// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC #include "src/assembler-inl.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/objects/js-generator.h" #include "src/runtime/runtime.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ TestIfSmi(r5, r0); __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, cr0); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- r3 : argument count (preserved for callee) // -- r4 : target function (preserved for callee) // -- r6 : new target (preserved for callee) // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ SmiTag(r3); __ Push(r3, r4, r6, r4); __ CallRuntime(function_id, 1); __ mr(r5, r3); // Restore target function and new target. __ Pop(r3, r4, r6); __ SmiUntag(r3); } static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r5); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { Label post_instantiation_deopt_entry; // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r6 : new target // -- cp : context // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(r3); __ Push(cp, r3); __ SmiUntag(r3, SetRC); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ addi(r7, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, no_args; // ----------- S t a t e ------------- // -- r3: number of arguments (untagged) // -- r4: constructor function // -- r6: new target // -- r7: pointer to last argument // -- cr0: condition indicating whether r3 is zero // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ beq(&no_args, cr0); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ sub(sp, sp, ip); __ mtctr(r3); __ bind(&loop); __ subi(ip, ip, Operand(kPointerSize)); __ LoadPX(r0, MemOperand(r7, ip)); __ StorePX(r0, MemOperand(sp, ip)); __ bdnz(&loop); __ bind(&no_args); // Call the function. // r3: number of arguments (untagged) // r4: constructor function // r6: new target { ConstantPoolUnavailableScope constant_pool_unavailable(masm); ParameterCount actual(r3); __ InvokeFunction(r4, r6, actual, CALL_FUNCTION); } // Restore context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); __ blr(); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3: number of arguments (untagged) // -- r4: constructor function // -- r6: new target // -- cp: context // -- lr: return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ SmiTag(r3); __ Push(cp, r3, r4); __ PushRoot(Heap::kUndefinedValueRootIndex); __ Push(r6); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- r4 and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments (tagged) // -- sp[4*kPointerSize]: context // ----------------------------------- __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); __ TestBitMask(r7, SharedFunctionInfo::IsDerivedConstructorBit::kMask, r0); __ bne(¬_create_implicit_receiver, cr0); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r7, r8); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ b(&post_instantiation_deopt_entry); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- r3: receiver // -- Slot 4 / sp[0*kPointerSize]: new target // -- Slot 3 / sp[1*kPointerSize]: padding // -- Slot 2 / sp[2*kPointerSize]: constructor function // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(r6); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(r3, r3); // ----------- S t a t e ------------- // -- r6: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); __ LoadP(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(r3, SetRC); // Set up pointer to last argument. __ addi(r7, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, no_args; // ----------- S t a t e ------------- // -- r3: number of arguments (untagged) // -- r6: new target // -- r7: pointer to last argument // -- cr0: condition indicating whether r3 is zero // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- r4 and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ beq(&no_args, cr0); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ sub(sp, sp, ip); __ mtctr(r3); __ bind(&loop); __ subi(ip, ip, Operand(kPointerSize)); __ LoadPX(r0, MemOperand(r7, ip)); __ StorePX(r0, MemOperand(sp, ip)); __ bdnz(&loop); __ bind(&no_args); // Call the function. { ConstantPoolUnavailableScope constant_pool_unavailable(masm); ParameterCount actual(r3); __ InvokeFunction(r4, r6, actual, CALL_FUNCTION); } // ----------- S t a t e ------------- // -- r0: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore the context from the frame. __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex, &use_receiver); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(r3, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&leave_frame); __ b(&use_receiver); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadP(r3, MemOperand(sp)); __ JumpIfRoot(r3, Heap::kTheHoleValueRootIndex, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ LoadP(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); __ blr(); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); __ bne(&done); __ LoadP(sfi_data, FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the value to pass to the generator // -- r4 : the JSGeneratorObject to resume // -- lr : return address // ----------------------------------- __ AssertGeneratorObject(r4); // Store input value into generator object. __ StoreP(r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset), r0); __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6, kLRHasNotBeenSaved, kDontSaveFPRegs); // Load suspended function and context. __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); __ LoadP(cp, FieldMemOperand(r7, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ Move(ip, debug_hook); __ LoadByte(ip, MemOperand(ip), r0); __ extsb(ip, ip); __ CmpSmiLiteral(ip, Smi::kZero, r0); __ bne(&prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ Move(ip, debug_suspended_generator); __ LoadP(ip, MemOperand(ip)); __ cmp(ip, r4); __ beq(&prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); __ blt(&stack_overflow); // Push receiver. __ LoadP(ip, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset)); __ Push(ip); // ----------- S t a t e ------------- // -- r4 : the JSGeneratorObject to resume // -- r7 : generator function // -- cp : generator context // -- lr : return address // -- sp[0] : generator receiver // ----------------------------------- // Copy the function arguments from the generator object's register file. __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); __ LoadHalfWord( r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadP(r5, FieldMemOperand( r4, JSGeneratorObject::kParametersAndRegistersOffset)); { Label loop, done_loop; __ cmpi(r6, Operand::Zero()); __ ble(&done_loop); // setup r9 to first element address - kPointerSize __ addi(r9, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); __ mtctr(r6); __ bind(&loop); __ LoadPU(ip, MemOperand(r9, kPointerSize)); __ push(ip); __ bdnz(&loop); __ bind(&done_loop); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, r6, r3); __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE); __ Assert(eq, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. __ mr(r6, r4); __ mr(r4, r7); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r5); } __ bind(&prepare_step_in_if_stepping); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4, r7); // Push hole as receiver since we do not use it for stepping. __ PushRoot(Heap::kTheHoleValueRootIndex); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(r4); __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(r4); __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset)); } __ b(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); // This should be unreachable. } } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ push(r4); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } // Clobbers r5; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r5, Heap::kRealStackLimitRootIndex); // Make r5 the space we have left. The stack might already be overflowed // here which will cause r5 to become negative. __ sub(r5, sp, r5); // Check if the arguments will overflow the stack. __ ShiftLeftImm(r0, argc, Operand(kPointerSizeLog2)); __ cmp(r5, r0); __ bgt(&okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r3: new.target // r4: function // r5: receiver // r6: argc // r7: argv // r0,r8-r9, cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ Move(cp, context_address); __ LoadP(cp, MemOperand(cp)); // Push the function and the receiver onto the stack. __ Push(r4, r5); // Check if we have enough stack space to push all arguments. // Clobbers r5. Generate_CheckStackOverflow(masm, r6); // Copy arguments to the stack in a loop. // r4: function // r6: argc // r7: argv, i.e. points to first arg Label loop, entry; __ ShiftLeftImm(r0, r6, Operand(kPointerSizeLog2)); __ add(r5, r7, r0); // r5 points past last arg. __ b(&entry); __ bind(&loop); __ LoadP(r8, MemOperand(r7)); // read next parameter __ addi(r7, r7, Operand(kPointerSize)); __ LoadP(r0, MemOperand(r8)); // dereference handle __ push(r0); // push parameter __ bind(&entry); __ cmp(r7, r5); __ bne(&loop); // Setup new.target and argc. __ mr(r7, r3); __ mr(r3, r6); __ mr(r6, r7); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r7, Heap::kUndefinedValueRootIndex); __ mr(r14, r7); __ mr(r15, r7); __ mr(r16, r7); __ mr(r17, r7); // Invoke the code. Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. } __ blr(); // r3: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store code entry in the closure. __ StoreP(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset), r0); __ mr(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { Register args_count = scratch; // Get the arguments + receiver count. __ LoadP(args_count, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ lwz(args_count, FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::INTERPRETED); __ add(sp, sp, args_count); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ CmpSmiLiteral(smi_entry, Smi::FromEnum(marker), r0); __ bne(&no_match); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch1, Register scratch2, Register scratch3) { // ----------- S t a t e ------------- // -- r0 : argument count (preserved for callee if needed, and caller) // -- r3 : new target (preserved for callee if needed, and caller) // -- r1 : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK( !AreAliased(feedback_vector, r3, r4, r6, scratch1, scratch2, scratch3)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = r4; Register optimized_code_entry = scratch1; __ LoadP( optimized_code_entry, FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is a Smi optimization marker. // Fall through if no optimization trigger. __ CmpSmiLiteral(optimized_code_entry, Smi::FromEnum(OptimizationMarker::kNone), r0); __ beq(&fallthrough); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ CmpSmiLiteral( optimized_code_entry, Smi::FromEnum(OptimizationMarker::kInOptimizationQueue), r0); __ Assert(eq, AbortReason::kExpectedOptimizationSentinel); } __ b(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); // Check if the optimized code is marked for deopt. If it is, call the // runtime to clear it. Label found_deoptimized_code; __ LoadP(scratch2, FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ LoadWordArith( scratch2, FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); __ TestBit(scratch2, Code::kMarkedForDeoptimizationBit, r0); __ bne(&found_deoptimized_code, cr0); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, scratch2, scratch3, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ addi(r5, optimized_code_entry, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r5); // Optimized code slot contains deoptimized code, evict it and re-enter the // closure's code. __ bind(&found_deoptimized_code); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Label* if_return) { Register bytecode_size_table = scratch1; Register scratch2 = bytecode; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ Move(bytecode_size_table, ExternalReference::bytecode_size_table_address()); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmpi(bytecode, Operand(0x3)); __ bgt(&process_bytecode); __ andi(r0, bytecode, Operand(0x1)); __ bne(&extra_wide, cr0); // Load the next bytecode and update table to the wide scaled table. __ addi(bytecode_offset, bytecode_offset, Operand(1)); __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ addi(bytecode_size_table, bytecode_size_table, Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ b(&process_bytecode); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ addi(bytecode_offset, bytecode_offset, Operand(1)); __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset)); __ addi(bytecode_size_table, bytecode_size_table, Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); // Load the size of the current bytecode. __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmpi(bytecode, \ Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \ __ beq(if_return); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ ShiftLeftImm(scratch2, bytecode, Operand(2)); __ lwzx(scratch2, MemOperand(bytecode_size_table, scratch2)); __ add(bytecode_offset, bytecode_offset, scratch2); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o r4: the JS function object being called. // o r6: the incoming new target or generator object // o cp: our context // o pp: the caller's constant pool pointer (if enabled) // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = r4; Register feedback_vector = r5; // Load the feedback vector from the closure. __ LoadP(feedback_vector, FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); __ LoadP(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r7, r9, r8); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushStandardFrame(closure); // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ LoadP(r3, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); // Load original bytecode array or the debug copy. __ LoadP(kInterpreterBytecodeArrayRegister, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset)); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r7); // Increment invocation count for the function. __ LoadWord( r8, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); __ addi(r8, r8, Operand(1)); __ StoreWord( r8, FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset), r0); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, cr0); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ mov(r8, Operand(BytecodeArray::kNoAgeBytecodeAge)); __ StoreByte(r8, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset), r0); // Load initial bytecode offset. __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Push bytecode array and Smi tagged bytecode array offset. __ SmiTag(r3, kInterpreterBytecodeOffsetRegister); __ Push(kInterpreterBytecodeArrayRegister, r3); // Allocate the local and temporary register file on the