// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/compiler/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" #include "src/ppc/frame-constants-ppc.h" namespace v8 { namespace internal { namespace compiler { enum ImmediateMode { kInt16Imm, kInt16Imm_Unsigned, kInt16Imm_Negate, kInt16Imm_4ByteAligned, kShift32Imm, kShift64Imm, kNoImmediate }; // Adds PPC-specific methods for generating operands. class PPCOperandGenerator final : public OperandGenerator { public: explicit PPCOperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} InstructionOperand UseOperand(Node* node, ImmediateMode mode) { if (CanBeImmediate(node, mode)) { return UseImmediate(node); } return UseRegister(node); } bool CanBeImmediate(Node* node, ImmediateMode mode) { int64_t value; if (node->opcode() == IrOpcode::kInt32Constant) value = OpParameter<int32_t>(node->op()); else if (node->opcode() == IrOpcode::kInt64Constant) value = OpParameter<int64_t>(node->op()); else return false; return CanBeImmediate(value, mode); } bool CanBeImmediate(int64_t value, ImmediateMode mode) { switch (mode) { case kInt16Imm: return is_int16(value); case kInt16Imm_Unsigned: return is_uint16(value); case kInt16Imm_Negate: return is_int16(-value); case kInt16Imm_4ByteAligned: return is_int16(value) && !(value & 3); case kShift32Imm: return 0 <= value && value < 32; case kShift64Imm: return 0 <= value && value < 64; case kNoImmediate: return false; } return false; } // Use the stack pointer if the node is LoadStackPointer, otherwise assign a // register. InstructionOperand UseRegisterOrStackPointer(Node* node) { if (node->opcode() == IrOpcode::kLoadStackPointer) { return LocationOperand(LocationOperand::EXPLICIT, LocationOperand::REGISTER, MachineRepresentation::kWord32, sp.code()); } return UseRegister(node); } }; namespace { void VisitRR(InstructionSelector* selector, InstructionCode opcode, Node* node) { PPCOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void VisitRRR(InstructionSelector* selector, InstructionCode opcode, Node* node) { PPCOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void VisitRRO(InstructionSelector* selector, InstructionCode opcode, Node* node, ImmediateMode operand_mode) { PPCOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseOperand(node->InputAt(1), operand_mode)); } #if V8_TARGET_ARCH_PPC64 void VisitTryTruncateDouble(InstructionSelector* selector, InstructionCode opcode, Node* node) { PPCOperandGenerator g(selector); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } selector->Emit(opcode, output_count, outputs, 1, inputs); } #endif // Shared routine for multiple binary operations. template <typename Matcher> void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, ImmediateMode operand_mode, FlagsContinuation* cont) { PPCOperandGenerator g(selector); Matcher m(node); InstructionOperand inputs[4]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseOperand(m.right().node(), operand_mode); if (cont->IsDeoptimize()) { // If we can deoptimize as a result of the binop, we need to make sure that // the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } // Shared routine for multiple binary operations. template <typename Matcher> void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, ImmediateMode operand_mode) { FlagsContinuation cont; VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont); } } // namespace void InstructionSelector::VisitStackSlot(Node* node) { StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); int slot = frame_->AllocateSpillSlot(rep.size()); OperandGenerator g(this); Emit(kArchStackSlot, g.DefineAsRegister(node), sequence()->AddImmediate(Constant(slot)), 0, nullptr); } void InstructionSelector::VisitDebugAbort(Node* node) { PPCOperandGenerator g(this); Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), r4)); } void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* offset = node->InputAt(1); InstructionCode opcode = kArchNop; ImmediateMode mode = kInt16Imm; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kPPC_LoadFloat32; break; case MachineRepresentation::kFloat64: opcode = kPPC_LoadDouble; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kPPC_LoadWordS8 : kPPC_LoadWordU8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kPPC_LoadWordS16 : kPPC_LoadWordU16; break; #if !V8_TARGET_ARCH_PPC64 case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. #endif case MachineRepresentation::kWord32: opcode = kPPC_LoadWordU32; break; #if V8_TARGET_ARCH_PPC64 case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kPPC_LoadWord64; mode = kInt16Imm_4ByteAligned; break; #else case MachineRepresentation::kWord64: // Fall through. #endif case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } if (node->opcode() == IrOpcode::kPoisonedLoad && poisoning_level_ != PoisoningMitigationLevel::kDontPoison) { opcode |= MiscField::encode(kMemoryAccessPoisoned); } if (g.CanBeImmediate(offset, mode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(offset)); } else if (g.CanBeImmediate(base, mode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(offset), g.UseImmediate(base)); } else { Emit(opcode | AddressingModeField::encode(kMode_MRR), g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset)); } } void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* offset = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); if (write_barrier_kind != kNoWriteBarrier) { DCHECK(CanBeTaggedPointer(rep)); AddressingMode addressing_mode; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); // OutOfLineRecordWrite uses the offset in an 'add' instruction as well as // for the store itself, so we must check compatibility with both. if (g.CanBeImmediate(offset, kInt16Imm) #if V8_TARGET_ARCH_PPC64 && g.CanBeImmediate(offset, kInt16Imm_4ByteAligned) #endif ) { inputs[input_count++] = g.UseImmediate(offset); addressing_mode = kMode_MRI; } else { inputs[input_count++] = g.UseUniqueRegister(offset); addressing_mode = kMode_MRR; } inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; switch (write_barrier_kind) { case kNoWriteBarrier: UNREACHABLE(); break; case kMapWriteBarrier: record_write_mode = RecordWriteMode::kValueIsMap; break; case kPointerWriteBarrier: record_write_mode = RecordWriteMode::kValueIsPointer; break; case kFullWriteBarrier: record_write_mode = RecordWriteMode::kValueIsAny; break; } InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t const temp_count = arraysize(temps); InstructionCode code = kArchStoreWithWriteBarrier; code |= AddressingModeField::encode(addressing_mode); code |= MiscField::encode(static_cast<int>(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); } else { ArchOpcode opcode = kArchNop; ImmediateMode mode = kInt16Imm; switch (rep) { case MachineRepresentation::kFloat32: opcode = kPPC_StoreFloat32; break; case MachineRepresentation::kFloat64: opcode = kPPC_StoreDouble; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kPPC_StoreWord8; break; case MachineRepresentation::kWord16: opcode = kPPC_StoreWord16; break; #if !V8_TARGET_ARCH_PPC64 case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. #endif case MachineRepresentation::kWord32: opcode = kPPC_StoreWord32; break; #if V8_TARGET_ARCH_PPC64 case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kPPC_StoreWord64; mode = kInt16Imm_4ByteAligned; break; #else case MachineRepresentation::kWord64: // Fall through. #endif case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } if (g.CanBeImmediate(offset, mode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(offset), g.UseRegister(value)); } else if (g.CanBeImmediate(base, mode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(offset), g.UseImmediate(base), g.UseRegister(value)); } else { Emit(opcode | AddressingModeField::encode(kMode_MRR), g.NoOutput(), g.UseRegister(base), g.UseRegister(offset), g.UseRegister(value)); } } } void InstructionSelector::VisitProtectedStore(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } // Architecture supports unaligned access, therefore VisitLoad is used instead void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } // Architecture supports unaligned access, therefore VisitStore is used instead void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } template <typename Matcher> static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m, ArchOpcode opcode, bool left_can_cover, bool right_can_cover, ImmediateMode imm_mode) { PPCOperandGenerator g(selector); // Map instruction to equivalent operation with inverted right input. ArchOpcode inv_opcode = opcode; switch (opcode) { case kPPC_And: inv_opcode = kPPC_AndComplement; break; case kPPC_Or: inv_opcode = kPPC_OrComplement; break; default: UNREACHABLE(); } // Select Logical(y, ~x) for Logical(Xor(x, -1), y). if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) { Matcher mleft(m->left().node()); if (mleft.right().Is(-1)) { selector->Emit(inv_opcode, g.DefineAsRegister(node), g.UseRegister(m->right().node()), g.UseRegister(mleft.left().node())); return; } } // Select Logical(x, ~y) for Logical(x, Xor(y, -1)). if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) && right_can_cover) { Matcher mright(m->right().node()); if (mright.right().Is(-1)) { // TODO(all): support shifted operand on right. selector->Emit(inv_opcode, g.DefineAsRegister(node), g.UseRegister(m->left().node()), g.UseRegister(mright.left().node())); return; } } VisitBinop<Matcher>(selector, node, opcode, imm_mode); } static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) { int mask_width = base::bits::CountPopulation(value); int mask_msb = base::bits::CountLeadingZeros32(value); int mask_lsb = base::bits::CountTrailingZeros32(value); if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32)) return false; *mb = mask_lsb + mask_width - 1; *me = mask_lsb; return true; } #if V8_TARGET_ARCH_PPC64 static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) { int mask_width = base::bits::CountPopulation(value); int mask_msb = base::bits::CountLeadingZeros64(value); int mask_lsb = base::bits::CountTrailingZeros64(value); if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64)) return false; *mb = mask_lsb + mask_width - 1; *me = mask_lsb; return true; } #endif // TODO(mbrandy): Absorb rotate-right into rlwinm? void InstructionSelector::VisitWord32And(Node* node) { PPCOperandGenerator g(this); Int32BinopMatcher m(node); int mb = 0; int me = 0; if (m.right().HasValue() && IsContiguousMask32(m.right().Value(), &mb, &me)) { int sh = 0; Node* left = m.left().node(); if ((m.left().IsWord32Shr() || m.left().IsWord32Shl()) && CanCover(node, left)) { // Try to absorb left/right shift into rlwinm Int32BinopMatcher mleft(m.left().node()); if (mleft.right().IsInRange(0, 31)) { left = mleft.left().node(); sh = mleft.right().Value(); if (m.left().IsWord32Shr()) { // Adjust the mask such that it doesn't include any rotated bits. if (mb > 31 - sh) mb = 31 - sh; sh = (32 - sh) & 0x1F; } else { // Adjust the mask such that it doesn't include any rotated bits. if (me < sh) me = sh; } } } if (mb >= me) { Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), g.UseRegister(left), g.TempImmediate(sh), g.TempImmediate(mb), g.TempImmediate(me)); return; } } VisitLogical<Int32BinopMatcher>( this, node, &m, kPPC_And, CanCover(node, m.left().node()), CanCover(node, m.right().node()), kInt16Imm_Unsigned); } #if V8_TARGET_ARCH_PPC64 // TODO(mbrandy): Absorb rotate-right into rldic? void InstructionSelector::VisitWord64And(Node* node) { PPCOperandGenerator g(this); Int64BinopMatcher m(node); int mb = 0; int me = 0; if (m.right().HasValue() && IsContiguousMask64(m.right().Value(), &mb, &me)) { int sh = 0; Node* left = m.left().node(); if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) && CanCover(node, left)) { // Try to absorb left/right shift into rldic Int64BinopMatcher mleft(m.left().node()); if (mleft.right().IsInRange(0, 63)) { left = mleft.left().node(); sh = mleft.right().Value(); if (m.left().IsWord64Shr()) { // Adjust the mask such that it doesn't include any rotated bits. if (mb > 63 - sh) mb = 63 - sh; sh = (64 - sh) & 0x3F; } else { // Adjust the mask such that it doesn't include any rotated bits. if (me < sh) me = sh; } } } if (mb >= me) { bool match = false; ArchOpcode opcode; int mask; if (me == 0) { match = true; opcode = kPPC_RotLeftAndClearLeft64; mask = mb; } else if (mb == 63) { match = true; opcode = kPPC_RotLeftAndClearRight64; mask = me; } else if (sh && me <= sh && m.left().IsWord64Shl()) { match = true; opcode = kPPC_RotLeftAndClear64; mask = mb; } if (match) { Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left), g.TempImmediate(sh), g.TempImmediate(mask)); return; } } } VisitLogical<Int64BinopMatcher>( this, node, &m, kPPC_And, CanCover(node, m.left().node()), CanCover(node, m.right().node()), kInt16Imm_Unsigned); } #endif void InstructionSelector::VisitWord32Or(Node* node) { Int32BinopMatcher m(node); VisitLogical<Int32BinopMatcher>( this, node, &m, kPPC_Or, CanCover(node, m.left().node()), CanCover(node, m.right().node()), kInt16Imm_Unsigned); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Or(Node* node) { Int64BinopMatcher m(node); VisitLogical<Int64BinopMatcher>( this, node, &m, kPPC_Or, CanCover(node, m.left().node()), CanCover(node, m.right().node()), kInt16Imm_Unsigned); } #endif void InstructionSelector::VisitWord32Xor(Node* node) { PPCOperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().Is(-1)) { Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node())); } else { VisitBinop<Int32BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned); } } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Xor(Node* node) { PPCOperandGenerator g(this); Int64BinopMatcher m(node); if (m.right().Is(-1)) { Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node())); } else { VisitBinop<Int64BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned); } } #endif void InstructionSelector::VisitWord32Shl(Node* node) { PPCOperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) { // Try to absorb logical-and into rlwinm Int32BinopMatcher mleft(m.left().node()); int sh = m.right().Value(); int mb; int me; if (mleft.right().HasValue() && IsContiguousMask32(mleft.right().Value() << sh, &mb, &me)) { // Adjust the mask such that it doesn't include any rotated bits. if (me < sh) me = sh; if (mb >= me) { Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sh), g.TempImmediate(mb), g.TempImmediate(me)); return; } } } VisitRRO(this, kPPC_ShiftLeft32, node, kShift32Imm); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Shl(Node* node) { PPCOperandGenerator g(this); Int64BinopMatcher m(node); // TODO(mbrandy): eliminate left sign extension if right >= 32 if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { // Try to absorb logical-and into rldic Int64BinopMatcher mleft(m.left().node()); int sh = m.right().Value(); int mb; int me; if (mleft.right().HasValue() && IsContiguousMask64(mleft.right().Value() << sh, &mb, &me)) { // Adjust the mask such that it doesn't include any rotated bits. if (me < sh) me = sh; if (mb >= me) { bool match = false; ArchOpcode opcode; int mask; if (me == 0) { match = true; opcode = kPPC_RotLeftAndClearLeft64; mask = mb; } else if (mb == 63) { match = true; opcode = kPPC_RotLeftAndClearRight64; mask = me; } else if (sh && me <= sh) { match = true; opcode = kPPC_RotLeftAndClear64; mask = mb; } if (match) { Emit(opcode, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sh), g.TempImmediate(mask)); return; } } } } VisitRRO(this, kPPC_ShiftLeft64, node, kShift64Imm); } #endif void InstructionSelector::VisitWord32Shr(Node* node) { PPCOperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) { // Try to absorb logical-and into rlwinm Int32BinopMatcher mleft(m.left().node()); int sh = m.right().Value(); int mb; int me; if (mleft.right().HasValue() && IsContiguousMask32((uint32_t)(mleft.right().Value()) >> sh, &mb, &me)) { // Adjust the mask such that it doesn't include any rotated bits. if (mb > 31 - sh) mb = 31 - sh; sh = (32 - sh) & 0x1F; if (mb >= me) { Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sh), g.TempImmediate(mb), g.TempImmediate(me)); return; } } } VisitRRO(this, kPPC_ShiftRight32, node, kShift32Imm); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Shr(Node* node) { PPCOperandGenerator g(this); Int64BinopMatcher m(node); if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) { // Try to absorb logical-and into rldic Int64BinopMatcher mleft(m.left().node()); int sh = m.right().Value(); int mb; int me; if (mleft.right().HasValue() && IsContiguousMask64((uint64_t)(mleft.right().Value()) >> sh, &mb, &me)) { // Adjust the mask such that it doesn't include any rotated bits. if (mb > 63 - sh) mb = 63 - sh; sh = (64 - sh) & 0x3F; if (mb >= me) { bool match = false; ArchOpcode opcode; int mask; if (me == 0) { match = true; opcode = kPPC_RotLeftAndClearLeft64; mask = mb; } else if (mb == 63) { match = true; opcode = kPPC_RotLeftAndClearRight64; mask = me; } if (match) { Emit(opcode, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sh), g.TempImmediate(mask)); return; } } } } VisitRRO(this, kPPC_ShiftRight64, node, kShift64Imm); } #endif void InstructionSelector::VisitWord32Sar(Node* node) { PPCOperandGenerator g(this); Int32BinopMatcher m(node); // Replace with sign extension for (x << K) >> K where K is 16 or 24. if (CanCover(node, m.left().node()) && m.left().IsWord32Shl()) { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(16) && m.right().Is(16)) { Emit(kPPC_ExtendSignWord16, g.DefineAsRegister(node), g.UseRegister(mleft.left().node())); return; } else if (mleft.right().Is(24) && m.right().Is(24)) { Emit(kPPC_ExtendSignWord8, g.DefineAsRegister(node), g.UseRegister(mleft.left().node())); return; } } VisitRRO(this, kPPC_ShiftRightAlg32, node, kShift32Imm); } #if !V8_TARGET_ARCH_PPC64 void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode, InstructionCode opcode2, Node* node) { PPCOperandGenerator g(selector); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the output // registers. