't include any rotated bits. if (mb > 63 - sh) mb = 63 - sh; sh = (64 - sh) & 0x3F; if (mb >= me) { bool match = false; ArchOpcode opcode; int mask; if (me == 0) { match = true; opcode = kS390_RotLeftAndClearLeft64; mask = mb; } else if (mb == 63) { match = true; opcode = kS390_RotLeftAndClearRight64; mask = me; } if (match) { Emit(opcode, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sh), g.TempImmediate(mask)); return; } } } } VisitWord64BinOp(this, node, kS390_ShiftRight64, Shift64OperandMode); } #endif static inline bool TryMatchSignExtInt16OrInt8FromWord32Sar( InstructionSelector* selector, Node* node) { S390OperandGenerator g(selector); Int32BinopMatcher m(node); if (selector->CanCover(node, m.left().node()) && m.left().IsWord32Shl()) { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(16) && m.right().Is(16)) { bool canEliminateZeroExt = ProduceWord32Result(mleft.left().node()); selector->Emit(kS390_SignExtendWord16ToInt32, canEliminateZeroExt ? g.DefineSameAsFirst(node) : g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(!canEliminateZeroExt)); return true; } else if (mleft.right().Is(24) && m.right().Is(24)) { bool canEliminateZeroExt = ProduceWord32Result(mleft.left().node()); selector->Emit(kS390_SignExtendWord8ToInt32, canEliminateZeroExt ? g.DefineSameAsFirst(node) : g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(!canEliminateZeroExt)); return true; } } return false; } #if !V8_TARGET_ARCH_S390X void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode, InstructionCode opcode2, Node* node) { S390OperandGenerator g(selector); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the output // registers. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; selector->Emit(opcode, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. selector->Emit(opcode2, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2)), g.TempImmediate(0)); } } void InstructionSelector::VisitInt32PairAdd(Node* node) { VisitPairBinop(this, kS390_AddPair, kS390_Add32, node); } void InstructionSelector::VisitInt32PairSub(Node* node) { VisitPairBinop(this, kS390_SubPair, kS390_Sub32, node); } void InstructionSelector::VisitInt32PairMul(Node* node) { S390OperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseUniqueRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kS390_MulPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kS390_Mul32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(2)), g.TempImmediate(0)); } } namespace { // Shared routine for multiple shift operations. void VisitPairShift(InstructionSelector* selector, InstructionCode opcode, Node* node) { S390OperandGenerator g(selector); // We use g.UseUniqueRegister here to guarantee that there is // no register aliasing of input registers with output registers. Int32Matcher m(node->InputAt(2)); InstructionOperand shift_operand; if (m.HasValue()) { shift_operand = g.UseImmediate(m.node()); } else { shift_operand = g.UseUniqueRegister(m.node()); } InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), shift_operand}; Node* projection1 = NodeProperties::FindProjection(node, 1); InstructionOperand outputs[2]; InstructionOperand temps[1]; int32_t output_count = 0; int32_t temp_count = 0; outputs[output_count++] = g.DefineAsRegister(node); if (projection1) { outputs[output_count++] = g.DefineAsRegister(projection1); } else { temps[temp_count++] = g.TempRegister(); } selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); } } // namespace void InstructionSelector::VisitWord32PairShl(Node* node) { VisitPairShift(this, kS390_ShiftLeftPair, node); } void InstructionSelector::VisitWord32PairShr(Node* node) { VisitPairShift(this, kS390_ShiftRightPair, node); } void InstructionSelector::VisitWord32PairSar(Node* node) { VisitPairShift(this, kS390_ShiftRightArithPair, node); } #endif void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } #if V8_TARGET_ARCH_S390X void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); } #endif void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } #if V8_TARGET_ARCH_S390X void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } #endif void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { VisitWord32UnaryOp(this, node, kS390_Abs32, OperandMode::kNone); } void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { VisitWord64UnaryOp(this, node, kS390_Abs64, OperandMode::kNone); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { S390OperandGenerator g(this); Emit(kS390_LoadReverse64RR, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { S390OperandGenerator g(this); NodeMatcher input(node->InputAt(0)); if (CanCover(node, input.node()) && input.IsLoad()) { LoadRepresentation load_rep = LoadRepresentationOf(input.node()->op()); if (load_rep.representation() == MachineRepresentation::kWord32) { Node* base = input.node()->InputAt(0); Node* offset = input.node()->InputAt(1); Emit(kS390_LoadReverse32 | AddressingModeField::encode(kMode_MRR), // TODO(john.yan): one of the base and offset can be imm. g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset)); return; } } Emit(kS390_LoadReverse32RR, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } template <class Matcher, ArchOpcode neg_opcode> static inline bool TryMatchNegFromSub(InstructionSelector* selector, Node* node) { S390OperandGenerator g(selector); Matcher m(node); static_assert(neg_opcode == kS390_Neg32 || neg_opcode == kS390_Neg64, "Provided opcode is not a Neg opcode."); if (m.left().Is(0)) { Node* value = m.right().node(); bool doZeroExt = DoZeroExtForResult(node); bool canEliminateZeroExt = ProduceWord32Result(value); if (doZeroExt) { selector->Emit(neg_opcode, canEliminateZeroExt ? g.DefineSameAsFirst(node) : g.DefineAsRegister(node), g.UseRegister(value), g.TempImmediate(!canEliminateZeroExt)); } else { selector->Emit(neg_opcode, g.DefineAsRegister(node), g.UseRegister(value)); } return true; } return false; } template <class Matcher, ArchOpcode shift_op> bool TryMatchShiftFromMul(InstructionSelector* selector, Node* node) { S390OperandGenerator g(selector); Matcher m(node); Node* left = m.left().node(); Node* right = m.right().node(); if (g.CanBeImmediate(right, OperandMode::kInt32Imm) && base::bits::IsPowerOfTwo(g.GetImmediate(right))) { int power = 63 - base::bits::CountLeadingZeros64(g.GetImmediate(right)); bool doZeroExt = DoZeroExtForResult(node); bool canEliminateZeroExt = ProduceWord32Result(left); InstructionOperand dst = (doZeroExt && !canEliminateZeroExt && CpuFeatures::IsSupported(DISTINCT_OPS)) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node); if (doZeroExt) { selector->Emit(shift_op, dst, g.UseRegister(left), g.UseImmediate(power), g.TempImmediate(!canEliminateZeroExt)); } else { selector->Emit(shift_op, dst, g.UseRegister(left), g.UseImmediate(power)); } return true; } return false; } template <ArchOpcode opcode> static inline bool TryMatchInt32OpWithOverflow(InstructionSelector* selector, Node* node, OperandModes mode) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); VisitWord32BinOp(selector, node, opcode, mode, &cont); return true; } return false; } static inline bool TryMatchInt32AddWithOverflow(InstructionSelector* selector, Node* node) { return TryMatchInt32OpWithOverflow<kS390_Add32>(selector, node, AddOperandMode); } static inline bool TryMatchInt32SubWithOverflow(InstructionSelector* selector, Node* node) { return TryMatchInt32OpWithOverflow<kS390_Sub32>(selector, node, SubOperandMode); } static inline bool TryMatchInt32MulWithOverflow(InstructionSelector* selector, Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) { TryMatchInt32OpWithOverflow<kS390_Mul32>( selector, node, OperandMode::kAllowRRR | OperandMode::kAllowRM); } else { FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); VisitWord32BinOp(selector, node, kS390_Mul32WithOverflow, OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, &cont); } return true; } return TryMatchShiftFromMul<Int32BinopMatcher, kS390_ShiftLeft32>(selector, node); } #if V8_TARGET_ARCH_S390X template <ArchOpcode opcode> static inline bool TryMatchInt64OpWithOverflow(InstructionSelector* selector, Node* node, OperandModes mode) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); VisitWord64BinOp(selector, node, opcode, mode, &cont); return true; } return false; } static inline bool TryMatchInt64AddWithOverflow(InstructionSelector* selector, Node* node) { return TryMatchInt64OpWithOverflow<kS390_Add64>(selector, node, AddOperandMode); } static inline bool TryMatchInt64SubWithOverflow(InstructionSelector* selector, Node* node) { return TryMatchInt64OpWithOverflow<kS390_Sub64>(selector, node, SubOperandMode); } #endif static inline bool TryMatchDoubleConstructFromInsert( InstructionSelector* selector, Node* node) { S390OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Node* lo32 = nullptr; Node* hi32 = nullptr; if (node->opcode() == IrOpcode::kFloat64InsertLowWord32) { lo32 = right; } else if (node->opcode() == IrOpcode::kFloat64InsertHighWord32) { hi32 = right; } else { return false; // doesn't match } if (left->opcode() == IrOpcode::kFloat64InsertLowWord32) { lo32 = left->InputAt(1); } else if (left->opcode() == IrOpcode::kFloat64InsertHighWord32) { hi32 = left->InputAt(1); } else { return false; // doesn't match } if (!lo32 || !hi32) return false; // doesn't match selector->Emit(kS390_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(hi32), g.UseRegister(lo32)); return true; } #define null ([]() { return false; }) // TODO(john.yan): place kAllowRM where available #define FLOAT_UNARY_OP_LIST_32(V) \ V(Float32, ChangeFloat32ToFloat64, kS390_Float32ToDouble, \ OperandMode::kAllowRM, null) \ V(Float32, BitcastFloat32ToInt32, kS390_BitcastFloat32ToInt32, \ OperandMode::kAllowRM, null) \ V(Float64, TruncateFloat64ToFloat32, kS390_DoubleToFloat32, \ OperandMode::kNone, null) \ V(Float64, TruncateFloat64ToWord32, kArchTruncateDoubleToI, \ OperandMode::kNone, null) \ V(Float64, RoundFloat64ToInt32, kS390_DoubleToInt32, OperandMode::kNone, \ null) \ V(Float32, TruncateFloat32ToInt32, kS390_Float32ToInt32, OperandMode::kNone, \ null) \ V(Float32, TruncateFloat32ToUint32, kS390_Float32ToUint32, \ OperandMode::kNone, null) \ V(Float64, TruncateFloat64ToUint32, kS390_DoubleToUint32, \ OperandMode::kNone, null) \ V(Float64, ChangeFloat64ToInt32, kS390_DoubleToInt32, OperandMode::kNone, \ null) \ V(Float64, ChangeFloat64ToUint32, kS390_DoubleToUint32, OperandMode::kNone, \ null) \ V(Float64, Float64SilenceNaN, kS390_Float64SilenceNaN, OperandMode::kNone, \ null) \ V(Float32, Float32Abs, kS390_AbsFloat, OperandMode::kNone, null) \ V(Float64, Float64Abs, kS390_AbsDouble, OperandMode::kNone, null) \ V(Float32, Float32Sqrt, kS390_SqrtFloat, OperandMode::kNone, null) \ V(Float64, Float64Sqrt, kS390_SqrtDouble, OperandMode::kNone, null) \ V(Float32, Float32RoundDown, kS390_FloorFloat, OperandMode::kNone, null) \ V(Float64, Float64RoundDown, kS390_FloorDouble, OperandMode::kNone, null) \ V(Float32, Float32RoundUp, kS390_CeilFloat, OperandMode::kNone, null) \ V(Float64, Float64RoundUp, kS390_CeilDouble, OperandMode::kNone, null) \ V(Float32, Float32RoundTruncate, kS390_TruncateFloat, OperandMode::kNone, \ null) \ V(Float64, Float64RoundTruncate, kS390_TruncateDouble, OperandMode::kNone, \ null) \ V(Float64, Float64RoundTiesAway, kS390_RoundDouble, OperandMode::kNone, \ null) \ V(Float32, Float32Neg, kS390_NegFloat, OperandMode::kNone, null) \ V(Float64, Float64Neg, kS390_NegDouble, OperandMode::kNone, null) \ /* TODO(john.yan): can use kAllowRM */ \ V(Word32, Float64ExtractLowWord32, kS390_DoubleExtractLowWord32, \ OperandMode::kNone, null) \ V(Word32, Float64ExtractHighWord32, kS390_DoubleExtractHighWord32, \ OperandMode::kNone, null) #define FLOAT_BIN_OP_LIST(V) \ V(Float32, Float32Add, kS390_AddFloat, OperandMode::kAllowRM, null) \ V(Float64, Float64Add, kS390_AddDouble, OperandMode::kAllowRM, null) \ V(Float32, Float32Sub, kS390_SubFloat, OperandMode::kAllowRM, null) \ V(Float64, Float64Sub, kS390_SubDouble, OperandMode::kAllowRM, null) \ V(Float32, Float32Mul, kS390_MulFloat, OperandMode::kAllowRM, null) \ V(Float64, Float64Mul, kS390_MulDouble, OperandMode::kAllowRM, null) \ V(Float32, Float32Div, kS390_DivFloat, OperandMode::kAllowRM, null) \ V(Float64, Float64Div, kS390_DivDouble, OperandMode::kAllowRM, null) \ V(Float32, Float32Max, kS390_MaxFloat, OperandMode::kNone, null) \ V(Float64, Float64Max, kS390_MaxDouble, OperandMode::kNone, null) \ V(Float32, Float32Min, kS390_MinFloat, OperandMode::kNone, null) \ V(Float64, Float64Min, kS390_MinDouble, OperandMode::kNone, null) #define WORD32_UNARY_OP_LIST_32(V) \ V(Word32, Word32Clz, kS390_Cntlz32, OperandMode::kNone, null) \ V(Word32, Word32Popcnt, kS390_Popcnt32, OperandMode::kNone, null) \ V(Word32, RoundInt32ToFloat32, kS390_Int32ToFloat32, OperandMode::kNone, \ null) \ V(Word32, RoundUint32ToFloat32, kS390_Uint32ToFloat32, OperandMode::kNone, \ null) \ V(Word32, ChangeInt32ToFloat64, kS390_Int32ToDouble, OperandMode::kNone, \ null) \ V(Word32, ChangeUint32ToFloat64, kS390_Uint32ToDouble, OperandMode::kNone, \ null) \ V(Word32, SignExtendWord8ToInt32, kS390_SignExtendWord8ToInt32, \ OperandMode::kNone, null) \ V(Word32, SignExtendWord16ToInt32, kS390_SignExtendWord16ToInt32, \ OperandMode::kNone, null) \ V(Word32, BitcastInt32ToFloat32, kS390_BitcastInt32ToFloat32, \ OperandMode::kNone, null) #ifdef V8_TARGET_ARCH_S390X #define FLOAT_UNARY_OP_LIST(V) \ FLOAT_UNARY_OP_LIST_32(V) \ V(Float64, ChangeFloat64ToUint64, kS390_DoubleToUint64, OperandMode::kNone, \ null) \ V(Float64, BitcastFloat64ToInt64, kS390_BitcastDoubleToInt64, \ OperandMode::kNone, null) #define WORD32_UNARY_OP_LIST(V) \ WORD32_UNARY_OP_LIST_32(V) \ V(Word32, ChangeInt32ToInt64, kS390_SignExtendWord32ToInt64, \ OperandMode::kNone, null) \ V(Word32, SignExtendWord8ToInt64, kS390_SignExtendWord8ToInt64, \ OperandMode::kNone, null) \ V(Word32, SignExtendWord16ToInt64, kS390_SignExtendWord16ToInt64, \ OperandMode::kNone, null) \ V(Word32, SignExtendWord32ToInt64, kS390_SignExtendWord32ToInt64, \ OperandMode::kNone, null) \ V(Word32, ChangeUint32ToUint64, kS390_Uint32ToUint64, OperandMode::kNone, \ [&]() -> bool { \ if (ProduceWord32Result(node->InputAt(0))) { \ EmitIdentity(node); \ return true; \ } \ return false; \ }) #else #define FLOAT_UNARY_OP_LIST(V) FLOAT_UNARY_OP_LIST_32(V) #define WORD32_UNARY_OP_LIST(V) WORD32_UNARY_OP_LIST_32(V) #endif #define WORD32_BIN_OP_LIST(V) \ V(Word32, Int32Add, kS390_Add32, AddOperandMode, null) \ V(Word32, Int32Sub, kS390_Sub32, SubOperandMode, ([&]() { \ return TryMatchNegFromSub<Int32BinopMatcher, kS390_Neg32>(this, node); \ })) \ V(Word32, Int32Mul, kS390_Mul32, MulOperandMode, ([&]() { \ return TryMatchShiftFromMul<Int32BinopMatcher, kS390_ShiftLeft32>(this, \ node); \ })) \ V(Word32, Int32AddWithOverflow, kS390_Add32, AddOperandMode, \ ([&]() { return TryMatchInt32AddWithOverflow(this, node); })) \ V(Word32, Int32SubWithOverflow, kS390_Sub32, SubOperandMode, \ ([&]() { return TryMatchInt32SubWithOverflow(this, node); })) \ V(Word32, Int32MulWithOverflow, kS390_Mul32, MulOperandMode, \ ([&]() { return TryMatchInt32MulWithOverflow(this, node); })) \ V(Word32, Int32MulHigh, kS390_MulHigh32, \ OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, null) \ V(Word32, Uint32MulHigh, kS390_MulHighU32, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word32, Int32Div, kS390_Div32, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word32, Uint32Div, kS390_DivU32, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word32, Int32Mod, kS390_Mod32, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word32, Uint32Mod, kS390_ModU32, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word32, Word32Ror, kS390_RotRight32, \ OperandMode::kAllowRI | OperandMode::kAllowRRR | OperandMode::kAllowRRI | \ OperandMode::kShift32Imm, \ null) \ V(Word32, Word32And, kS390_And32, And32OperandMode, null) \ V(Word32, Word32Or, kS390_Or32, Or32OperandMode, null) \ V(Word32, Word32Xor, kS390_Xor32, Xor32OperandMode, null) \ V(Word32, Word32Shl, kS390_ShiftLeft32, Shift32OperandMode, null) \ V(Word32, Word32Shr, kS390_ShiftRight32, Shift32OperandMode, null) \ V(Word32, Word32Sar, kS390_ShiftRightArith32, Shift32OperandMode, \ [&]() { return TryMatchSignExtInt16OrInt8FromWord32Sar(this, node); }) \ V(Word32, Float64InsertLowWord32, kS390_DoubleInsertLowWord32, \ OperandMode::kAllowRRR, \ [&]() -> bool { return TryMatchDoubleConstructFromInsert(this, node); }) \ V(Word32, Float64InsertHighWord32, kS390_DoubleInsertHighWord32, \ OperandMode::kAllowRRR, \ [&]() -> bool { return TryMatchDoubleConstructFromInsert(this, node); }) #define WORD64_UNARY_OP_LIST(V) \ V(Word64, Word64Popcnt, kS390_Popcnt64, OperandMode::kNone, null) \ V(Word64, Word64Clz, kS390_Cntlz64, OperandMode::kNone, null) \ V(Word64, TruncateInt64ToInt32, kS390_Int64ToInt32, OperandMode::kNone, \ null) \ V(Word64, RoundInt64ToFloat32, kS390_Int64ToFloat32, OperandMode::kNone, \ null) \ V(Word64, RoundInt64ToFloat64, kS390_Int64ToDouble, OperandMode::kNone, \ null) \ V(Word64, RoundUint64ToFloat32, kS390_Uint64ToFloat32, OperandMode::kNone, \ null) \ V(Word64, RoundUint64ToFloat64, kS390_Uint64ToDouble, OperandMode::kNone, \ null) \ V(Word64, BitcastInt64ToFloat64, kS390_BitcastInt64ToDouble, \ OperandMode::kNone, null) #define WORD64_BIN_OP_LIST(V) \ V(Word64, Int64Add, kS390_Add64, AddOperandMode, null) \ V(Word64, Int64Sub, kS390_Sub64, SubOperandMode, ([&]() { \ return TryMatchNegFromSub<Int64BinopMatcher, kS390_Neg64>(this, node); \ })) \ V(Word64, Int64AddWithOverflow, kS390_Add64, AddOperandMode, \ ([&]() { return TryMatchInt64AddWithOverflow(this, node); })) \ V(Word64, Int64SubWithOverflow, kS390_Sub64, SubOperandMode, \ ([&]() { return TryMatchInt64SubWithOverflow(this, node); })) \ V(Word64, Int64Mul, kS390_Mul64, MulOperandMode, ([&]() { \ return TryMatchShiftFromMul<Int64BinopMatcher, kS390_ShiftLeft64>(this, \ node); \ })) \ V(Word64, Int64Div, kS390_Div64, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word64, Uint64Div, kS390_DivU64, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word64, Int64Mod, kS390_Mod64, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word64, Uint64Mod, kS390_ModU64, \ OperandMode::kAllowRRM | OperandMode::kAllowRRR, null) \ V(Word64, Word64Sar, kS390_ShiftRightArith64, Shift64OperandMode, null) \ V(Word64, Word64Ror, kS390_RotRight64, Shift64OperandMode, null) \ V(Word64, Word64Or, kS390_Or64, Or64OperandMode, null) \ V(Word64, Word64Xor, kS390_Xor64, Xor64OperandMode, null) #define DECLARE_UNARY_OP(type, name, op, mode, try_extra) \ void InstructionSelector::Visit##name(Node* node) { \ if (std::function<bool()>(try_extra)()) return; \ Visit##type##UnaryOp(this, node, op, mode); \ } #define DECLARE_BIN_OP(type, name, op, mode, try_extra) \ void InstructionSelector::Visit##name(Node* node) { \ if (std::function<bool()>(try_extra)()) return; \ Visit##type##BinOp(this, node, op, mode); \ } WORD32_BIN_OP_LIST(DECLARE_BIN_OP); WORD32_UNARY_OP_LIST(DECLARE_UNARY_OP); FLOAT_UNARY_OP_LIST(DECLARE_UNARY_OP); FLOAT_BIN_OP_LIST(DECLARE_BIN_OP); #if V8_TARGET_ARCH_S390X WORD64_UNARY_OP_LIST(DECLARE_UNARY_OP) WORD64_BIN_OP_LIST(DECLARE_BIN_OP) #endif #undef DECLARE_BIN_OP #undef DECLARE_UNARY_OP #undef WORD64_BIN_OP_LIST #undef WORD64_UNARY_OP_LIST #undef WORD32_BIN_OP_LIST #undef WORD32_UNARY_OP_LIST #undef FLOAT_UNARY_OP_LIST #undef WORD32_UNARY_OP_LIST_32 #undef FLOAT_BIN_OP_LIST #undef FLOAT_BIN_OP_LIST_32 #undef null #if V8_TARGET_ARCH_S390X void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { VisitTryTruncateDouble(this, kS390_Float32ToInt64, node); } void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { VisitTryTruncateDouble(this, kS390_DoubleToInt64, node); } void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { VisitTryTruncateDouble(this, kS390_Float32ToUint64, node); } void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { VisitTryTruncateDouble(this, kS390_DoubleToUint64, node); } #endif void InstructionSelector::VisitFloat64Mod(Node* node) { S390OperandGenerator g(this); Emit(kS390_ModDouble, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { S390OperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { S390OperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2)) ->MarkAsCall(); } void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { UNREACHABLE(); } static bool CompareLogical(FlagsContinuation* cont) { switch (cont->condition()) { case kUnsignedLessThan: case kUnsignedGreaterThanOrEqual: case kUnsignedLessThanOrEqual: case kUnsignedGreaterThan: return true; default: return false; } UNREACHABLE(); } namespace { // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { selector->EmitWithContinuation(opcode, left, right, cont); } void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode, Node* node, Node* value, FlagsContinuation* cont, bool discard_output = false); // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont, OperandModes immediate_mode) { S390OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); DCHECK(IrOpcode::IsComparisonOpcode(node->opcode()) || node->opcode() == IrOpcode::kInt32Sub || node->opcode() == IrOpcode::kInt64Sub); InstructionOperand inputs[8]; InstructionOperand outputs[1]; size_t input_count = 0; size_t output_count = 0; // If one of the two inputs is an immediate, make sure it's on the right, or // if one of the two inputs is a memory operand, make sure it's on the left. int effect_level = selector->GetEffectLevel(node); if (cont->IsBranch()) { effect_level = selector->GetEffectLevel( cont->true_block()->PredecessorAt(0)->control_input()); } if ((!g.CanBeImmediate(right, immediate_mode) && g.CanBeImmediate(left, immediate_mode)) || (!g.CanBeMemoryOperand(opcode, node, right, effect_level) && g.CanBeMemoryOperand(opcode, node, left, effect_level))) { if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); std::swap(left, right); } // check if compare with 0 if (g.CanBeImmediate(right, immediate_mode) && g.GetImmediate(right) == 0) { DCHECK(opcode == kS390_Cmp32 || opcode == kS390_Cmp64); ArchOpcode load_and_test = (opcode == kS390_Cmp32) ? kS390_LoadAndTestWord32 : kS390_LoadAndTestWord64; return VisitLoadAndTest(selector, load_and_test, node, left, cont, true); } inputs[input_count++] = g.UseRegisterOrStackPointer(left); if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) { // generate memory operand AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand( right, inputs, &input_count, OpcodeImmMode(opcode)); opcode |= AddressingModeField::encode(addressing_mode); } else if (g.CanBeImmediate(right, immediate_mode)) { inputs[input_count++] = g.UseImmediate(right); } else { inputs[input_count++] = g.UseAnyExceptImmediate(right); } DCHECK(input_count <= 8 && output_count <= 1); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } void VisitWord32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { OperandModes mode = (CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm); VisitWordCompare(selector, node, kS390_Cmp32, cont, mode); } #if V8_TARGET_ARCH_S390X void VisitWord64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { OperandModes mode = (CompareLogical(cont) ? OperandMode::kUint32Imm : OperandMode::kInt32Imm); VisitWordCompare(selector, node, kS390_Cmp64, cont, mode); } #endif // Shared routine for multiple float32 compare operations. void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { VisitWordCompare(selector, node, kS390_CmpFloat, cont, OperandMode::kNone); } // Shared routine for multiple float64 compare operations. void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { VisitWordCompare(selector, node, kS390_CmpDouble, cont, OperandMode::kNone); } void VisitTestUnderMask(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { DCHECK(node->opcode() == IrOpcode::kWord32And || node->opcode() == IrOpcode::kWord64And); ArchOpcode opcode = (node->opcode() == IrOpcode::kWord32And) ? kS390_Tst32 : kS390_Tst64; S390OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (!g.CanBeImmediate(right, OperandMode::kUint32Imm) && g.CanBeImmediate(left, OperandMode::kUint32Imm)) { std::swap(left, right); } VisitCompare(selector, opcode, g.UseRegister(left), g.UseOperand(right, OperandMode::kUint32Imm), cont); } void VisitLoadAndTest(InstructionSelector* selector, InstructionCode opcode, Node* node, Node* value, FlagsContinuation* cont, bool discard_output) { static_assert(kS390_LoadAndTestFloat64 - kS390_LoadAndTestWord32 == 3, "LoadAndTest Opcode shouldn't contain other opcodes."); // TODO(john.yan): Add support for Float32/Float64. DCHECK(opcode >= kS390_LoadAndTestWord32 || opcode <= kS390_LoadAndTestWord64); S390OperandGenerator g(selector); InstructionOperand inputs[8]; InstructionOperand outputs[2]; size_t input_count = 0; size_t output_count = 0; bool use_value = false; int effect_level = selector->GetEffectLevel(node); if (cont->IsBranch()) { effect_level = selector->GetEffectLevel( cont->true_block()->PredecessorAt(0)->control_input()); } if (g.CanBeMemoryOperand(opcode, node, value, effect_level)) { // generate memory operand AddressingMode addressing_mode = g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count); opcode |= AddressingModeField::encode(addressing_mode); } else { inputs[input_count++] = g.UseAnyExceptImmediate(value); use_value = true; } if (!discard_output && !use_value) { outputs[output_count++] = g.DefineAsRegister(value); } DCHECK(input_count <= 8 && output_count <= 2); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } } // namespace // Shared routine for word comparisons against zero. void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); cont->Negate(); } FlagsCondition