// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/base/bits.h" #include "src/compiler/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" namespace v8 { namespace internal { namespace compiler { #define TRACE_UNIMPL() \ PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) // Adds Mips-specific methods for generating InstructionOperands. class Mips64OperandGenerator final : public OperandGenerator { public: explicit Mips64OperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} InstructionOperand UseOperand(Node* node, InstructionCode opcode) { if (CanBeImmediate(node, opcode)) { return UseImmediate(node); } return UseRegister(node); } // Use the zero register if the node has the immediate value zero, otherwise // assign a register. InstructionOperand UseRegisterOrImmediateZero(Node* node) { if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || (IsFloatConstant(node) && (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) { return UseImmediate(node); } return UseRegister(node); } bool IsIntegerConstant(Node* node) { return (node->opcode() == IrOpcode::kInt32Constant) || (node->opcode() == IrOpcode::kInt64Constant); } int64_t GetIntegerConstantValue(Node* node) { if (node->opcode() == IrOpcode::kInt32Constant) { return OpParameter<int32_t>(node->op()); } DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); return OpParameter<int64_t>(node->op()); } bool IsFloatConstant(Node* node) { return (node->opcode() == IrOpcode::kFloat32Constant) || (node->opcode() == IrOpcode::kFloat64Constant); } double GetFloatConstantValue(Node* node) { if (node->opcode() == IrOpcode::kFloat32Constant) { return OpParameter<float>(node->op()); } DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); return OpParameter<double>(node->op()); } bool CanBeImmediate(Node* node, InstructionCode mode) { return IsIntegerConstant(node) && CanBeImmediate(GetIntegerConstantValue(node), mode); } bool CanBeImmediate(int64_t value, InstructionCode opcode) { switch (ArchOpcodeField::decode(opcode)) { case kMips64Shl: case kMips64Sar: case kMips64Shr: return is_uint5(value); case kMips64Dshl: case kMips64Dsar: case kMips64Dshr: return is_uint6(value); case kMips64Add: case kMips64And32: case kMips64And: case kMips64Dadd: case kMips64Or32: case kMips64Or: case kMips64Tst: case kMips64Xor: return is_uint16(value); case kMips64Lb: case kMips64Lbu: case kMips64Sb: case kMips64Lh: case kMips64Lhu: case kMips64Sh: case kMips64Lw: case kMips64Sw: case kMips64Ld: case kMips64Sd: case kMips64Lwc1: case kMips64Swc1: case kMips64Ldc1: case kMips64Sdc1: return is_int32(value); default: return is_int16(value); } } private: bool ImmediateFitsAddrMode1Instruction(int32_t imm) const { TRACE_UNIMPL(); return false; } }; static void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { Mips64OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, Node* node) { Mips64OperandGenerator g(selector); int32_t imm = OpParameter<int32_t>(node->op()); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); } static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { Mips64OperandGenerator g(selector); int32_t imm = OpParameter<int32_t>(node->op()); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), g.UseRegister(node->InputAt(1))); } static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { Mips64OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { Mips64OperandGenerator g(selector); selector->Emit( opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); } static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node) { Mips64OperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseOperand(node->InputAt(1), opcode)); } struct ExtendingLoadMatcher { ExtendingLoadMatcher(Node* node, InstructionSelector* selector) : matches_(false), selector_(selector), base_(nullptr), immediate_(0) { Initialize(node); } bool Matches() const { return matches_; } Node* base() const { DCHECK(Matches()); return base_; } int64_t immediate() const { DCHECK(Matches()); return immediate_; } ArchOpcode opcode() const { DCHECK(Matches()); return opcode_; } private: bool matches_; InstructionSelector* selector_; Node* base_; int64_t immediate_; ArchOpcode opcode_; void Initialize(Node* node) { Int64BinopMatcher m(node); // When loading a 64-bit value and shifting by 32, we should // just load and sign-extend the interesting 4 bytes instead. // This happens, for example, when we're loading and untagging SMIs. DCHECK(m.IsWord64Sar()); if (m.left().IsLoad() && m.right().Is(32) && selector_->CanCover(m.node(), m.left().node())) { MachineRepresentation rep = LoadRepresentationOf(m.left().node()->op()).representation(); DCHECK_EQ(3, ElementSizeLog2Of(rep)); if (rep != MachineRepresentation::kTaggedSigned && rep != MachineRepresentation::kTaggedPointer && rep != MachineRepresentation::kTagged && rep != MachineRepresentation::kWord64) { return; } Mips64OperandGenerator g(selector_); Node* load = m.left().node(); Node* offset = load->InputAt(1); base_ = load->InputAt(0); opcode_ = kMips64Lw; if (g.CanBeImmediate(offset, opcode_)) { #if defined(V8_TARGET_LITTLE_ENDIAN) immediate_ = g.GetIntegerConstantValue(offset) + 4; #elif defined(V8_TARGET_BIG_ENDIAN) immediate_ = g.GetIntegerConstantValue(offset); #endif matches_ = g.CanBeImmediate(immediate_, kMips64Lw); } } } }; bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node, Node* output_node) { ExtendingLoadMatcher m(node, selector); Mips64OperandGenerator g(selector); if (m.Matches()) { InstructionOperand inputs[2]; inputs[0] = g.UseRegister(m.base()); InstructionCode opcode = m.opcode() | AddressingModeField::encode(kMode_MRI); DCHECK(is_int32(m.immediate())); inputs[1] = g.TempImmediate(static_cast<int32_t>(m.immediate())); InstructionOperand outputs[] = {g.DefineAsRegister(output_node)}; selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs), inputs); return true; } return false; } bool TryMatchImmediate(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, size_t* input_count_return, InstructionOperand* inputs) { Mips64OperandGenerator g(selector); if (g.CanBeImmediate(node, *opcode_return)) { *opcode_return |= AddressingModeField::encode(kMode_MRI); inputs[0] = g.UseImmediate(node); *input_count_return = 1; return true; } return false; } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, bool has_reverse_opcode, InstructionCode reverse_opcode, FlagsContinuation* cont) { Mips64OperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand inputs[2]; size_t input_count = 0; InstructionOperand outputs[1]; size_t output_count = 0; if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.left().node()); input_count++; } else if (has_reverse_opcode && TryMatchImmediate(selector, &reverse_opcode, m.left().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.right().node()); opcode = reverse_opcode; input_count++; } else { inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseOperand(m.right().node(), opcode); } if (cont->IsDeoptimize()) { // If we can deoptimize as a result of the binop, we need to make sure that // the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } DCHECK_NE(0u, input_count); DCHECK_EQ(1u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); selector->EmitWithContinuation(opcode, output_count, outputs, input_count, inputs, cont); } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, bool has_reverse_opcode, InstructionCode reverse_opcode) { FlagsContinuation cont; VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont); } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { VisitBinop(selector, node, opcode, false, kArchNop, cont); } static void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode) { VisitBinop(selector, node, opcode, false, kArchNop); } void InstructionSelector::VisitStackSlot(Node* node) { StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); int alignment = rep.alignment(); int slot = frame_->AllocateSpillSlot(rep.size(), alignment); OperandGenerator g(this); Emit(kArchStackSlot, g.DefineAsRegister(node), sequence()->AddImmediate(Constant(slot)), sequence()->AddImmediate(Constant(alignment)), 0, nullptr); } void InstructionSelector::VisitDebugAbort(Node* node) { Mips64OperandGenerator g(this); Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), a0)); } void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode, Node* output = nullptr) { Mips64OperandGenerator g(selector); Node* base = node->InputAt(0); Node* index = node->InputAt(1); if (g.CanBeImmediate(index, opcode)) { selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(output == nullptr ? node : output), g.UseRegister(base), g.UseImmediate(index)); } else { InstructionOperand addr_reg = g.TempRegister(); selector->Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired load opcode, using temp addr_reg. selector->Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(output == nullptr ? node : output), addr_reg, g.TempImmediate(0)); } } void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); InstructionCode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kMips64Lwc1; break; case MachineRepresentation::kFloat64: opcode = kMips64Ldc1; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kMips64Lbu : kMips64Lb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kMips64Lhu : kMips64Lh; break; case MachineRepresentation::kWord32: opcode = load_rep.IsUnsigned() ? kMips64Lwu : kMips64Lw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kMips64Ld; break; case MachineRepresentation::kSimd128: opcode = kMips64MsaLd; break; case MachineRepresentation::kNone: UNREACHABLE(); return; } if (node->opcode() == IrOpcode::kPoisonedLoad) { CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); opcode |= MiscField::encode(kMemoryAccessPoisoned); } EmitLoad(this, node, opcode); } void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); // TODO(mips): I guess this could be done in a better way. if (write_barrier_kind != kNoWriteBarrier) { DCHECK(CanBeTaggedPointer(rep)); InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; switch (write_barrier_kind) { case kNoWriteBarrier: UNREACHABLE(); break; case kMapWriteBarrier: record_write_mode = RecordWriteMode::kValueIsMap; break; case kPointerWriteBarrier: record_write_mode = RecordWriteMode::kValueIsPointer; break; case kFullWriteBarrier: record_write_mode = RecordWriteMode::kValueIsAny; break; } InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t const temp_count = arraysize(temps); InstructionCode code = kArchStoreWithWriteBarrier; code |= MiscField::encode(static_cast<int>(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); } else { ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kFloat32: opcode = kMips64Swc1; break; case MachineRepresentation::kFloat64: opcode = kMips64Sdc1; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kMips64Sb; break; case MachineRepresentation::kWord16: opcode = kMips64Sh; break; case MachineRepresentation::kWord32: opcode = kMips64Sw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kMips64Sd; break; case MachineRepresentation::kSimd128: opcode = kMips64MsaSt; break; case MachineRepresentation::kNone: UNREACHABLE(); return; } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), g.UseRegisterOrImmediateZero(value)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired store opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); } } } void InstructionSelector::VisitProtectedStore(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitWord32And(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) && m.right().HasValue()) { uint32_t mask = m.right().Value(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); if ((mask_width != 0) && (mask_msb + mask_width == 32)) { // The mask must be contiguous, and occupy the least-significant bits. DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); // Select Ext for And(Shr(x, imm), mask) where the mask is in the least // significant bits. Int32BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue()) { // Any shift value can match; int32 shifts use `value % 32`. uint32_t lsb = mleft.right().Value() & 0x1F; // Ext cannot extract bits past the register size, however since // shifting the original value would have introduced some zeros we can // still use Ext with a smaller mask and the remaining bits will be // zeros. if (lsb + mask_width > 32) mask_width = 32 - lsb; Emit(kMips64Ext, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), g.TempImmediate(mask_width)); return; } // Other cases fall through to the normal And operation. } } if (m.right().HasValue()) { uint32_t mask = m.right().Value(); uint32_t shift = base::bits::CountPopulation(~mask); uint32_t msb = base::bits::CountLeadingZeros32(~mask); if (shift != 0 && shift != 32 && msb + shift == 32) { // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction // and remove constant loading of inverted mask. Emit(kMips64Ins, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.TempImmediate(0), g.TempImmediate(shift)); return; } } VisitBinop(this, node, kMips64And32, true, kMips64And32); } void InstructionSelector::VisitWord64And(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) && m.right().HasValue()) { uint64_t mask = m.right().Value(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); if ((mask_width != 0) && (mask_msb + mask_width == 64)) { // The mask must be contiguous, and occupy the least-significant bits. DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); // Select Dext for And(Shr(x, imm), mask) where the mask is in the least // significant bits. Int64BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue()) { // Any shift value can match; int64 shifts use `value % 64`. uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3F); // Dext cannot extract bits past the register size, however since // shifting the original value would have introduced some zeros we can // still use Dext with a smaller mask and the remaining bits will be // zeros. if (lsb + mask_width > 64) mask_width = 64 - lsb; if (lsb == 0 && mask_width == 64) { Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node())); } else { Emit(kMips64Dext, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), g.TempImmediate(static_cast<int32_t>(mask_width))); } return; } // Other cases fall through to the normal And operation. } } if (m.right().HasValue()) { uint64_t mask = m.right().Value(); uint32_t shift = base::bits::CountPopulation(~mask); uint32_t msb = base::bits::CountLeadingZeros64(~mask); if (shift != 0 && shift < 32 && msb + shift == 64) { // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction // and remove constant loading of inverted mask. Dins cannot insert bits // past word size, so shifts smaller than 32 are covered. Emit(kMips64Dins, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.TempImmediate(0), g.TempImmediate(shift)); return; } } VisitBinop(this, node, kMips64And, true, kMips64And); } void InstructionSelector::VisitWord32Or(Node* node) { VisitBinop(this, node, kMips64Or32, true, kMips64Or32); } void InstructionSelector::VisitWord64Or(Node* node) { VisitBinop(this, node, kMips64Or, true, kMips64Or); } void InstructionSelector::VisitWord32Xor(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32Or() && CanCover(node, m.left().node()) && m.right().Is(-1)) { Int32BinopMatcher mleft(m.left().node()); if (!mleft.right().HasValue()) { Mips64OperandGenerator g(this); Emit(kMips64Nor32, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } } if (m.right().Is(-1)) { // Use Nor for bit negation and eliminate constant loading for xori. Mips64OperandGenerator g(this); Emit(kMips64Nor32, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(0)); return; } VisitBinop(this, node, kMips64Xor32, true, kMips64Xor32); } void InstructionSelector::VisitWord64Xor(Node* node) { Int64BinopMatcher m(node); if (m.left().IsWord64Or() && CanCover(node, m.left().node()) && m.right().Is(-1)) { Int64BinopMatcher mleft(m.left().node()); if (!mleft.right().HasValue()) { Mips64OperandGenerator g(this); Emit(kMips64Nor, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } } if (m.right().Is(-1)) { // Use Nor for bit negation and eliminate constant loading for xori. Mips64OperandGenerator g(this); Emit(kMips64Nor, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(0)); return; } VisitBinop(this, node, kMips64Xor, true, kMips64Xor); } void InstructionSelector::VisitWord32Shl(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32And() && CanCover(node, m.left().node()) && m.right().IsInRange(1, 31)) { Mips64OperandGenerator g(this); Int32BinopMatcher mleft(m.left().node()); // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is // contiguous, and the shift immediate non-zero. if (mleft.right().HasValue()) { uint32_t mask = mleft.right().Value(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); if ((mask_width != 0) && (mask_msb + mask_width == 32)) { uint32_t shift = m.right().Value(); DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); DCHECK_NE(0u, shift); if ((shift + mask_width) >= 32) { // If the mask is contiguous and reaches or extends beyond the top // bit, only the shift is needed. Emit(kMips64Shl, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseImmediate(m.right().node())); return; } } } } VisitRRO(this, kMips64Shl, node); } void InstructionSelector::VisitWord32Shr(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32And() && m.right().HasValue()) { uint32_t lsb = m.right().Value() & 0x1F; Int32BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue() && mleft.right().Value() != 0) { // Select Ext for Shr(And(x, mask), imm) where the result of the mask is // shifted into the least-significant bits. uint32_t mask = (mleft.right().Value() >> lsb) << lsb; unsigned mask_width = base::bits::CountPopulation(mask); unsigned mask_msb = base::bits::CountLeadingZeros32(mask); if ((mask_msb + mask_width + lsb) == 32) { Mips64OperandGenerator g(this); DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); Emit(kMips64Ext, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), g.TempImmediate(mask_width)); return; } } } VisitRRO(this, kMips64Shr, node); } void InstructionSelector::VisitWord32Sar(Node* node) { Int32BinopMatcher m(node); if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) { Int32BinopMatcher mleft(m.left().node()); if (m.right().HasValue() && mleft.right().HasValue()) { Mips64OperandGenerator g(this); uint32_t sar = m.right().Value(); uint32_t shl = mleft.right().Value(); if ((sar == shl) && (sar == 16)) { Emit(kMips64Seh, g.DefineAsRegister(node), g.UseRegister(mleft.left().node())); return; } else if ((sar == shl) && (sar == 24)) { Emit(kMips64Seb, g.DefineAsRegister(node), g.UseRegister(mleft.left().node())); return; } else if ((sar == shl) && (sar == 32)) { Emit(kMips64Shl, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } } } VisitRRO(this, kMips64Sar, node); } void InstructionSelector::VisitWord64Shl(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) && m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) { // There's no need to sign/zero-extend to 64-bit if we shift out the upper // 32 bits anyway. Emit(kMips64Dshl, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()->InputAt(0)), g.UseImmediate(m.right().node())); return; } if (m.left().IsWord64And() && CanCover(node, m.left().node()) && m.right().IsInRange(1, 63)) { // Match Word64Shl(Word64And(x, mask), imm) to Dshl where the mask is // contiguous, and the shift immediate non-zero. Int64BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue()) { uint64_t mask = mleft.right().Value(); uint32_t mask_width = base::bits::CountPopulation(mask); uint32_t mask_msb = base::bits::CountLeadingZeros64(mask); if ((mask_width != 0) && (mask_msb + mask_width == 64)) { uint64_t shift = m.right().Value(); DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); DCHECK_NE(0u, shift); if ((shift + mask_width) >= 64) { // If the mask is contiguous and reaches or extends beyond the top // bit, only the shift is needed. Emit(kMips64Dshl, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseImmediate(m.right().node())); return; } } } } VisitRRO(this, kMips64Dshl, node); } void InstructionSelector::VisitWord64Shr(Node* node) { Int64BinopMatcher m(node); if (m.left().IsWord64And() && m.right().HasValue()) { uint32_t lsb = m.right().Value() & 0x3F; Int64BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue() && mleft.right().Value() != 0) { // Select Dext for Shr(And(x, mask), imm) where the result of the mask is // shifted into the least-significant bits. uint64_t mask = (mleft.right().Value() >> lsb) << lsb; unsigned mask_width = base::bits::CountPopulation(mask); unsigned mask_msb = base::bits::CountLeadingZeros64(mask); if ((mask_msb + mask_width + lsb) == 64) { Mips64OperandGenerator g(this); DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask)); Emit(kMips64Dext, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), g.TempImmediate(mask_width)); return; } } } VisitRRO(this, kMips64Dshr, node); } void InstructionSelector::VisitWord64Sar(Node* node) { if (TryEmitExtendingLoad(this, node, node)) return; VisitRRO(this, kMips64Dsar, node); } void InstructionSelector::VisitWord32Ror(Node* node) { VisitRRO(this, kMips64Ror, node); } void InstructionSelector::VisitWord32Clz(Node* node) { VisitRR(this, kMips64Clz, node); } void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64ByteSwap64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64ByteSwap32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32Ctz(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Ctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord64Ctz(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Dctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord32Popcnt(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Popcnt, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord64Popcnt(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Dpopcnt, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitWord64Ror(Node* node) { VisitRRO(this, kMips64Dror, node); } void InstructionSelector::VisitWord64Clz(Node* node) { VisitRR(this, kMips64Dclz, node); } void InstructionSelector::VisitInt32Add(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); // Select Lsa for (left + (left_of_right << imm)). if (m.right().opcode() == IrOpcode::kWord32Shl && CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { Int32BinopMatcher mright(m.right().node()); if (mright.right().HasValue() && !m.left().HasValue()) { int32_t shift_value = static_cast<int32_t>(mright.right().Value()); Emit(kMips64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.TempImmediate(shift_value)); return; } } // Select Lsa for ((left_of_left << imm) + right). if (m.left().opcode() == IrOpcode::kWord32Shl && CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue() && !m.right().HasValue()) { int32_t shift_value = static_cast<int32_t>(mleft.right().Value()); Emit(kMips64Lsa, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(shift_value)); return; } } VisitBinop(this, node, kMips64Add, true, kMips64Add); } void InstructionSelector::VisitInt64Add(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); // Select Dlsa for (left + (left_of_right << imm)). if (m.right().opcode() == IrOpcode::kWord64Shl && CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { Int64BinopMatcher mright(m.right().node()); if (mright.right().HasValue() && !m.left().HasValue()) { int32_t shift_value = static_cast<int32_t>(mright.right().Value()); Emit(kMips64Dlsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.TempImmediate(shift_value)); return; } } // Select Dlsa for ((left_of_left << imm) + right). if (m.left().opcode() == IrOpcode::kWord64Shl && CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { Int64BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue() && !m.right().HasValue()) { int32_t shift_value = static_cast<int32_t>(mleft.right().Value()); Emit(kMips64Dlsa, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(shift_value)); return; } } VisitBinop(this, node, kMips64Dadd, true, kMips64Dadd); } void InstructionSelector::VisitInt32Sub(Node* node) { VisitBinop(this, node, kMips64Sub); } void InstructionSelector::VisitInt64Sub(Node* node) { VisitBinop(this, node, kMips64Dsub); } void InstructionSelector::VisitInt32Mul(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().HasValue() && m.right().Value() > 0) { uint32_t value = static_cast<uint32_t>(m.right().Value()); if (base::bits::IsPowerOfTwo(value)) { Emit(kMips64Shl | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value))); return; } if (base::bits::IsPowerOfTwo(value - 1)) { Emit(kMips64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value - 1))); return; } if (base::bits::IsPowerOfTwo(value + 1)) { InstructionOperand temp = g.TempRegister(); Emit(kMips64Shl | AddressingModeField::encode(kMode_None), temp, g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value + 1))); Emit(kMips64Sub | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); return; } } Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (CanCover(node, left) && CanCover(node, right)) { if (left->opcode() == IrOpcode::kWord64Sar && right->opcode() == IrOpcode::kWord64Sar) { Int64BinopMatcher leftInput(left), rightInput(right); if (leftInput.right().Is(32) && rightInput.right().Is(32)) { // Combine untagging shifts with Dmul high. Emit(kMips64DMulHigh, g.DefineSameAsFirst(node), g.UseRegister(leftInput.left().node()), g.UseRegister(rightInput.left().node())); return; } } } VisitRRR(this, kMips64Mul, node); } void