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; selector->Emit(opcode, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. selector->Emit(opcode2, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairAdd(Node* node) { VisitPairBinop(this, kPPC_AddPair, kPPC_Add32, node); } void InstructionSelector::VisitInt32PairSub(Node* node) { VisitPairBinop(this, kPPC_SubPair, kPPC_Sub, node); } void InstructionSelector::VisitInt32PairMul(Node* node) { PPCOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseUniqueRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; Emit(kPPC_MulPair, 2, outputs, 4, inputs, 2, temps); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kPPC_Mul32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } namespace { // Shared routine for multiple shift operations. void VisitPairShift(InstructionSelector* selector, InstructionCode opcode, Node* node) { PPCOperandGenerator g(selector); // We use g.UseUniqueRegister here to guarantee that there is // no register aliasing of input registers with output registers. Int32Matcher m(node->InputAt(2)); InstructionOperand shift_operand; if (m.HasValue()) { shift_operand = g.UseImmediate(m.node()); } else { shift_operand = g.UseUniqueRegister(m.node()); } InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), shift_operand}; Node* projection1 = NodeProperties::FindProjection(node, 1); InstructionOperand outputs[2]; InstructionOperand temps[1]; int32_t output_count = 0; int32_t temp_count = 0; outputs[output_count++] = g.DefineAsRegister(node); if (projection1) { outputs[output_count++] = g.DefineAsRegister(projection1); } else { temps[temp_count++] = g.TempRegister(); } selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); } } // namespace void InstructionSelector::VisitWord32PairShl(Node* node) { VisitPairShift(this, kPPC_ShiftLeftPair, node); } void InstructionSelector::VisitWord32PairShr(Node* node) { VisitPairShift(this, kPPC_ShiftRightPair, node); } void InstructionSelector::VisitWord32PairSar(Node* node) { VisitPairShift(this, kPPC_ShiftRightAlgPair, node); } #endif #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Sar(Node* node) { PPCOperandGenerator g(this); Int64BinopMatcher m(node); if (CanCover(m.node(), m.left().node()) && m.left().IsLoad() && m.right().Is(32)) { // Just load and sign-extend the interesting 4 bytes instead. This happens, // for example, when we're loading and untagging SMIs. BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(), AddressOption::kAllowAll); if (mleft.matches() && mleft.index() == nullptr) { int64_t offset = 0; Node* displacement = mleft.displacement(); if (displacement != nullptr) { Int64Matcher mdisplacement(displacement); DCHECK(mdisplacement.HasValue()); offset = mdisplacement.Value(); } offset = SmiWordOffset(offset); if (g.CanBeImmediate(offset, kInt16Imm_4ByteAligned)) { Emit(kPPC_LoadWordS32 | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(mleft.base()), g.TempImmediate(offset)); return; } } } VisitRRO(this, kPPC_ShiftRightAlg64, node, kShift64Imm); } #endif // TODO(mbrandy): Absorb logical-and into rlwinm? void InstructionSelector::VisitWord32Ror(Node* node) { VisitRRO(this, kPPC_RotRight32, node, kShift32Imm); } #if V8_TARGET_ARCH_PPC64 // TODO(mbrandy): Absorb logical-and into rldic? void InstructionSelector::VisitWord64Ror(Node* node) { VisitRRO(this, kPPC_RotRight64, node, kShift64Imm); } #endif void InstructionSelector::VisitWord32Clz(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_Cntlz32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Clz(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_Cntlz64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } #endif void InstructionSelector::VisitWord32Popcnt(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_Popcnt32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Popcnt(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_Popcnt64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } #endif void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); } #endif void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } #endif void InstructionSelector::VisitWord64ReverseBytes(Node* node) { PPCOperandGenerator g(this); InstructionOperand temp[] = {g.TempRegister()}; Emit(kPPC_ByteRev64, g.DefineAsRegister(node), g.UseUniqueRegister(node->InputAt(0)), 1, temp); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_ByteRev32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt32Add(Node* node) { VisitBinop<Int32BinopMatcher>(this, node, kPPC_Add32, kInt16Imm); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitInt64Add(Node* node) { VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm); } #endif void InstructionSelector::VisitInt32Sub(Node* node) { PPCOperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().Is(0)) { Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node())); } else { VisitBinop<Int32BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate); } } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitInt64Sub(Node* node) { PPCOperandGenerator g(this); Int64BinopMatcher m(node); if (m.left().Is(0)) { Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node())); } else { VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate); } } #endif namespace { void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont); void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { PPCOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand result_operand = g.DefineAsRegister(node); InstructionOperand high32_operand = g.TempRegister(); InstructionOperand temp_operand = g.TempRegister(); { InstructionOperand outputs[] = {result_operand, high32_operand}; InstructionOperand inputs[] = {g.UseRegister(m.left().node()), g.UseRegister(m.right().node())}; selector->Emit(kPPC_Mul32WithHigh32, 2, outputs, 2, inputs); } { InstructionOperand shift_31 = g.UseImmediate(31); InstructionOperand outputs[] = {temp_operand}; InstructionOperand inputs[] = {result_operand, shift_31}; selector->Emit(kPPC_ShiftRightAlg32, 1, outputs, 2, inputs); } VisitCompare(selector, kPPC_Cmp32, high32_operand, temp_operand, cont); } } // namespace void InstructionSelector::VisitInt32Mul(Node* node) { VisitRRR(this, kPPC_Mul32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitInt64Mul(Node* node) { VisitRRR(this, kPPC_Mul64, node); } #endif void InstructionSelector::VisitInt32MulHigh(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_MulHigh32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitUint32MulHigh(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_MulHighU32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitInt32Div(Node* node) { VisitRRR(this, kPPC_Div32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitInt64Div(Node* node) { VisitRRR(this, kPPC_Div64, node); } #endif void InstructionSelector::VisitUint32Div(Node* node) { VisitRRR(this, kPPC_DivU32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitUint64Div(Node* node) { VisitRRR(this, kPPC_DivU64, node); } #endif void InstructionSelector::VisitInt32Mod(Node* node) { VisitRRR(this, kPPC_Mod32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitInt64Mod(Node* node) { VisitRRR(this, kPPC_Mod64, node); } #endif void InstructionSelector::VisitUint32Mod(Node* node) { VisitRRR(this, kPPC_ModU32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitUint64Mod(Node* node) { VisitRRR(this, kPPC_ModU64, node); } #endif void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { VisitRR(this, kPPC_Float32ToDouble, node); } void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { VisitRR(this, kPPC_Int32ToFloat32, node); } void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { VisitRR(this, kPPC_Uint32ToFloat32, node); } void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { VisitRR(this, kPPC_Int32ToDouble, node); } void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { VisitRR(this, kPPC_Uint32ToDouble, node); } void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { VisitRR(this, kPPC_DoubleToInt32, node); } void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { VisitRR(this, kPPC_DoubleToUint32, node); } void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { VisitRR(this, kPPC_DoubleToUint32, node); } void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_ExtendSignWord8, node); } void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_ExtendSignWord16, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node); } void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node); } void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node); } void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node); } void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_ExtendSignWord32, node); } void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_ExtendSignWord8, node); } void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_ExtendSignWord16, node); } void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_ExtendSignWord32, node); } void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_Uint32ToUint64, node); } void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) { VisitRR(this, kPPC_DoubleToUint64, node); } #endif void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { VisitRR(this, kPPC_DoubleToFloat32, node); } void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { VisitRR(this, kArchTruncateDoubleToI, node); } void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { VisitRR(this, kPPC_DoubleToInt32, node); } void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { VisitRR(this, kPPC_DoubleToInt32, node); } void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { VisitRR(this, kPPC_DoubleToUint32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { // TODO(mbrandy): inspect input to see if nop is appropriate. VisitRR(this, kPPC_Int64ToInt32, node); } void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) { VisitRR(this, kPPC_Int64ToFloat32, node); } void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) { VisitRR(this, kPPC_Int64ToDouble, node); } void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) { VisitRR(this, kPPC_Uint64ToFloat32, node); } void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) { VisitRR(this, kPPC_Uint64ToDouble, node); } #endif void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { VisitRR(this, kPPC_BitcastFloat32ToInt32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) { VisitRR(this, kPPC_BitcastDoubleToInt64, node); } #endif void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { VisitRR(this, kPPC_BitcastInt32ToFloat32, node); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) { VisitRR(this, kPPC_BitcastInt64ToDouble, node); } #endif void InstructionSelector::VisitFloat32Add(Node* node) { VisitRRR(this, kPPC_AddDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Add(Node* node) { // TODO(mbrandy): detect multiply-add VisitRRR(this, kPPC_AddDouble, node); } void InstructionSelector::VisitFloat32Sub(Node* node) { VisitRRR(this, kPPC_SubDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Sub(Node* node) { // TODO(mbrandy): detect