// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/node-properties.h" #include "src/compiler/common-operator.h" #include "src/compiler/graph.h" #include "src/compiler/js-operator.h" #include "src/compiler/linkage.h" #include "src/compiler/node-matchers.h" #include "src/compiler/operator-properties.h" #include "src/compiler/simplified-operator.h" #include "src/compiler/verifier.h" #include "src/handles-inl.h" #include "src/objects-inl.h" #include "src/zone/zone-handle-set.h" namespace v8 { namespace internal { namespace compiler { // static int NodeProperties::PastValueIndex(Node* node) { return FirstValueIndex(node) + node->op()->ValueInputCount(); } // static int NodeProperties::PastContextIndex(Node* node) { return FirstContextIndex(node) + OperatorProperties::GetContextInputCount(node->op()); } // static int NodeProperties::PastFrameStateIndex(Node* node) { return FirstFrameStateIndex(node) + OperatorProperties::GetFrameStateInputCount(node->op()); } // static int NodeProperties::PastEffectIndex(Node* node) { return FirstEffectIndex(node) + node->op()->EffectInputCount(); } // static int NodeProperties::PastControlIndex(Node* node) { return FirstControlIndex(node) + node->op()->ControlInputCount(); } // static Node* NodeProperties::GetValueInput(Node* node, int index) { DCHECK(0 <= index && index < node->op()->ValueInputCount()); return node->InputAt(FirstValueIndex(node) + index); } // static Node* NodeProperties::GetContextInput(Node* node) { DCHECK(OperatorProperties::HasContextInput(node->op())); return node->InputAt(FirstContextIndex(node)); } // static Node* NodeProperties::GetFrameStateInput(Node* node) { DCHECK_EQ(1, OperatorProperties::GetFrameStateInputCount(node->op())); return node->InputAt(FirstFrameStateIndex(node)); } // static Node* NodeProperties::GetEffectInput(Node* node, int index) { DCHECK(0 <= index && index < node->op()->EffectInputCount()); return node->InputAt(FirstEffectIndex(node) + index); } // static Node* NodeProperties::GetControlInput(Node* node, int index) { DCHECK(0 <= index && index < node->op()->ControlInputCount()); return node->InputAt(FirstControlIndex(node) + index); } // static bool NodeProperties::IsValueEdge(Edge edge) { Node* const node = edge.from(); return IsInputRange(edge, FirstValueIndex(node), node->op()->ValueInputCount()); } // static bool NodeProperties::IsContextEdge(Edge edge) { Node* const node = edge.from(); return IsInputRange(edge, FirstContextIndex(node), OperatorProperties::GetContextInputCount(node->op())); } // static bool NodeProperties::IsFrameStateEdge(Edge edge) { Node* const node = edge.from(); return IsInputRange(edge, FirstFrameStateIndex(node), OperatorProperties::GetFrameStateInputCount(node->op())); } // static bool NodeProperties::IsEffectEdge(Edge edge) { Node* const node = edge.from(); return IsInputRange(edge, FirstEffectIndex(node), node->op()->EffectInputCount()); } // static bool NodeProperties::IsControlEdge(Edge edge) { Node* const node = edge.from(); return IsInputRange(edge, FirstControlIndex(node), node->op()->ControlInputCount()); } // static bool NodeProperties::IsExceptionalCall(Node* node, Node** out_exception) { if (node->op()->HasProperty(Operator::kNoThrow)) return false; for (Edge const edge : node->use_edges()) { if (!NodeProperties::IsControlEdge(edge)) continue; if (edge.from()->opcode() == IrOpcode::kIfException) { if (out_exception != nullptr) *out_exception = edge.from(); return true; } } return false; } // static Node* NodeProperties::FindSuccessfulControlProjection(Node* node) { DCHECK_GT(node->op()->ControlOutputCount(), 0); if (node->op()->HasProperty(Operator::kNoThrow)) return