InstructionSelector::VisitInt32MulHigh(Node* node) { VisitRRR(this, kMips64MulHigh, node); } void InstructionSelector::VisitUint32MulHigh(Node* node) { VisitRRR(this, kMips64MulHighU, node); } void InstructionSelector::VisitInt64Mul(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); // TODO(dusmil): Add optimization for shifts larger than 32. if (m.right().HasValue() && m.right().Value() > 0) { uint32_t value = static_cast<uint32_t>(m.right().Value()); if (base::bits::IsPowerOfTwo(value)) { Emit(kMips64Dshl | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value))); return; } if (base::bits::IsPowerOfTwo(value - 1)) { // Dlsa macro will handle the shifting value out of bound cases. Emit(kMips64Dlsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value - 1))); return; } if (base::bits::IsPowerOfTwo(value + 1)) { InstructionOperand temp = g.TempRegister(); Emit(kMips64Dshl | AddressingModeField::encode(kMode_None), temp, g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value + 1))); Emit(kMips64Dsub | AddressingModeField::encode(kMode_None), g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); return; } } Emit(kMips64Dmul, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt32Div(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (CanCover(node, left) && CanCover(node, right)) { if (left->opcode() == IrOpcode::kWord64Sar && right->opcode() == IrOpcode::kWord64Sar) { Int64BinopMatcher rightInput(right), leftInput(left); if (rightInput.right().Is(32) && leftInput.right().Is(32)) { // Combine both shifted operands with Ddiv. Emit(kMips64Ddiv, g.DefineSameAsFirst(node), g.UseRegister(leftInput.left().node()), g.UseRegister(rightInput.left().node())); return; } } } Emit(kMips64Div, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint32Div(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); Emit(kMips64DivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt32Mod(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (CanCover(node, left) && CanCover(node, right)) { if (left->opcode() == IrOpcode::kWord64Sar && right->opcode() == IrOpcode::kWord64Sar) { Int64BinopMatcher rightInput(right), leftInput(left); if (rightInput.right().Is(32) && leftInput.right().Is(32)) { // Combine both shifted operands with Dmod. Emit(kMips64Dmod, g.DefineSameAsFirst(node), g.UseRegister(leftInput.left().node()), g.UseRegister(rightInput.left().node())); return; } } } Emit(kMips64Mod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint32Mod(Node* node) { Mips64OperandGenerator g(this); Int32BinopMatcher m(node); Emit(kMips64ModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt64Div(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); Emit(kMips64Ddiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint64Div(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); Emit(kMips64DdivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitInt64Mod(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); Emit(kMips64Dmod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitUint64Mod(Node* node) { Mips64OperandGenerator g(this); Int64BinopMatcher m(node); Emit(kMips64DmodU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { VisitRR(this, kMips64CvtDS, node); } void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { VisitRR(this, kMips64CvtSW, node); } void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { VisitRR(this, kMips64CvtSUw, node); } void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { VisitRR(this, kMips64CvtDW, node); } void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { VisitRR(this, kMips64CvtDUw, node); } void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { VisitRR(this, kMips64TruncWS, node); } void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { VisitRR(this, kMips64TruncUwS, node); } void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { Mips64OperandGenerator g(this); Node* value = node->InputAt(0); // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction // which does rounding and conversion to integer format. if (CanCover(node, value)) { switch (value->opcode()) { case IrOpcode::kFloat64RoundDown: Emit(kMips64FloorWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; case IrOpcode::kFloat64RoundUp: Emit(kMips64CeilWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; case IrOpcode::kFloat64RoundTiesEven: Emit(kMips64RoundWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; case IrOpcode::kFloat64RoundTruncate: Emit(kMips64TruncWD, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; default: break; } if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) { Node* next = value->InputAt(0); if (CanCover(value, next)) { // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP)) switch (next->opcode()) { case IrOpcode::kFloat32RoundDown: Emit(kMips64FloorWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; case IrOpcode::kFloat32RoundUp: Emit(kMips64CeilWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; case IrOpcode::kFloat32RoundTiesEven: Emit(kMips64RoundWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; case IrOpcode::kFloat32RoundTruncate: Emit(kMips64TruncWS, g.DefineAsRegister(node), g.UseRegister(next->InputAt(0))); return; default: Emit(kMips64TruncWS, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; } } else { // Match float32 -> float64 -> int32 representation change path. Emit(kMips64TruncWS, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; } } } VisitRR(this, kMips64TruncWD, node); } void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { VisitRR(this, kMips64TruncUwD, node); } void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) { VisitRR(this, kMips64TruncUlD, node); } void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { VisitRR(this, kMips64TruncUwD, node); } void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { Mips64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } this->Emit(kMips64TruncLS, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { Mips64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kMips64TruncLD, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { Mips64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kMips64TruncUlS, output_count, outputs, 1, inputs); } void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { Mips64OperandGenerator g(this); InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; InstructionOperand outputs[2]; size_t output_count = 0; outputs[output_count++] = g.DefineAsRegister(node); Node* success_output = NodeProperties::FindProjection(node, 1); if (success_output) { outputs[output_count++] = g.DefineAsRegister(success_output); } Emit(kMips64TruncUlD, output_count, outputs, 1, inputs); } void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { Node* value = node->InputAt(0); if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { // Generate sign-extending load. LoadRepresentation load_rep = LoadRepresentationOf(value->op()); InstructionCode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kMips64Lbu : kMips64Lb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kMips64Lhu : kMips64Lh; break; case MachineRepresentation::kWord32: opcode = kMips64Lw; break; default: UNREACHABLE(); return; } EmitLoad(this, value, opcode, node); } else { Mips64OperandGenerator g(this); Emit(kMips64Shl, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0)); } } void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { Mips64OperandGenerator g(this); Node* value = node->InputAt(0); switch (value->opcode()) { // 32-bit operations will write their result in a 64 bit register, // clearing the top 32 bits of the destination register. case IrOpcode::kUint32Div: case IrOpcode::kUint32Mod: case IrOpcode::kUint32MulHigh: { Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); return; } case IrOpcode::kLoad: { LoadRepresentation load_rep = LoadRepresentationOf(value->op()); if (load_rep.IsUnsigned()) { switch (load_rep.representation()) { case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); return; default: break; } } break; } default: break; } Emit(kMips64Dext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0), g.TempImmediate(32)); } void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { Mips64OperandGenerator g(this); Node* value = node->InputAt(0); if (CanCover(node, value)) { switch (value->opcode()) { case IrOpcode::kWord64Sar: { if (TryEmitExtendingLoad(this, value, node)) { return; } else { Int64BinopMatcher m(value); if (m.right().IsInRange(32, 63)) { // After smi untagging no need for truncate. Combine sequence. Emit(kMips64Dsar, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseImmediate(m.right().node())); return; } } break; } default: break; } } Emit(kMips64Ext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0), g.TempImmediate(32)); } void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { Mips64OperandGenerator g(this); Node* value = node->InputAt(0); // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding // instruction. if (CanCover(node, value) && value->opcode() == IrOpcode::kChangeInt32ToFloat64) { Emit(kMips64CvtSW, g.DefineAsRegister(node), g.UseRegister(value->InputAt(0))); return; } VisitRR(this, kMips64CvtSD, node); } void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { VisitRR(this, kArchTruncateDoubleToI, node); } void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { VisitRR(this, kMips64TruncWD, node); } void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) { VisitRR(this, kMips64CvtSL, node); } void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) { VisitRR(this, kMips64CvtDL, node); } void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) { VisitRR(this, kMips64CvtSUl, node); } void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) { VisitRR(this, kMips64CvtDUl, node); } void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { VisitRR(this, kMips64Float64ExtractLowWord32, node); } void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) { VisitRR(this, kMips64BitcastDL, node); } void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Float64InsertLowWord32, g.DefineAsRegister(node), ImmediateOperand(ImmediateOperand::INLINE, 0), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) { VisitRR(this, kMips64BitcastLD, node); } void InstructionSelector::VisitFloat32Add(Node* node) { // Optimization with Madd.S(z, x, y) is intentionally removed. // See explanation for madd_s in assembler-mips64.cc. VisitRRR(this, kMips64AddS, node); } void InstructionSelector::VisitFloat64Add(Node* node) { // Optimization with Madd.D(z, x, y) is intentionally removed. // See explanation for madd_d in assembler-mips64.cc. VisitRRR(this, kMips64AddD, node); } void InstructionSelector::VisitFloat32Sub(Node* node) { // Optimization with Msub.S(z, x, y) is intentionally removed. // See explanation for madd_s in assembler-mips64.cc. VisitRRR(this, kMips64SubS, node); } void InstructionSelector::VisitFloat64Sub(Node* node) { // Optimization with Msub.D(z, x, y) is intentionally removed. // See explanation for madd_d in assembler-mips64.cc. VisitRRR(this, kMips64SubD, node); } void InstructionSelector::VisitFloat32Mul(Node* node) { VisitRRR(this, kMips64MulS, node); } void InstructionSelector::VisitFloat64Mul(Node* node) { VisitRRR(this, kMips64MulD, node); } void InstructionSelector::VisitFloat32Div(Node* node) { VisitRRR(this, kMips64DivS, node); } void InstructionSelector::VisitFloat64Div(Node* node) { VisitRRR(this, kMips64DivD, node); } void InstructionSelector::VisitFloat64Mod(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64ModD, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12), g.UseFixed(node->InputAt(1), f14))->MarkAsCall(); } void InstructionSelector::VisitFloat32Max(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Float32Max, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat64Max(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Float64Max, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat32Min(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Float32Min, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat64Min(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Float64Min, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void InstructionSelector::VisitFloat32Abs(Node* node) { VisitRR(this, kMips64AbsS, node); } void InstructionSelector::VisitFloat64Abs(Node* node) { VisitRR(this, kMips64AbsD, node); } void InstructionSelector::VisitFloat32Sqrt(Node* node) { VisitRR(this, kMips64SqrtS, node); } void InstructionSelector::VisitFloat64Sqrt(Node* node) { VisitRR(this, kMips64SqrtD, node); } void InstructionSelector::VisitFloat32RoundDown(Node* node) { VisitRR(this, kMips64Float32RoundDown, node); } void InstructionSelector::VisitFloat64RoundDown(Node* node) { VisitRR(this, kMips64Float64RoundDown, node); } void InstructionSelector::VisitFloat32RoundUp(Node* node) { VisitRR(this, kMips64Float32RoundUp, node); } void InstructionSelector::VisitFloat64RoundUp(Node* node) { VisitRR(this, kMips64Float64RoundUp, node); } void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { VisitRR(this, kMips64Float32RoundTruncate, node); } void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { VisitRR(this, kMips64Float64RoundTruncate, node); } void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { VisitRR(this, kMips64Float32RoundTiesEven, node); } void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { VisitRR(this, kMips64Float64RoundTiesEven, node); } void InstructionSelector::VisitFloat32Neg(Node* node) { VisitRR(this, kMips64NegS, node); } void InstructionSelector::VisitFloat64Neg(Node* node) { VisitRR(this, kMips64NegD, node); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { Mips64OperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2), g.UseFixed(node->InputAt(1), f4)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { Mips64OperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12)) ->MarkAsCall(); } void InstructionSelector::EmitPrepareArguments( ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, Node* node) { Mips64OperandGenerator g(this); // Prepare for C function call. if (call_descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( call_descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. int slot = kCArgSlotCount; for (PushParameter input : (*arguments)) { Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(slot << kPointerSizeLog2)); ++slot; } } else { int push_count = static_cast<int>(call_descriptor->StackParameterCount()); if (push_count > 0) { // Calculate needed space int stack_size = 0; for (PushParameter input : (*arguments)) { if (input.node) { stack_size += input.location.GetSizeInPointers(); } } Emit(kMips64StackClaim, g.NoOutput(), g.TempImmediate(stack_size << kPointerSizeLog2)); } for (size_t n = 0; n < arguments->size(); ++n) { PushParameter input = (*arguments)[n]; if (input.node) { Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), g.TempImmediate(static_cast<int>(n << kPointerSizeLog2))); } } } } void InstructionSelector::EmitPrepareResults( ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, Node* node) { Mips64OperandGenerator g(this); int reverse_slot = 0; for (PushParameter output : *results) { if (!output.location.IsCallerFrameSlot()) continue; // Skip any alignment holes in nodes. if (output.node != nullptr) { DCHECK(!call_descriptor->IsCFunctionCall()); if (output.location.GetType() == MachineType::Float32()) { MarkAsFloat32(output.node); } else if (output.location.GetType() == MachineType::Float64()) { MarkAsFloat64(output.node); } Emit(kMips64Peek, g.DefineAsRegister(output.node), g.UseImmediate(reverse_slot)); } reverse_slot += output.location.GetSizeInPointers(); } } bool InstructionSelector::IsTailCallAddressImmediate() { return false; } int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } void InstructionSelector::VisitUnalignedLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kMips64Ulwc1; break; case MachineRepresentation::kFloat64: opcode = kMips64Uldc1; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: UNREACHABLE(); break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kMips64Ulhu : kMips64Ulh; break; case MachineRepresentation::kWord32: opcode = load_rep.IsUnsigned() ? kMips64Ulwu : kMips64Ulw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kMips64Uld; break; case MachineRepresentation::kSimd128: opcode = kMips64MsaLd; break; case MachineRepresentation::kNone: UNREACHABLE(); return; } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired load opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); } } void InstructionSelector::VisitUnalignedStore(Node* node) { Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op()); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kFloat32: opcode = kMips64Uswc1; break; case MachineRepresentation::kFloat64: opcode = kMips64Usdc1; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: UNREACHABLE(); break; case