fc = cont->condition(); if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: { cont->OverwriteAndNegateIfEqual(kEqual); Int32BinopMatcher m(value); if (m.right().Is(0)) { // Try to combine the branch with a comparison. Node* const user = m.node(); Node* const value = m.left().node(); if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kInt32Sub: return VisitWord32Compare(this, value, cont); case IrOpcode::kWord32And: return VisitTestUnderMask(this, value, cont); default: break; } } } return VisitWord32Compare(this, value, cont); } case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); #if V8_TARGET_ARCH_S390X case IrOpcode::kWord64Equal: { cont->OverwriteAndNegateIfEqual(kEqual); Int64BinopMatcher m(value); if (m.right().Is(0)) { // Try to combine the branch with a comparison. Node* const user = m.node(); Node* const value = m.left().node(); if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kInt64Sub: return VisitWord64Compare(this, value, cont); case IrOpcode::kWord64And: return VisitTestUnderMask(this, value, cont); default: break; } } } return VisitWord64Compare(this, value, cont); } case IrOpcode::kInt64LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); #endif case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // <Operation>WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the <Operation>WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // <Operation> is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (result == nullptr || IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord32BinOp(this, node, kS390_Add32, AddOperandMode, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord32BinOp(this, node, kS390_Sub32, SubOperandMode, cont); case IrOpcode::kInt32MulWithOverflow: if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) { cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord32BinOp( this, node, kS390_Mul32, OperandMode::kAllowRRR | OperandMode::kAllowRM, cont); } else { cont->OverwriteAndNegateIfEqual(kNotEqual); return VisitWord32BinOp( this, node, kS390_Mul32WithOverflow, OperandMode::kInt32Imm | OperandMode::kAllowDistinctOps, cont); } case IrOpcode::kInt32AbsWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord32UnaryOp(this, node, kS390_Abs32, OperandMode::kNone, cont); #if V8_TARGET_ARCH_S390X case IrOpcode::kInt64AbsWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord64UnaryOp(this, node, kS390_Abs64, OperandMode::kNone, cont); case IrOpcode::kInt64AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord64BinOp(this, node, kS390_Add64, AddOperandMode, cont); case IrOpcode::kInt64SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitWord64BinOp(this, node, kS390_Sub64, SubOperandMode, cont); #endif default: break; } } } break; case IrOpcode::kInt32Sub: if (fc == kNotEqual || fc == kEqual) return VisitWord32Compare(this, value, cont); break; case IrOpcode::kWord32And: return VisitTestUnderMask(this, value, cont); case IrOpcode::kLoad: { LoadRepresentation load_rep = LoadRepresentationOf(value->op()); switch (load_rep.representation()) { case MachineRepresentation::kWord32: return VisitLoadAndTest(this, kS390_LoadAndTestWord32, user, value, cont); default: break; } break; } case IrOpcode::kInt32Add: // can't handle overflow case. break; case IrOpcode::kWord32Or: if (fc == kNotEqual || fc == kEqual) return VisitWord32BinOp(this, value, kS390_Or32, Or32OperandMode, cont); break; case IrOpcode::kWord32Xor: if (fc == kNotEqual || fc == kEqual) return VisitWord32BinOp(this, value, kS390_Xor32, Xor32OperandMode, cont); break; case IrOpcode::kWord32Sar: case IrOpcode::kWord32Shl: case IrOpcode::kWord32Shr: case IrOpcode::kWord32Ror: // doesn't generate cc, so ignore. break; #if V8_TARGET_ARCH_S390X case IrOpcode::kInt64Sub: if (fc == kNotEqual || fc == kEqual) return VisitWord64Compare(this, value, cont); break; case IrOpcode::kWord64And: return VisitTestUnderMask(this, value, cont); case IrOpcode::kInt64Add: // can't handle overflow case. break; case IrOpcode::kWord64Or: if (fc == kNotEqual || fc == kEqual) return VisitWord64BinOp(this, value, kS390_Or64, Or64OperandMode, cont); break; case IrOpcode::kWord64Xor: if (fc == kNotEqual || fc == kEqual) return VisitWord64BinOp(this, value, kS390_Xor64, Xor64OperandMode, cont); break; case IrOpcode::kWord64Sar: case IrOpcode::kWord64Shl: case IrOpcode::kWord64Shr: case IrOpcode::kWord64Ror: // doesn't generate cc, so ignore break; #endif default: break; } } // Branch could not be combined with a compare, emit LoadAndTest VisitLoadAndTest(this, kS390_LoadAndTestWord32, user, value, cont, true); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { S390OperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchLookupSwitch. if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { static const size_t kMaxTableSwitchValueRange = 2 << 16; size_t table_space_cost = 4 + sw.value_range(); size_t table_time_cost = 3; size_t lookup_space_cost = 3 + 2 * sw.case_count(); size_t lookup_time_cost = sw.case_count(); if (sw.case_count() > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value() > std::numeric_limits<int32_t>::min() && sw.value_range() <= kMaxTableSwitchValueRange) { InstructionOperand