multiply-subtract VisitRRR(this, kPPC_SubDouble, node); } void InstructionSelector::VisitFloat32Mul(Node* node) { VisitRRR(this, kPPC_MulDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Mul(Node* node) { // TODO(mbrandy): detect negate VisitRRR(this, kPPC_MulDouble, node); } void InstructionSelector::VisitFloat32Div(Node* node) { VisitRRR(this, kPPC_DivDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Div(Node* node) { VisitRRR(this, kPPC_DivDouble, node); } void InstructionSelector::VisitFloat64Mod(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_ModDouble, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2))->MarkAsCall(); } void InstructionSelector::VisitFloat32Max(Node* node) { VisitRRR(this, kPPC_MaxDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Max(Node* node) { VisitRRR(this, kPPC_MaxDouble, node); } void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { VisitRR(this, kPPC_Float64SilenceNaN, node); } void InstructionSelector::VisitFloat32Min(Node* node) { VisitRRR(this, kPPC_MinDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Min(Node* node) { VisitRRR(this, kPPC_MinDouble, node); } void InstructionSelector::VisitFloat32Abs(Node* node) { VisitRR(this, kPPC_AbsDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Abs(Node* node) { VisitRR(this, kPPC_AbsDouble, node); } void InstructionSelector::VisitFloat32Sqrt(Node* node) { VisitRR(this, kPPC_SqrtDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { PPCOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { PPCOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2))->MarkAsCall(); } void InstructionSelector::VisitFloat64Sqrt(Node* node) { VisitRR(this, kPPC_SqrtDouble, node); } void InstructionSelector::VisitFloat32RoundDown(Node* node) { VisitRR(this, kPPC_FloorDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64RoundDown(Node* node) { VisitRR(this, kPPC_FloorDouble, node); } void InstructionSelector::VisitFloat32RoundUp(Node* node) { VisitRR(this, kPPC_CeilDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64RoundUp(Node* node) { VisitRR(this, kPPC_CeilDouble, node); } void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { VisitRR(this, kPPC_TruncateDouble | MiscField::encode(1), node); } void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { VisitRR(this, kPPC_TruncateDouble, node); } void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { VisitRR(this, kPPC_RoundDouble, node); } void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat32Neg(Node* node) { VisitRR(this, kPPC_NegDouble, node); } void InstructionSelector::VisitFloat64Neg(Node* node) { VisitRR(this, kPPC_NegDouble, node); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32, kInt16Imm, &cont); } FlagsContinuation cont; VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32, kInt16Imm, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32, kInt16Imm_Negate, &cont); } FlagsContinuation cont; VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32, kInt16Imm_Negate, &cont); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm, &cont); } FlagsContinuation cont; VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm, &cont); } void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, &cont); } FlagsContinuation cont; VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, &cont); } #endif static bool CompareLogical(FlagsContinuation* cont) { switch (cont->condition()) { case kUnsignedLessThan: case kUnsignedGreaterThanOrEqual: case kUnsignedLessThanOrEqual: case kUnsignedGreaterThan: return true; default: return false; } UNREACHABLE(); } namespace { // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { selector->EmitWithContinuation(opcode, left, right, cont); } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont, bool commutative, ImmediateMode immediate_mode) { PPCOperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); // Match immediates on left or right side of comparison. if (g.CanBeImmediate(right, immediate_mode)) { VisitCompare(selector, opcode, g.UseRegisterOrStackPointer(left), g.UseImmediate(right), cont); } else if (g.CanBeImmediate(left, immediate_mode)) { if (!commutative) cont->Commute(); VisitCompare(selector, opcode, g.UseRegisterOrStackPointer(right), g.UseImmediate(left), cont); } else { VisitCompare(selector, opcode, g.UseRegisterOrStackPointer(left), g.UseRegisterOrStackPointer(right), cont); } } void VisitWord32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm); VisitWordCompare(selector, node, kPPC_Cmp32, cont, false, mode); } #if V8_TARGET_ARCH_PPC64 void VisitWord64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm); VisitWordCompare(selector, node, kPPC_Cmp64, cont, false, mode); } #endif // Shared routine for multiple float32 compare operations. void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { PPCOperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left), g.UseRegister(right), cont); } // Shared routine for multiple float64 compare operations. void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { PPCOperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left), g.UseRegister(right), cont); } } // namespace // Shared routine for word comparisons against zero. void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); cont->Negate(); } if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); #if V8_TARGET_ARCH_PPC64 case IrOpcode::kWord64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); #endif case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // <Operation>WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the <Operation>WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // <Operation> is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (result == nullptr || IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop<Int32BinopMatcher>( this, node, kPPC_AddWithOverflow32, kInt16Imm, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop<Int32BinopMatcher>( this, node, kPPC_SubWithOverflow32, kInt16Imm_Negate, cont); case IrOpcode::kInt32MulWithOverflow: cont->OverwriteAndNegateIfEqual(kNotEqual); return EmitInt32MulWithOverflow(this, node, cont); #if V8_TARGET_ARCH_PPC64 case IrOpcode::kInt64AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm, cont); case IrOpcode::kInt64SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, cont); #endif default: break; } } } break; case IrOpcode::kInt32Sub: return VisitWord32Compare(this, value, cont); case IrOpcode::kWord32And: // TODO(mbandy): opportunity for rlwinm? return VisitWordCompare(this, value, kPPC_Tst32, cont, true, kInt16Imm_Unsigned); // TODO(mbrandy): Handle? // case IrOpcode::kInt32Add: // case IrOpcode::kWord32Or: // case IrOpcode::kWord32Xor: // case IrOpcode::kWord32Sar: // case IrOpcode::kWord32Shl: // case IrOpcode::kWord32Shr: // case IrOpcode::kWord32Ror: #if V8_TARGET_ARCH_PPC64 case IrOpcode::kInt64Sub: return VisitWord64Compare(this, value, cont); case IrOpcode::kWord64And: // TODO(mbandy): opportunity for rldic? return VisitWordCompare(this, value, kPPC_Tst64, cont, true, kInt16Imm_Unsigned); // TODO(mbrandy): Handle? // case IrOpcode::kInt64Add: // case IrOpcode::kWord64Or: // case IrOpcode::kWord64Xor: // case IrOpcode::kWord64Sar: // case IrOpcode::kWord64Shl: // case IrOpcode::kWord64Shr: // case IrOpcode::kWord64Ror: #endif default: break; } } // Branch could not be combined with a compare, emit compare against 0. PPCOperandGenerator g(this); VisitCompare(this, kPPC_Cmp32, g.UseRegister(value), g.TempImmediate(0), cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { PPCOperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchLookupSwitch. if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { static const size_t kMaxTableSwitchValueRange = 2 << 16; size_t table_space_cost = 4 + sw.value_range(); size_t table_time_cost = 3; size_t lookup_space_cost = 3 + 2 * sw.case_count(); size_t lookup_time_cost = sw.case_count(); if (sw.case_count() > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value() > std::numeric_limits<int32_t>::min() && sw.value_range() <= kMaxTableSwitchValueRange) { InstructionOperand index_operand = value_operand; if (sw.min_value()) { index_operand = g.TempRegister(); Emit(kPPC_Sub, index_operand, value_operand, g.TempImmediate(sw.min_value())); } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } } // Generate a tree of conditional jumps. return EmitBinarySearchSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } #if V8_TARGET_ARCH_PPC64 void InstructionSelector::VisitWord64Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } #endif void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); return EmitInt32MulWithOverflow(this, node, &cont); } FlagsContinuation cont; EmitInt32MulWithOverflow(this, node, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::EmitPrepareArguments( ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, Node* node) { PPCOperandGenerator g(this); // Prepare for C function call. if (call_descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( call_descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. int slot = kStackFrameExtraParamSlot; for (PushParameter input : (*arguments)) { Emit(kPPC_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(slot)); ++slot; } } else { // Push any stack arguments. for (PushParameter input : base::Reversed(*arguments)) { // Skip any alignment holes in pushed nodes. if (input.node == nullptr) continue; Emit(kPPC_Push, g.NoOutput(), g.UseRegister(input.node)); } } } bool InstructionSelector::IsTailCallAddressImmediate() { return false; } int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_DoubleExtractLowWord32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { PPCOperandGenerator g(this); Emit(kPPC_DoubleExtractHighWord32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { PPCOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 && CanCover(node, left)) { left = left->InputAt(1); Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(left), g.UseRegister(right)); return; } Emit(kPPC_DoubleInsertLowWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { PPCOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 && CanCover(node, left)) { left = left->InputAt(1); Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(right), g.UseRegister(left)); return; } Emit(kPPC_DoubleInsertHighWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitWord32AtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 : kWord32AtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicLoadWord32; break; default: UNREACHABLE(); return; } Emit(opcode | AddressingModeField::encode(kMode_MRR), g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index)); } void InstructionSelector::VisitWord32AtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kWord32AtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kWord32AtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicStoreWord32; break; default: UNREACHABLE(); return; } InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); Emit(opcode | AddressingModeField::encode(kMode_MRR), 0, nullptr, input_count, inputs); } void InstructionSelector::VisitWord32AtomicExchange(Node* node) { PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRR; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs); } void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); MachineType type = AtomicOpType(node->op()); ArchOpcode opcode = kArchNop; if (type == MachineType::Int8()) { opcode = kWord32AtomicCompareExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicCompareExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicCompareExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicCompareExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicCompareExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRR; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(old_value); inputs[input_count++] = g.UseUniqueRegister(new_value); InstructionOperand outputs[1]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Emit(code, output_count, outputs, input_count, inputs); } void InstructionSelector::VisitWord32AtomicBinaryOperation( Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ArchOpcode uint16_op, ArchOpcode word32_op) { PPCOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); MachineType type = AtomicOpType(node->op()); ArchOpcode opcode = kArchNop; if (type == MachineType::Int8()) { opcode = int8_op; } else if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Int16()) { opcode = int16_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = word32_op; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRR; InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Emit(code, output_count, outputs, input_count, inputs); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ VisitWord32AtomicBinaryOperation( \ node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ kWord32Atomic##op##Word32); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitI32x4Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Shl(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ShrS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Mul(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MaxS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MinS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MinU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4MaxU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4ShrU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GtS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GeS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GtU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4GeU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Shl(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ShrS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8ShrU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8AddSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8SubSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Mul(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MinS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MaxS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8AddSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8SubSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MinU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8MaxU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GtS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GeS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GtU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8GeU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16AddSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16SubSaturateS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MinS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MaxS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GtS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GeS(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16AddSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16SubSaturateU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MinU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16MaxU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GtU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI8x16GeU(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128And(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Or(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Xor(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Not(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Zero(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Eq(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Ne(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Lt(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Le(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Splat(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4ExtractLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4ReplaceLane(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::EmitPrepareResults( ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, Node* node) { // TODO(John): Port. } void InstructionSelector::VisitF32x4Add(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Sub(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Mul(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Min(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Max(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitS128Select(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Neg(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4Abs(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4RecipSqrtApprox(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4RecipApprox(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitF32x4AddHoriz(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI32x4AddHoriz(Node* node) { UNIMPLEMENTED(); } void InstructionSelector::VisitI16x8AddHoriz(Node* node) { UNIMPLEMENTED(); } // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { return MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat64RoundTiesAway | MachineOperatorBuilder::kWord32Popcnt | MachineOperatorBuilder::kWord64Popcnt; // We omit kWord32ShiftIsSafe as s[rl]w use 0x3F as a mask rather than 0x1F. } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { return MachineOperatorBuilder::AlignmentRequirements:: FullUnalignedAccessSupport(); } } // namespace compiler } // namespace internal } // namespace v8