MachineRepresentation::kWord16: opcode = kMips64Ush; break; case MachineRepresentation::kWord32: opcode = kMips64Usw; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: opcode = kMips64Usd; break; case MachineRepresentation::kSimd128: opcode = kMips64MsaSt; break; case MachineRepresentation::kNone: UNREACHABLE(); return; } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), g.UseRegisterOrImmediateZero(value)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired store opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); } } namespace { // Shared routine for multiple compare operations. static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { selector->EmitWithContinuation(opcode, left, right, cont); } // Shared routine for multiple float32 compare operations. void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { Mips64OperandGenerator g(selector); Float32BinopMatcher m(node); InstructionOperand lhs, rhs; lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) : g.UseRegister(m.left().node()); rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) : g.UseRegister(m.right().node()); VisitCompare(selector, kMips64CmpS, lhs, rhs, cont); } // Shared routine for multiple float64 compare operations. void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { Mips64OperandGenerator g(selector); Float64BinopMatcher m(node); InstructionOperand lhs, rhs; lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) : g.UseRegister(m.left().node()); rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) : g.UseRegister(m.right().node()); VisitCompare(selector, kMips64CmpD, lhs, rhs, cont); } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont, bool commutative) { Mips64OperandGenerator g(selector); Node* left = node->InputAt(0); Node* right = node->InputAt(1); // Match immediates on left or right side of comparison. if (g.CanBeImmediate(right, opcode)) { if (opcode == kMips64Tst) { VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), cont); } else { switch (cont->condition()) { case kEqual: case kNotEqual: if (cont->IsSet()) { VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), cont); } else { VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), cont); } break; case kSignedLessThan: case kSignedGreaterThanOrEqual: case kUnsignedLessThan: case kUnsignedGreaterThanOrEqual: VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), cont); break; default: VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), cont); } } } else if (g.CanBeImmediate(left, opcode)) { if (!commutative) cont->Commute(); if (opcode == kMips64Tst) { VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), cont); } else { switch (cont->condition()) { case kEqual: case kNotEqual: if (cont->IsSet()) { VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), cont); } else { VisitCompare(selector, opcode, g.UseRegister(right), g.UseRegister(left), cont); } break; case kSignedLessThan: case kSignedGreaterThanOrEqual: case kUnsignedLessThan: case kUnsignedGreaterThanOrEqual: VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), cont); break; default: VisitCompare(selector, opcode, g.UseRegister(right), g.UseRegister(left), cont); } } } else { VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), cont); } } bool IsNodeUnsigned(Node* n) { NodeMatcher m(n); if (m.IsLoad() || m.IsUnalignedLoad() || m.IsPoisonedLoad() || m.IsProtectedLoad() || m.IsWord32AtomicLoad() || m.IsWord64AtomicLoad()) { LoadRepresentation load_rep = LoadRepresentationOf(n->op()); return load_rep.IsUnsigned(); } else { return m.IsUint32Div() || m.IsUint32LessThan() || m.IsUint32LessThanOrEqual() || m.IsUint32Mod() || m.IsUint32MulHigh() || m.IsChangeFloat64ToUint32() || m.IsTruncateFloat64ToUint32() || m.IsTruncateFloat32ToUint32(); } } // Shared routine for multiple word compare operations. void VisitFullWord32Compare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { Mips64OperandGenerator g(selector); InstructionOperand leftOp = g.TempRegister(); InstructionOperand rightOp = g.TempRegister(); selector->Emit(kMips64Dshl, leftOp, g.UseRegister(node->InputAt(0)), g.TempImmediate(32)); selector->Emit(kMips64Dshl, rightOp, g.UseRegister(node->InputAt(1)), g.TempImmediate(32)); VisitCompare(selector, opcode, leftOp, rightOp, cont); } void VisitOptimizedWord32Compare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { if (FLAG_debug_code) { Mips64OperandGenerator g(selector); InstructionOperand leftOp = g.TempRegister(); InstructionOperand rightOp = g.TempRegister(); InstructionOperand optimizedResult = g.TempRegister(); InstructionOperand fullResult = g.TempRegister(); FlagsCondition condition = cont->condition(); InstructionCode testOpcode = opcode | FlagsConditionField::encode(condition) | FlagsModeField::encode(kFlags_set); selector->Emit(testOpcode, optimizedResult, g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); selector->Emit(kMips64Dshl, leftOp, g.UseRegister(node->InputAt(0)), g.TempImmediate(32)); selector->Emit(kMips64Dshl, rightOp, g.UseRegister(node->InputAt(1)), g.TempImmediate(32)); selector->Emit(testOpcode, fullResult, leftOp, rightOp); selector->Emit( kMips64AssertEqual, g.NoOutput(), optimizedResult, fullResult, g.TempImmediate( static_cast<int>(AbortReason::kUnsupportedNonPrimitiveCompare))); } VisitWordCompare(selector, node, opcode, cont, false); } void VisitWord32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { // MIPS64 doesn't support Word32 compare instructions. Instead it relies // that the values in registers are correctly sign-extended and uses // Word64 comparison instead. This behavior is correct in most cases, // but doesn't work when comparing signed with unsigned operands. // We could simulate full Word32 compare in all cases but this would // create an unnecessary overhead since unsigned integers are rarely // used in JavaScript. // The solution proposed here tries to match a comparison of signed // with unsigned operand, and perform full Word32Compare only // in those cases. Unfortunately, the solution is not complete because // it might skip cases where Word32 full compare is needed, so // basically it is a hack. if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1))) { VisitFullWord32Compare(selector, node, kMips64Cmp, cont); } else { VisitOptimizedWord32Compare(selector, node, kMips64Cmp, cont); } } void VisitWord64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { VisitWordCompare(selector, node, kMips64Cmp, cont, false); } void EmitWordCompareZero(InstructionSelector* selector, Node* value, FlagsContinuation* cont) { Mips64OperandGenerator g(selector); selector->EmitWithContinuation(kMips64Cmp, g.UseRegister(value), g.TempImmediate(0), cont); } } // namespace // Shared routine for word comparisons against zero. void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (CanCover(user, value)) { if (value->opcode() == IrOpcode::kWord32Equal) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); } else if (value->opcode() == IrOpcode::kWord64Equal) { Int64BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); } else { break; } cont->Negate(); } if (CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord32Compare(this, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord32Compare(this, value, cont); case IrOpcode::kWord64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kInt64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWord64Compare(this, value, cont); case IrOpcode::kUint64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWord64Compare(this, value, cont); case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat32Compare(this, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitFloat64Compare(this, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitFloat64Compare(this, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // <Operation>WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the <Operation>WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // <Operation> is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (result == nullptr || IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kMips64Dadd, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kMips64Dsub, cont); case IrOpcode::kInt32MulWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kMips64MulOvf, cont); case IrOpcode::kInt64AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kMips64DaddOvf, cont); case IrOpcode::kInt64SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(this, node, kMips64DsubOvf, cont); default: break; } } } break; case IrOpcode::kWord32And: case IrOpcode::kWord64And: return VisitWordCompare(this, value, kMips64Tst, cont, true); default: break; } } // Continuation could not be combined with a compare, emit compare against 0. EmitWordCompareZero(this, value, cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { Mips64OperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchLookupSwitch. if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { static const size_t kMaxTableSwitchValueRange = 2 << 16; size_t table_space_cost = 10 + 2 * sw.value_range(); size_t table_time_cost = 3; size_t lookup_space_cost = 2 + 2 * sw.case_count(); size_t lookup_time_cost = sw.case_count(); if (sw.case_count() > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value() > std::numeric_limits<int32_t>::min() && sw.value_range() <= kMaxTableSwitchValueRange) { InstructionOperand index_operand = value_operand; if (sw.min_value()) { index_operand = g.TempRegister(); Emit(kMips64Sub, index_operand, value_operand, g.TempImmediate(sw.min_value())); } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } } // Generate a tree of conditional jumps. return EmitBinarySearchSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(m.node(), m.left().node(), &cont); } VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord32Compare(this, node, &cont); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kMips64Dadd, &cont); } FlagsContinuation cont; VisitBinop(this, node, kMips64Dadd, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kMips64Dsub, &cont); } FlagsContinuation cont; VisitBinop(this, node, kMips64Dsub, &cont); } void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kMips64MulOvf, &cont); } FlagsContinuation cont; VisitBinop(this, node, kMips64MulOvf, &cont); } void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kMips64DaddOvf, &cont); } FlagsContinuation cont; VisitBinop(this, node, kMips64DaddOvf, &cont); } void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kMips64DsubOvf, &cont); } FlagsContinuation cont; VisitBinop(this, node, kMips64DsubOvf, &cont); } void InstructionSelector::VisitWord64Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int64BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(m.node(), m.left().node(), &cont); } VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWord64Compare(this, node, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { VisitRR(this, kMips64Float64ExtractLowWord32, node); } void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { VisitRR(this, kMips64Float64ExtractHighWord32, node); } void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { VisitRR(this, kMips64Float64SilenceNaN, node); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { Mips64OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Emit(kMips64Float64InsertLowWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { Mips64OperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); Emit(kMips64Float64InsertHighWord32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitWord32AtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt8 : kWord32AtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kWord32AtomicLoadInt16 : kWord32AtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicLoadWord32; break; default: UNREACHABLE(); return; } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired load opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); } } void InstructionSelector::VisitWord32AtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kWord32AtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kWord32AtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kWord32AtomicStoreWord32; break; default: UNREACHABLE(); return; } if (g.CanBeImmediate(index, opcode)) { Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), g.UseRegister(base), g.UseImmediate(index), g.UseRegisterOrImmediateZero(value)); } else { InstructionOperand addr_reg = g.TempRegister(); Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg, g.UseRegister(index), g.UseRegister(base)); // Emit desired store opcode, using temp addr_reg. Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); } } void InstructionSelector::VisitWord32AtomicExchange(Node* node) { Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRI; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionOperand temp[3]; temp[0] = g.TempRegister(); temp[1] = g.TempRegister(); temp[2] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs, 3, temp); } void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* old_value = node->InputAt(2); Node* new_value = node->InputAt(3); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = kWord32AtomicCompareExchangeInt8; } else if (type == MachineType::Uint8()) { opcode = kWord32AtomicCompareExchangeUint8; } else if (type == MachineType::Int16()) { opcode = kWord32AtomicCompareExchangeInt16; } else if (type == MachineType::Uint16()) { opcode = kWord32AtomicCompareExchangeUint16; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = kWord32AtomicCompareExchangeWord32; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRI; InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(old_value); inputs[input_count++] = g.UseUniqueRegister(new_value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionOperand temp[3]; temp[0] = g.TempRegister(); temp[1] = g.TempRegister(); temp[2] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs, 3, temp); } void InstructionSelector::VisitWord32AtomicBinaryOperation( Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, ArchOpcode uint16_op, ArchOpcode word32_op) { Mips64OperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; MachineType type = AtomicOpType(node->op()); if (type == MachineType::Int8()) { opcode = int8_op; } else if (type == MachineType::Uint8()) { opcode = uint8_op; } else if (type == MachineType::Int16()) { opcode = int16_op; } else if (type == MachineType::Uint16()) { opcode = uint16_op; } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { opcode = word32_op; } else { UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_MRI; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionOperand outputs[1]; outputs[0] = g.UseUniqueRegister(node); InstructionOperand temps[4]; temps[0] = g.TempRegister(); temps[1] = g.TempRegister(); temps[2] = g.TempRegister(); temps[3] = g.TempRegister(); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 1, outputs, input_count, inputs, 4, temps); } #define VISIT_ATOMIC_BINOP(op) \ void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ VisitWord32AtomicBinaryOperation( \ node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ kWord32Atomic##op##Word32); \ } VISIT_ATOMIC_BINOP(Add) VISIT_ATOMIC_BINOP(Sub) VISIT_ATOMIC_BINOP(And) VISIT_ATOMIC_BINOP(Or) VISIT_ATOMIC_BINOP(Xor) #undef VISIT_ATOMIC_BINOP void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); } #define SIMD_TYPE_LIST(V) \ V(F32x4) \ V(I32x4) \ V(I16x8) \ V(I8x16) #define SIMD_UNOP_LIST(V) \ V(F32x4SConvertI32x4, kMips64F32x4SConvertI32x4) \ V(F32x4UConvertI32x4, kMips64F32x4UConvertI32x4) \ V(F32x4Abs, kMips64F32x4Abs) \ V(F32x4Neg, kMips64F32x4Neg) \ V(F32x4RecipApprox, kMips64F32x4RecipApprox) \ V(F32x4RecipSqrtApprox, kMips64F32x4RecipSqrtApprox) \ V(I32x4SConvertF32x4, kMips64I32x4SConvertF32x4) \ V(I32x4UConvertF32x4, kMips64I32x4UConvertF32x4) \ V(I32x4Neg, kMips64I32x4Neg) \ V(I32x4SConvertI16x8Low, kMips64I32x4SConvertI16x8Low) \ V(I32x4SConvertI16x8High, kMips64I32x4SConvertI16x8High) \ V(I32x4UConvertI16x8Low, kMips64I32x4UConvertI16x8Low) \ V(I32x4UConvertI16x8High, kMips64I32x4UConvertI16x8High) \ V(I16x8Neg, kMips64I16x8Neg) \ V(I16x8SConvertI8x16Low, kMips64I16x8SConvertI8x16Low) \ V(I16x8SConvertI8x16High, kMips64I16x8SConvertI8x16High) \ V(I16x8UConvertI8x16Low, kMips64I16x8UConvertI8x16Low) \ V(I16x8UConvertI8x16High, kMips64I16x8UConvertI8x16High) \ V(I8x16Neg, kMips64I8x16Neg) \ V(S128Not, kMips64S128Not) \ V(S1x4AnyTrue, kMips64S1x4AnyTrue) \ V(S1x4AllTrue, kMips64S1x4AllTrue) \ V(S1x8AnyTrue, kMips64S1x8AnyTrue) \ V(S1x8AllTrue, kMips64S1x8AllTrue) \ V(S1x16AnyTrue, kMips64S1x16AnyTrue) \ V(S1x16AllTrue, kMips64S1x16AllTrue) #define SIMD_SHIFT_OP_LIST(V) \ V(I32x4Shl) \ V(I32x4ShrS) \ V(I32x4ShrU) \ V(I16x8Shl) \ V(I16x8ShrS) \ V(I16x8ShrU) \ V(I8x16Shl) \ V(I8x16ShrS) \ V(I8x16ShrU) #define SIMD_BINOP_LIST(V) \ V(F32x4Add, kMips64F32x4Add) \ V(F32x4AddHoriz, kMips64F32x4AddHoriz) \ V(F32x4Sub, kMips64F32x4Sub) \ V(F32x4Mul, kMips64F32x4Mul) \ V(F32x4Max, kMips64F32x4Max) \ V(F32x4Min, kMips64F32x4Min) \ V(F32x4Eq, kMips64F32x4Eq) \ V(F32x4Ne, kMips64F32x4Ne) \ V(F32x4Lt, kMips64F32x4Lt) \ V(F32x4Le, kMips64F32x4Le) \ V(I32x4Add, kMips64I32x4Add) \ V(I32x4AddHoriz, kMips64I32x4AddHoriz) \ V(I32x4Sub, kMips64I32x4Sub) \ V(I32x4Mul, kMips64I32x4Mul) \ V(I32x4MaxS, kMips64I32x4MaxS) \ V(I32x4MinS, kMips64I32x4MinS) \ V(I32x4MaxU, kMips64I32x4MaxU) \ V(I32x4MinU, kMips64I32x4MinU) \ V(I32x4Eq, kMips64I32x4Eq) \ V(I32x4Ne, kMips64I32x4Ne) \ V(I32x4GtS, kMips64I32x4GtS) \ V(I32x4GeS, kMips64I32x4GeS) \ V(I32x4GtU, kMips64I32x4GtU) \ V(I32x4GeU, kMips64I32x4GeU) \ V(I16x8Add, kMips64I16x8Add) \ V(I16x8AddSaturateS, kMips64I16x8AddSaturateS) \ V(I16x8AddSaturateU, kMips64I16x8AddSaturateU) \ V(I16x8AddHoriz, kMips64I16x8AddHoriz) \ V(I16x8Sub, kMips64I16x8Sub) \ V(I16x8SubSaturateS, kMips64I16x8SubSaturateS) \ V(I16x8SubSaturateU, kMips64I16x8SubSaturateU) \ V(I16x8Mul, kMips64I16x8Mul) \ V(I16x8MaxS, kMips64I16x8MaxS) \ V(I16x8MinS, kMips64I16x8MinS) \ V(I16x8MaxU, kMips64I16x8MaxU) \ V(I16x8MinU, kMips64I16x8MinU) \ V(I16x8Eq, kMips64I16x8Eq) \ V(I16x8Ne, kMips64I16x8Ne) \ V(I16x8GtS, kMips64I16x8GtS) \ V(I16x8GeS, kMips64I16x8GeS) \ V(I16x8GtU, kMips64I16x8GtU) \ V(I16x8GeU, kMips64I16x8GeU) \ V(I16x8SConvertI32x4, kMips64I16x8SConvertI32x4) \ V(I16x8UConvertI32x4, kMips64I16x8UConvertI32x4) \ V(I8x16Add, kMips64I8x16Add) \ V(I8x16AddSaturateS, kMips64I8x16AddSaturateS) \ V(I8x16AddSaturateU, kMips64I8x16AddSaturateU) \ V(I8x16Sub, kMips64I8x16Sub) \ V(I8x16SubSaturateS, kMips64I8x16SubSaturateS) \ V(I8x16SubSaturateU, kMips64I8x16SubSaturateU) \ V(I8x16Mul, kMips64I8x16Mul) \ V(I8x16MaxS, kMips64I8x16MaxS) \ V(I8x16MinS, kMips64I8x16MinS) \ V(I8x16MaxU, kMips64I8x16MaxU) \ V(I8x16MinU, kMips64I8x16MinU) \ V(I8x16Eq, kMips64I8x16Eq) \ V(I8x16Ne, kMips64I8x16Ne) \ V(I8x16GtS, kMips64I8x16GtS) \ V(I8x16GeS, kMips64I8x16GeS) \ V(I8x16GtU, kMips64I8x16GtU) \ V(I8x16GeU, kMips64I8x16GeU) \ V(I8x16SConvertI16x8, kMips64I8x16SConvertI16x8) \ V(I8x16UConvertI16x8, kMips64I8x16UConvertI16x8) \ V(S128And, kMips64S128And) \ V(S128Or, kMips64S128Or) \ V(S128Xor, kMips64S128Xor) void InstructionSelector::VisitS128Zero(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64S128Zero, g.DefineSameAsFirst(node)); } #define SIMD_VISIT_SPLAT(Type) \ void InstructionSelector::Visit##Type##Splat(Node* node) { \ VisitRR(this, kMips64##Type##Splat, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) #undef SIMD_VISIT_SPLAT #define SIMD_VISIT_EXTRACT_LANE(Type) \ void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \ VisitRRI(this, kMips64##Type##ExtractLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE) #undef SIMD_VISIT_EXTRACT_LANE #define SIMD_VISIT_REPLACE_LANE(Type) \ void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ VisitRRIR(this, kMips64##Type##ReplaceLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) #undef SIMD_VISIT_REPLACE_LANE #define SIMD_VISIT_UNOP(Name, instruction) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, instruction, node); \ } SIMD_UNOP_LIST(SIMD_VISIT_UNOP) #undef SIMD_VISIT_UNOP #define SIMD_VISIT_SHIFT_OP(Name) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRI(this, kMips64##Name, node); \ } SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) #undef SIMD_VISIT_SHIFT_OP #define SIMD_VISIT_BINOP(Name, instruction) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRR(this, instruction, node); \ } SIMD_BINOP_LIST(SIMD_VISIT_BINOP) #undef SIMD_VISIT_BINOP void InstructionSelector::VisitS128Select(Node* node) { VisitRRRR(this, kMips64S128Select, node); } namespace { struct ShuffleEntry { uint8_t shuffle[kSimd128Size]; ArchOpcode opcode; }; static const ShuffleEntry arch_shuffles[] = { {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, kMips64S32x4InterleaveRight}, {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, kMips64S32x4InterleaveLeft}, {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, kMips64S32x4PackEven}, {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}, kMips64S32x4PackOdd}, {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}, kMips64S32x4InterleaveEven}, {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}, kMips64S32x4InterleaveOdd}, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, kMips64S16x8InterleaveRight}, {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, kMips64S16x8InterleaveLeft}, {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, kMips64S16x8PackEven}, {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, kMips64S16x8PackOdd}, {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}, kMips64S16x8InterleaveEven}, {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}, kMips64S16x8InterleaveOdd}, {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, kMips64S16x4Reverse}, {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, kMips64S16x2Reverse}, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, kMips64S8x16InterleaveRight}, {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, kMips64S8x16InterleaveLeft}, {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, kMips64S8x16PackEven}, {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, kMips64S8x16PackOdd}, {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, kMips64S8x16InterleaveEven}, {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, kMips64S8x16InterleaveOdd}, {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kMips64S8x8Reverse}, {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kMips64S8x4Reverse}, {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kMips64S8x2Reverse}}; bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, size_t num_entries, bool is_swizzle, ArchOpcode* opcode) { uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1; for (size_t i = 0; i < num_entries; ++i) { const ShuffleEntry& entry = table[i]; int j = 0; for (; j < kSimd128Size; ++j) { if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { break; } } if (j == kSimd128Size) { *opcode = entry.opcode; return true; } } return false; } } // namespace void InstructionSelector::VisitS8x16Shuffle(Node* node) { uint8_t shuffle[kSimd128Size]; bool is_swizzle; CanonicalizeShuffle(node, shuffle, &is_swizzle); uint8_t shuffle32x4[4]; ArchOpcode opcode; if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), is_swizzle, &opcode)) { VisitRRR(this, opcode, node); return; } Node* input0 = node->InputAt(0); Node* input1 = node->InputAt(1); uint8_t offset; Mips64OperandGenerator g(this); if (TryMatchConcat(shuffle, &offset)) { Emit(kMips64S8x16Concat, g.DefineSameAsFirst(node), g.UseRegister(input1), g.UseRegister(input0), g.UseImmediate(offset)); return; } if (TryMatch32x4Shuffle(shuffle, shuffle32x4)) { Emit(kMips64S32x4Shuffle, g.DefineAsRegister(node), g.UseRegister(input0), g.UseRegister(input1), g.UseImmediate(Pack4Lanes(shuffle32x4))); return; } Emit(kMips64S8x16Shuffle, g.DefineAsRegister(node), g.UseRegister(input0), g.UseRegister(input1), g.UseImmediate(Pack4Lanes(shuffle)), g.UseImmediate(Pack4Lanes(shuffle + 4)), g.UseImmediate(Pack4Lanes(shuffle + 8)), g.UseImmediate(Pack4Lanes(shuffle + 12))); } void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Seb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Seh, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Seb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Seh, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) { Mips64OperandGenerator g(this); Emit(kMips64Shl, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.TempImmediate(0)); } // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags; return flags | MachineOperatorBuilder::kWord32Ctz | MachineOperatorBuilder::kWord64Ctz | MachineOperatorBuilder::kWord32Popcnt | MachineOperatorBuilder::kWord64Popcnt | MachineOperatorBuilder::kWord32ShiftIsSafe | MachineOperatorBuilder::kInt32DivIsSafe | MachineOperatorBuilder::kUint32DivIsSafe | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTiesEven | MachineOperatorBuilder::kFloat32RoundTiesEven; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { if (kArchVariant == kMips64r6) { return MachineOperatorBuilder::AlignmentRequirements:: FullUnalignedAccessSupport(); } else { DCHECK_EQ(kMips64r2, kArchVariant); return MachineOperatorBuilder::AlignmentRequirements:: NoUnalignedAccessSupport(); } } #undef SIMD_BINOP_LIST #undef SIMD_SHIFT_OP_LIST #undef SIMD_UNOP_LIST #undef SIMD_TYPE_LIST #undef TRACE_UNIMPL #undef TRACE } // namespace compiler } // namespace internal } // namespace v8