index_operand = value_operand; if (sw.min_value()) { index_operand = g.TempRegister(); Emit(kS390_Lay | AddressingModeField::encode(kMode_MRI), index_operand, value_operand, g.TempImmediate(-sw.min_value())); } #if V8_TARGET_ARCH_S390X InstructionOperand index_operand_zero_ext = g.TempRegister(); Emit(kS390_Uint32ToUint64, index_operand_zero_ext, index_operand); index_operand = index_operand_zero_ext; #endif // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } } // Generate a tree of conditional jumps. return EmitBinarySearchSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(node); if (m.right().Is(0)) { return VisitLoadAndTest(this, kS390_LoadAndTestWord32, m.node(), m.left().node(), &cont, true); } VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } #if V8_TARGET_ARCH_S390X void InstructionSelector::VisitWord64Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int64BinopMatcher m(node); if (m.right().Is(0)) { return VisitLoadAndTest(this, kS390_LoadAndTestWord64, m.node(), m.left().node(), &cont, true); } VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } #endif void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::EmitPrepareArguments( ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, Node* node) { S390OperandGenerator g(this); // Prepare for C function call. if (call_descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( call_descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. int slot = kStackFrameExtraParamSlot; for (PushParameter input : (*arguments)) { Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(slot)); ++slot; } } else { // Push any stack arguments. int num_slots = 0; int slot = 0; for (PushParameter input : *arguments) { if (input.node == nullptr) continue; num_slots += input.location.GetType().representation() == MachineRepresentation::kFloat64 ? kDoubleSize / kPointerSize : 1; } Emit(kS390_StackClaim, g.NoOutput(), g.TempImmediate(num_slots)); for (PushParameter input : *arguments) { // Skip any alignment holes in pushed nodes. if (input.node) { Emit(kS390_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(slot)); slot += input.location.GetType().representation() == MachineRepresentation::kFloat64 ? (kDoubleSize / kPointerSize) : 1; } } DCHECK(num_slots == slot); } } bool InstructionSelector::IsTailCallAddressImmediate() { return false; } int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } void InstructionSelector::VisitWord32AtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); S390OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 : kWord32AtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicLoadWord32; break; default: UNREACHABLE(); return; } Emit(opcode | AddressingModeField::encode(kMode_MRR), g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index)); } void InstructionSelector::VisitWord32AtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); S390OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kWord32AtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kWord32AtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicStoreWord32; break; default: UNREACHABLE(); return; } InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(value); inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); Emit(opcode | AddressingModeField::encode(kMode_MRR), 0, nullptr, input_count, inputs); } void InstructionSelector::VisitWord32AtomicExchange(Node* node) { S390OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRR; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.DefineAsRegister(node); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs); } void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { S390OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); MachineType type = AtomicOpType(node->op()); ArchOpcode opcode = kArchNop; if (type == MachineType::Int8()) { opcode = kWord32AtomicCompareExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicCompareExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicCompareExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicCompareExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicCompareExchangeWord32; } else { UNREACHABLE(); return; } InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(old_value); inputs[input_count++] = g.UseUniqueRegister(new_value); inputs[input_count++] = g.UseUniqueRegister(base); AddressingMode addressing_mode; if (g.CanBeImmediate(index, OperandMode::kInt20Imm)) { inputs[input_count++] = g.UseImmediate(index); addressing_mode = kMode_MRI; } else { inputs[input_count++] = g.UseUniqueRegister(index); addressing_mode = kMode_MRR; } InstructionOperand outputs[1]; size_t output_count = 0; outputs[output_count++] = g.DefineSameAsFirst(node); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, output_count, outputs, input_count, inputs); } void InstructionSelector::VisitWord32AtomicBinaryOperation( Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ArchOpcode uint16_op, ArchOpcode word32_op) { S390OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); MachineType type = AtomicOpType(node->op()); ArchOpcode opcode = kArchNop; if (type == MachineType::Int8()) { opcode = int8_op; } else if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Int16()) { opcode = int16_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = word32_op; } else { UNREACHABLE(); return; } InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); AddressingMode addressing_mode; if (g.CanBeImmediate(index, OperandMode::kInt20Imm)) { inputs[input_count++] = g.UseImmediate(index); addressing_mode = kMode_MRI; } else { inputs[input_count++] = g.UseUniqueRegister(index); addressing_mode = kMode_MRR; } inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); InstructionOperand temps[1]; size_t temp_count = 0; temps[temp_count++] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, output_count, outputs, input_count, inputs, temp_count, temps); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ VisitWord32AtomicBinaryOperation( \ node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ kWord32Atomic##op##Word32); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitI32x4Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Shl(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ShrS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Mul(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MaxS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MinS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MinU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MaxU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ShrU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GtS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GeS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GtU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GeU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Shl(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ShrS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ShrU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8AddSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8SubSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Mul(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MinS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MaxS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8AddSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8SubSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MinU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MaxU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GtS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GeS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GtU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GeU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16AddSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16SubSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MinS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MaxS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GtS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GeS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16AddSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16SubSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MinU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MaxU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GtU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GeU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128And(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Or(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Xor(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Not(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Zero(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Lt(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Le(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::EmitPrepareResults( ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, Node* node) { // TODO(John): Port. } void InstructionSelector::VisitF32x4Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Mul(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Min(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Max(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Select(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Abs(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4RecipSqrtApprox(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4RecipApprox(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4AddHoriz(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4AddHoriz(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8AddHoriz(Node* node) { UNIMPLEMENTED(); } // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { return MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat64RoundTiesAway | MachineOperatorBuilder::kWord32Popcnt | MachineOperatorBuilder::kInt32AbsWithOverflow | MachineOperatorBuilder::kInt64AbsWithOverflow | MachineOperatorBuilder::kWord64Popcnt; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { return MachineOperatorBuilder::AlignmentRequirements:: FullUnalignedAccessSupport(); } } // namespace compiler } // namespace internal } // namespace v8