node; for (Edge const edge : node->use_edges()) { if (!NodeProperties::IsControlEdge(edge)) continue; if (edge.from()->opcode() == IrOpcode::kIfSuccess) { return edge.from(); } } return node; } // static void NodeProperties::ReplaceValueInput(Node* node, Node* value, int index) { DCHECK(index < node->op()->ValueInputCount()); node->ReplaceInput(FirstValueIndex(node) + index, value); } // static void NodeProperties::ReplaceValueInputs(Node* node, Node* value) { int value_input_count = node->op()->ValueInputCount(); DCHECK_LE(1, value_input_count); node->ReplaceInput(0, value); while (--value_input_count > 0) { node->RemoveInput(value_input_count); } } // static void NodeProperties::ReplaceContextInput(Node* node, Node* context) { node->ReplaceInput(FirstContextIndex(node), context); } // static void NodeProperties::ReplaceControlInput(Node* node, Node* control, int index) { DCHECK(index < node->op()->ControlInputCount()); node->ReplaceInput(FirstControlIndex(node) + index, control); } // static void NodeProperties::ReplaceEffectInput(Node* node, Node* effect, int index) { DCHECK(index < node->op()->EffectInputCount()); return node->ReplaceInput(FirstEffectIndex(node) + index, effect); } // static void NodeProperties::ReplaceFrameStateInput(Node* node, Node* frame_state) { DCHECK_EQ(1, OperatorProperties::GetFrameStateInputCount(node->op())); node->ReplaceInput(FirstFrameStateIndex(node), frame_state); } // static void NodeProperties::RemoveNonValueInputs(Node* node) { node->TrimInputCount(node->op()->ValueInputCount()); } // static void NodeProperties::RemoveValueInputs(Node* node) { int value_input_count = node->op()->ValueInputCount(); while (--value_input_count >= 0) { node->RemoveInput(value_input_count); } } void NodeProperties::MergeControlToEnd(Graph* graph, CommonOperatorBuilder* common, Node* node) { graph->end()->AppendInput(graph->zone(), node); graph->end()->set_op(common->End(graph->end()->InputCount())); } // static void NodeProperties::ReplaceUses(Node* node, Node* value, Node* effect, Node* success, Node* exception) { // Requires distinguishing between value, effect and control edges. for (Edge edge : node->use_edges()) { if (IsControlEdge(edge)) { if (edge.from()->opcode() == IrOpcode::kIfSuccess) { DCHECK_NOT_NULL(success); edge.UpdateTo(success); } else if (edge.from()->opcode() == IrOpcode::kIfException) { DCHECK_NOT_NULL(exception); edge.UpdateTo(exception); } else { DCHECK_NOT_NULL(success); edge.UpdateTo(success); } } else if (IsEffectEdge(edge)) { DCHECK_NOT_NULL(effect); edge.UpdateTo(effect); } else { DCHECK_NOT_NULL(value); edge.UpdateTo(value); } } } // static void NodeProperties::ChangeOp(Node* node, const Operator* new_op) { node->set_op(new_op); Verifier::VerifyNode(node); } // static Node* NodeProperties::FindFrameStateBefore(Node* node) { Node* effect = NodeProperties::GetEffectInput(node); while (effect->opcode() != IrOpcode::kCheckpoint) { if (effect->opcode() == IrOpcode::kDead) return effect; DCHECK_EQ(1, effect->op()->EffectInputCount()); effect = NodeProperties::GetEffectInput(effect); } Node* frame_state = GetFrameStateInput(effect); return frame_state; } // static Node* NodeProperties::FindProjection(Node* node, size_t projection_index) { for (auto use : node->uses()) { if (use->opcode() == IrOpcode::kProjection && ProjectionIndexOf(use->op()) == projection_index) { return use; } } return nullptr; } // static void NodeProperties::CollectValueProjections(Node* node, Node** projections, size_t projection_count) { #ifdef DEBUG for (size_t index = 0; index < projection_count; ++index) { DCHECK_NULL(projections[index]); } #endif for (Edge const edge : node->use_edges()) { if (!IsValueEdge(edge)) continue; Node* use = edge.from(); DCHECK_EQ(IrOpcode::kProjection, use->opcode()); projections[ProjectionIndexOf(use->op())] = use; } } // static void NodeProperties::CollectControlProjections(Node* node, Node** projections, size_t projection_count) { #ifdef DEBUG DCHECK_LE(static_cast<int>(projection_count), node->UseCount()); std::memset(projections, 0, sizeof(*projections) * projection_count); #endif size_t if_value_index = 0; for (Edge const edge : node->use_edges()) { if (!IsControlEdge(edge)) continue; Node* use = edge.from(); size_t index; switch (use->opcode()) { case IrOpcode::kIfTrue: DCHECK_EQ(IrOpcode::kBranch, node->opcode()); index = 0; break; case IrOpcode::kIfFalse: DCHECK_EQ(IrOpcode::kBranch, node->opcode()); index = 1; break; case IrOpcode::kIfSuccess: DCHECK(!node->op()->HasProperty(Operator::kNoThrow)); index = 0; break; case IrOpcode::kIfException: DCHECK(!node->op()->HasProperty(Operator::kNoThrow)); index = 1; break; case IrOpcode::kIfValue: DCHECK_EQ(IrOpcode::kSwitch, node->opcode()); index = if_value_index++; break; case IrOpcode::kIfDefault: DCHECK_EQ(IrOpcode::kSwitch, node->opcode()); index = projection_count - 1; break; default: continue; } DCHECK_LT(if_value_index, projection_count); DCHECK_LT(index, projection_count); DCHECK_NULL(projections[index]); projections[index] = use; } #ifdef DEBUG for (size_t index = 0; index < projection_count; ++index) { DCHECK_NOT_NULL(projections[index]); } #endif } // static bool NodeProperties::IsSame(Node* a, Node* b) { for (;;) { if (a->opcode() == IrOpcode::kCheckHeapObject) { a = GetValueInput(a, 0); continue; } if (b->opcode() == IrOpcode::kCheckHeapObject) { b = GetValueInput(b, 0); continue; } return a == b; } } // static NodeProperties::InferReceiverMapsResult NodeProperties::InferReceiverMaps( Isolate* isolate, Node* receiver, Node* effect, ZoneHandleSet<Map>* maps_return) { HeapObjectMatcher m(receiver); if (m.HasValue()) { Handle<HeapObject> receiver = m.Value(); // We don't use ICs for the Array.prototype and the Object.prototype // because the runtime has to be able to intercept them properly, so // we better make sure that TurboFan doesn't outsmart the system here // by storing to elements of either prototype directly. // // TODO(bmeurer): This can be removed once the Array.prototype and // Object.prototype have NO_ELEMENTS elements kind. if (!isolate->IsInAnyContext(*receiver, Context::INITIAL_ARRAY_PROTOTYPE_INDEX) && !isolate->IsInAnyContext(*receiver, Context::INITIAL_OBJECT_PROTOTYPE_INDEX)) { Handle<Map> receiver_map(receiver->map(), isolate); if (receiver_map->is_stable()) { // The {receiver_map} is only reliable when we install a stability // code dependency. *maps_return = ZoneHandleSet<Map>(receiver_map); return kUnreliableReceiverMaps; } } } InferReceiverMapsResult result = kReliableReceiverMaps; while (true) { switch (effect->opcode()) { case IrOpcode::kMapGuard: { Node* const object = GetValueInput(effect, 0); if (IsSame(receiver, object)) { *maps_return = MapGuardMapsOf(effect->op()).maps(); return result; } break; } case IrOpcode::kCheckMaps: { Node* const object = GetValueInput(effect, 0); if (IsSame(receiver, object)) { *maps_return = CheckMapsParametersOf(effect->op()).maps(); return result; } break; } case IrOpcode::kJSCreate: { if (IsSame(receiver, effect)) { HeapObjectMatcher mtarget(GetValueInput(effect, 0)); HeapObjectMatcher mnewtarget(GetValueInput(effect, 1)); if (mtarget.HasValue() && mnewtarget.HasValue() && mnewtarget.Value()->IsJSFunction()) { Handle<JSFunction> original_constructor = Handle<JSFunction>::cast(mnewtarget.Value()); if (original_constructor->has_initial_map()) { Handle<Map> initial_map(original_constructor->initial_map(), isolate); if (initial_map->constructor_or_backpointer() == *mtarget.Value()) { *maps_return = ZoneHandleSet<Map>(initial_map); return result; } } } // We reached the allocation of the {receiver}. return kNoReceiverMaps; } break; } case IrOpcode::kStoreField: { // We only care about StoreField of maps. Node* const object = GetValueInput(effect, 0); FieldAccess const& access = FieldAccessOf(effect->op()); if (access.base_is_tagged == kTaggedBase && access.offset == HeapObject::kMapOffset) { if (IsSame(receiver, object)) { Node* const value = GetValueInput(effect, 1); HeapObjectMatcher m(value); if (m.HasValue()) { *maps_return = ZoneHandleSet<Map>(Handle<Map>::cast(m.Value())); return result; } } // Without alias analysis we cannot tell whether this // StoreField[map] affects {receiver} or not. result = kUnreliableReceiverMaps; } break; } case IrOpcode::kJSStoreMessage: case IrOpcode::kJSStoreModule: case IrOpcode::kStoreElement: case IrOpcode::kStoreTypedElement: { // These never change the map of objects. break; } case IrOpcode::kFinishRegion: { // FinishRegion renames the output of allocations, so we need // to update the {receiver} that we are looking for, if the // {receiver} matches the current {effect}. if (IsSame(receiver, effect)) receiver = GetValueInput(effect, 0); break; } case IrOpcode::kEffectPhi: { Node* control = GetControlInput(effect); if (control->opcode() != IrOpcode::kLoop) { DCHECK(control->opcode() == IrOpcode::kDead || control->opcode() == IrOpcode::kMerge); return kNoReceiverMaps; } // Continue search for receiver map outside the loop. Since operations // inside the loop may change the map, the result is unreliable. effect = GetEffectInput(effect, 0); result = kUnreliableReceiverMaps; continue; } default: { DCHECK_EQ(1, effect->op()->EffectOutputCount()); if (effect->op()->EffectInputCount() != 1) { // Didn't find any appropriate CheckMaps node. return kNoReceiverMaps; } if (!effect->op()->HasProperty(Operator::kNoWrite)) { // Without alias/escape analysis we cannot tell whether this // {effect} affects {receiver} or not. result = kUnreliableReceiverMaps; } break; } } // Stop walking the effect chain once we hit the definition of // the {receiver} along the {effect}s. if (IsSame(receiver, effect)) return kNoReceiverMaps; // Continue with the next {effect}. DCHECK_EQ(1, effect->op()->EffectInputCount()); effect = NodeProperties::GetEffectInput(effect); } } // static MaybeHandle<Map> NodeProperties::GetMapWitness(Isolate* isolate, Node* node) { ZoneHandleSet<Map> maps; Node* receiver = NodeProperties::GetValueInput(node, 1); Node* effect = NodeProperties::GetEffectInput(node); NodeProperties::InferReceiverMapsResult result = NodeProperties::InferReceiverMaps(isolate, receiver, effect, &maps); if (result == NodeProperties::kReliableReceiverMaps && maps.size() == 1) { return maps[0]; } return MaybeHandle<Map>(); } // static bool NodeProperties::HasInstanceTypeWitness(Isolate* isolate, Node* receiver, Node* effect, InstanceType instance_type) { ZoneHandleSet<Map> receiver_maps; NodeProperties::InferReceiverMapsResult result = NodeProperties::InferReceiverMaps(isolate, receiver, effect, &receiver_maps); switch (result) { case NodeProperties::kUnreliableReceiverMaps: case NodeProperties::kReliableReceiverMaps: DCHECK_NE(0, receiver_maps.size()); for (size_t i = 0; i < receiver_maps.size(); ++i) { if (receiver_maps[i]->instance_type() != instance_type) return false; } return true; case NodeProperties::kNoReceiverMaps: return false; } UNREACHABLE(); } // static bool NodeProperties::NoObservableSideEffectBetween(Node* effect, Node* dominator) { while (effect != dominator) { if (effect->op()->EffectInputCount() == 1 && effect->op()->properties() & Operator::kNoWrite) { effect = NodeProperties::GetEffectInput(effect); } else { return false; } } return true; } // static bool NodeProperties::CanBePrimitive(Isolate* isolate, Node* receiver, Node* effect) { switch (receiver->opcode()) { #define CASE(Opcode) case IrOpcode::k##Opcode: JS_CONSTRUCT_OP_LIST(CASE) JS_CREATE_OP_LIST(CASE) #undef CASE case IrOpcode::kCheckReceiver: case IrOpcode::kConvertReceiver: case IrOpcode::kJSGetSuperConstructor: case IrOpcode::kJSToObject: return false; case IrOpcode::kHeapConstant: { Handle<HeapObject> value = HeapObjectMatcher(receiver).Value(); return value->IsPrimitive(); } default: { // We don't really care about the exact maps here, // just the instance types, which don't change // across potential side-effecting operations. ZoneHandleSet<Map> maps; if (InferReceiverMaps(isolate, receiver, effect, &maps) != kNoReceiverMaps) { // Check if all {maps} are actually JSReceiver maps. for (size_t i = 0; i < maps.size(); ++i) { if (!maps[i]->IsJSReceiverMap()) return true; } return false; } return true; } } } // static bool NodeProperties::CanBeNullOrUndefined(Isolate* isolate, Node* receiver, Node* effect) { if (CanBePrimitive(isolate, receiver, effect)) { switch (receiver->opcode()) { case IrOpcode::kCheckInternalizedString: case IrOpcode::kCheckNumber: case IrOpcode::kCheckSmi: case IrOpcode::kCheckString: case IrOpcode::kCheckSymbol: case IrOpcode::kJSToInteger: case IrOpcode::kJSToLength: case IrOpcode::kJSToName: case IrOpcode::kJSToNumber: case IrOpcode::kJSToNumberConvertBigInt: case IrOpcode::kJSToNumeric: case IrOpcode::kJSToString: case IrOpcode::kToBoolean: return false; case IrOpcode::kHeapConstant: { Handle<HeapObject> value = HeapObjectMatcher(receiver).Value(); return value->IsNullOrUndefined(isolate); } default: return true; } } return false; } // static Node* NodeProperties::GetOuterContext(Node* node, size_t* depth) { Node* context = NodeProperties::GetContextInput(node); while (*depth > 0 && IrOpcode::IsContextChainExtendingOpcode(context->opcode())) { context = NodeProperties::GetContextInput(context); (*depth)--; } return context; } // static Type NodeProperties::GetTypeOrAny(Node* node) { return IsTyped(node) ? node->type() : Type::Any(); } // static bool NodeProperties::AllValueInputsAreTyped(Node* node) { int input_count = node->op()->ValueInputCount(); for (int index = 0; index < input_count; ++index) { if (!IsTyped(GetValueInput(node, index))) return false; } return true; } // static bool NodeProperties::IsInputRange(Edge edge, int first, int num) { if (num == 0) return false; int const index = edge.index(); return first <= index && index < first + num; } // static size_t NodeProperties::HashCode(Node* node) { size_t h = base::hash_combine(node->op()->HashCode(), node->InputCount()); for (Node* input : node->inputs()) { h = base::hash_combine(h, input->id()); } return h; } // static bool NodeProperties::Equals(Node* a, Node* b) { DCHECK_NOT_NULL(a); DCHECK_NOT_NULL(b); DCHECK_NOT_NULL(a->op()); DCHECK_NOT_NULL(b->op()); if (!a->op()->Equals(b->op())) return false; if (a->InputCount() != b->InputCount()) return false; Node::Inputs aInputs = a->inputs(); Node::Inputs bInputs = b->inputs(); auto aIt = aInputs.begin(); auto bIt = bInputs.begin(); auto aEnd = aInputs.end(); for (; aIt != aEnd; ++aIt, ++bIt) { DCHECK_NOT_NULL(*aIt); DCHECK_NOT_NULL(*bIt); if ((*aIt)->id() != (*bIt)->id()) return false; } return true; } } // namespace compiler } // namespace internal } // namespace v8