stack. { // Load frame size (word) from the BytecodeArray object. __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ sub(r8, sp, r5); __ LoadRoot(r0, Heap::kRealStackLimitRootIndex); __ cmpl(r8, r0); __ bge(&ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. // TODO(rmcilroy): Consider doing more than one push per loop iteration. Label loop, no_args; __ LoadRoot(r8, Heap::kUndefinedValueRootIndex); __ ShiftRightImm(r5, r5, Operand(kPointerSizeLog2), SetRC); __ beq(&no_args, cr0); __ mtctr(r5); __ bind(&loop); __ push(r8); __ bdnz(&loop); __ bind(&no_args); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in r6. Label no_incoming_new_target_or_generator_register; __ LoadWordArith( r8, FieldMemOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ cmpi(r8, Operand::Zero()); __ beq(&no_incoming_new_target_or_generator_register); __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2)); __ StorePX(r6, MemOperand(fp, r8)); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator with undefined. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftImm(r6, r6, Operand(kPointerSizeLog2)); __ LoadPX(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, r6)); __ Call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r4, r5, &do_return); __ b(&do_dispatch); __ bind(&do_return); // The return value is in r3. LeaveInterpreterFrame(masm, r5); __ blr(); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); // Make scratch the space we have left. The stack might already be overflowed // here which will cause scratch to become negative. __ sub(scratch, sp, scratch); // Check if the arguments will overflow the stack. __ ShiftLeftImm(r0, num_args, Operand(kPointerSizeLog2)); __ cmp(scratch, r0); __ ble(stack_overflow); // Signed comparison. } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register num_args, Register index, Register count, Register scratch) { Label loop, skip; __ cmpi(count, Operand::Zero()); __ beq(&skip); __ addi(index, index, Operand(kPointerSize)); // Bias up for LoadPU __ mtctr(count); __ bind(&loop); __ LoadPU(scratch, MemOperand(index, -kPointerSize)); __ push(scratch); __ bdnz(&loop); __ bind(&skip); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r5 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r4 : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; // Calculate number of arguments (add one for receiver). __ addi(r6, r3, Operand(1)); Generate_StackOverflowCheck(masm, r6, ip, &stack_overflow); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ mr(r6, r3); // Argument count is correct. } // Push the arguments. r5, r6, r7 will be modified. Generate_InterpreterPushArgs(masm, r6, r5, r6, r7); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(r5); // Pass the spread in a register __ subi(r3, r3, Operand(1)); // Subtract one for spread } // Call the target. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- r3 : argument count (not including receiver) // -- r6 : new target // -- r4 : constructor to call // -- r5 : allocation site feedback if available, undefined otherwise. // -- r7 : address of the first argument // ----------------------------------- Label stack_overflow; // Push a slot for the receiver to be constructed. __ li(r0, Operand::Zero()); __ push(r0); // Push the arguments (skip if none). Label skip; __ cmpi(r3, Operand::Zero()); __ beq(&skip); Generate_StackOverflowCheck(masm, r3, ip, &stack_overflow); // Push the arguments. r8, r7, r9 will be modified. Generate_InterpreterPushArgs(masm, r3, r7, r3, r9); __ bind(&skip); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(r5); // Pass the spread in a register __ subi(r3, r3, Operand(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(r5, r8); } if (mode == InterpreterPushArgsMode::kArrayFunction) { __ AssertFunction(r4); // Tail call to the array construct stub (still in the caller // context at this point). Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with r3, r4, and r6 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with r3, r4, and r6 unmodified. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { __ TailCallRuntime(Runtime::kThrowStackOverflow); // Unreachable Code. __ bkpt(0); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); __ LoadP(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset)); __ CompareObjectType(r5, kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, INTERPRETER_DATA_TYPE); __ bne(&builtin_trampoline); __ LoadP(r5, FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset)); __ b(&trampoline_loaded); __ bind(&builtin_trampoline); __ Move(r5, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ bind(&trampoline_loaded); __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); __ mtlr(r0); // Initialize the dispatch table register. __ Move( kInterpreterDispatchTableRegister, ExternalReference::interpreter_dispatch_table_address(masm->isolate())); // Get the bytecode array pointer from the frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0); __ Assert(ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, cr0); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg, BYTECODE_ARRAY_TYPE); __ Assert( eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftImm(ip, ip, Operand(kPointerSizeLog2)); __ LoadPX(kJavaScriptCallCodeStartRegister, MemOperand(kInterpreterDispatchTableRegister, ip)); __ Jump(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ LoadP(kInterpreterBytecodeArrayRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ LoadP(kInterpreterBytecodeOffsetRegister, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode. __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, r4, r5, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ SmiTag(r5, kInterpreterBytecodeOffsetRegister); __ StoreP(r5, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argument count (preserved for callee) // -- r4 : new target (preserved for callee) // -- r6 : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ Move(r7, r3); // Push a copy of the target function and the new target. // Push function as parameter to the runtime call. __ SmiTag(r3); __ Push(r3, r4, r6, r4); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmpi(r7, Operand(j)); __ bne(&over); } for (int i = j - 1; i >= 0; --i) { __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); __ push(r7); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(r3, &failed); __ Drop(2); __ pop(r7); __ SmiUntag(r7); scope.GenerateLeaveFrame(); __ addi(r7, r7, Operand(1)); __ Drop(r7); __ Ret(); __ bind(&failed); // Restore target function and new target. __ Pop(r3, r4, r6); __ SmiUntag(r3); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r5); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ StoreP( r3, MemOperand( sp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize)); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ Pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ LoadP( fp, MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(ip); __ addi(sp, sp, Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); __ Pop(r0); __ mtlr(r0); __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(ip); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code()); __ LoadP(r3, MemOperand(sp, 0 * kPointerSize)); __ addi(sp, sp, Operand(1 * kPointerSize)); __ Ret(); } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ LoadP(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(r3, MemOperand(r3, JavaScriptFrameConstants::kFunctionOffset)); } else { __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r3); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } // If the code object is null, just return to the caller. Label skip; __ CmpSmiLiteral(r3, Smi::kZero, r0); __ bne(&skip); __ Ret(); __ bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ LeaveFrame(StackFrame::STUB); } // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ LoadP(r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset)); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start if (FLAG_enable_embedded_constant_pool) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3); } // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ LoadP(r4, FieldMemOperand(r4, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex))); __ SmiUntag(r4); // Compute the target address = code start + osr_offset __ add(r0, r3, r4); // And "return" to the OSR entry point of the function. __ mtlr(r0); __ blr(); } } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : argArray // -- sp[4] : thisArg // -- sp[8] : receiver // ----------------------------------- // 1. Load receiver into r4, argArray into r5 (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label skip; Register arg_size = r8; Register new_sp = r6; Register scratch = r7; __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2)); __ add(new_sp, sp, arg_size); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ mr(r5, scratch); __ LoadP(r4, MemOperand(new_sp, 0)); // receiver __ cmpi(arg_size, Operand(kPointerSize)); __ blt(&skip); __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize)); // thisArg __ beq(&skip); __ LoadP(r5, MemOperand(new_sp, 2 * -kPointerSize)); // argArray __ bind(&skip); __ mr(sp, new_sp); __ StoreP(scratch, MemOperand(sp, 0)); } // ----------- S t a t e ------------- // -- r5 : argArray // -- r4 : receiver // -- sp[0] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(r5, Heap::kNullValueRootIndex, &no_arguments); __ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex, &no_arguments); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ li(r3, Operand::Zero()); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r3: actual number of arguments { Label done; __ cmpi(r3, Operand::Zero()); __ bne(&done); __ PushRoot(Heap::kUndefinedValueRootIndex); __ addi(r3, r3, Operand(1)); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. // r3: actual number of arguments __ ShiftLeftImm(r5, r3, Operand(kPointerSizeLog2)); __ LoadPX(r4, MemOperand(sp, r5)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r3: actual number of arguments // r4: callable { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ add(r5, sp, r5); __ mtctr(r3); __ bind(&loop); __ LoadP(ip, MemOperand(r5, -kPointerSize)); __ StoreP(ip, MemOperand(r5)); __ subi(r5, r5, Operand(kPointerSize)); __ bdnz(&loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ subi(r3, r3, Operand(1)); __ pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : argumentsList // -- sp[4] : thisArgument // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into r4 (if present), argumentsList into r5 (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label skip; Register arg_size = r8; Register new_sp = r6; Register scratch = r7; __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2)); __ add(new_sp, sp, arg_size); __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ mr(scratch, r4); __ mr(r5, r4); __ cmpi(arg_size, Operand(kPointerSize)); __ blt(&skip); __ LoadP(r4, MemOperand(new_sp, 1 * -kPointerSize)); // target __ beq(&skip); __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize)); // thisArgument __ cmpi(arg_size, Operand(2 * kPointerSize)); __ beq(&skip); __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize)); // argumentsList __ bind(&skip); __ mr(sp, new_sp); __ StoreP(scratch, MemOperand(sp, 0)); } // ----------- S t a t e ------------- // -- r5 : argumentsList // -- r4 : target // -- sp[0] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- sp[0] : new.target (optional) // -- sp[4] : argumentsList // -- sp[8] : target // -- sp[12] : receiver // ----------------------------------- // 1. Load target into r4 (if present), argumentsList into r5 (if present), // new.target into r6 (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label skip; Register arg_size = r8; Register new_sp = r7; __ ShiftLeftImm(arg_size, r3, Operand(kPointerSizeLog2)); __ add(new_sp, sp, arg_size); __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ mr(r5, r4); __ mr(r6, r4); __ StoreP(r4, MemOperand(new_sp, 0)); // receiver (undefined) __ cmpi(arg_size, Operand(kPointerSize)); __ blt(&skip); __ LoadP(r4, MemOperand(new_sp, 1 * -kPointerSize)); // target __ mr(r6, r4); // new.target defaults to target __ beq(&skip); __ LoadP(r5, MemOperand(new_sp, 2 * -kPointerSize)); // argumentsList __ cmpi(arg_size, Operand(2 * kPointerSize)); __ beq(&skip); __ LoadP(r6, MemOperand(new_sp, 3 * -kPointerSize)); // new.target __ bind(&skip); __ mr(sp, new_sp); } // ----------- S t a t e ------------- // -- r5 : argumentsList // -- r6 : new.target // -- r4 : target // -- sp[0] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r3); __ mov(r7, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ mflr(r0); __ push(r0); if (FLAG_enable_embedded_constant_pool) { __ Push(fp, kConstantPoolRegister, r7, r4, r3); } else { __ Push(fp, r7, r4, r3); } __ Push(Smi::kZero); // Padding. __ addi(fp, sp, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ LoadP(r4, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); int stack_adjustment = kPointerSize; // adjust for receiver __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); __ SmiToPtrArrayOffset(r0, r4); __ add(sp, sp, r0); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- r4 : target // -- r3 : number of parameters on the stack (not including the receiver) // -- r5 : arguments list (a FixedArray) // -- r7 : len (number of elements to push from args) // -- r6 : new.target (for [[Construct]]) // ----------------------------------- Register scratch = ip; if (masm->emit_debug_code()) { // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0. Label ok, fail; __ AssertNotSmi(r5); __ LoadP(scratch, FieldMemOperand(r5, HeapObject::kMapOffset)); __ LoadHalfWord(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE)); __ beq(&ok); __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE)); __ bne(&fail); __ cmpi(r7, Operand::Zero()); __ beq(&ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(ip, Heap::kRealStackLimitRootIndex); // Make ip the space we have left. The stack might already be overflowed // here which will cause ip to become negative. __ sub(ip, sp, ip); // Check if the arguments will overflow the stack. __ ShiftLeftImm(r0, r7, Operand(kPointerSizeLog2)); __ cmp(ip, r0); // Signed comparison. __ bgt(&done); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push arguments onto the stack (thisArgument is already on the stack). { Label loop, no_args, skip; __ cmpi(r7, Operand::Zero()); __ beq(&no_args); __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); __ mtctr(r7); __ bind(&loop); __ LoadPU(ip, MemOperand(r5, kPointerSize)); __ CompareRoot(ip, Heap::kTheHoleValueRootIndex); __ bne(&skip); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ bind(&skip); __ push(ip); __ bdnz(&loop); __ bind(&no_args); __ add(r3, r3, r7); } // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle<Code> code) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r6 : the new.target (for [[Construct]] calls) // -- r4 : the target to call (can be any Object) // -- r5 : start index (to support rest parameters) // ----------------------------------- Register scratch = r9; if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(r6, &new_target_not_constructor); __ LoadP(scratch, FieldMemOperand(r6, HeapObject::kMapOffset)); __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ TestBit(scratch, Map::IsConstructorBit::kShift, r0); __ bne(&new_target_constructor, cr0); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(r6); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ LoadP(r7, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(ip, MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset)); __ cmpi(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ beq(&arguments_adaptor); { __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ LoadP(r8, FieldMemOperand(r8, JSFunction::kSharedFunctionInfoOffset)); __ LoadHalfWord( r8, FieldMemOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); __ mr(r7, fp); } __ b(&arguments_done); __ bind(&arguments_adaptor); { // Load the length from the ArgumentsAdaptorFrame. __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(r8); } __ bind(&arguments_done); Label stack_done, stack_overflow; __ sub(r8, r8, r5); __ cmpi(r8, Operand::Zero()); __ ble(&stack_done); { // Check for stack overflow. Generate_StackOverflowCheck(masm, r8, r5, &stack_overflow); // Forward the arguments from the caller frame. { Label loop; __ addi(r7, r7, Operand(kPointerSize)); __ add(r3, r3, r8); __ bind(&loop); { __ ShiftLeftImm(ip, r8, Operand(kPointerSizeLog2)); __ LoadPX(ip, MemOperand(r7, ip)); __ push(ip); __ subi(r8, r8, Operand(1)); __ cmpi(r8, Operand::Zero()); __ bne(&loop); } } } __ b(&stack_done); __ bind(&stack_overflow); __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&stack_done); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r4); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset)); __ TestBitMask(r6, SharedFunctionInfo::IsClassConstructorBit::kMask, r0); __ bne(&class_constructor, cr0); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ andi(r0, r6, Operand(SharedFunctionInfo::IsStrictBit::kMask | SharedFunctionInfo::IsNativeBit::kMask)); __ bne(&done_convert, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } else { Label convert_to_object, convert_receiver; __ ShiftLeftImm(r6, r3, Operand(kPointerSizeLog2)); __ LoadPX(r6, MemOperand(sp, r6)); __ JumpIfSmi(r6, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(r6, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(r6, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } __ b(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r3); __ Push(r3, r4); __ mr(r3, r6); __ Push(cp); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(cp); __ mr(r6, r3); __ Pop(r3, r4); __ SmiUntag(r3); } __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ ShiftLeftImm(r7, r3, Operand(kPointerSizeLog2)); __ StorePX(r6, MemOperand(sp, r7)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- __ LoadHalfWord( r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(r3); ParameterCount expected(r5); __ InvokeFunctionCode(r4, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL); __ push(r4); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : target (checked to be a JSBoundFunction) // -- r6 : new.target (only in case of [[Construct]]) // ----------------------------------- // Load [[BoundArguments]] into r5 and length of that into r7. Label no_bound_arguments; __ LoadP(r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset)); __ LoadP(r7, FieldMemOperand(r5, FixedArray::kLengthOffset)); __ SmiUntag(r7, SetRC); __ beq(&no_bound_arguments, cr0); { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : target (checked to be a JSBoundFunction) // -- r5 : the [[BoundArguments]] (implemented as FixedArray) // -- r6 : new.target (only in case of [[Construct]]) // -- r7 : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ mr(r9, sp); // preserve previous stack pointer __ ShiftLeftImm(r10, r7, Operand(kPointerSizeLog2)); __ sub(sp, sp, r10); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); __ bgt(&done); // Signed comparison. // Restore the stack pointer. __ mr(sp, r9); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Relocate arguments down the stack. // -- r3 : the number of arguments (not including the receiver) // -- r9 : the previous stack pointer // -- r10: the size of the [[BoundArguments]] { Label skip, loop; __ li(r8, Operand::Zero()); __ cmpi(r3, Operand::Zero()); __ beq(&skip); __ mtctr(r3); __ bind(&loop); __ LoadPX(r0, MemOperand(r9, r8)); __ StorePX(r0, MemOperand(sp, r8)); __ addi(r8, r8, Operand(kPointerSize)); __ bdnz(&loop); __ bind(&skip); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r5, r5, r10); __ mtctr(r7); __ bind(&loop); __ LoadPU(r0, MemOperand(r5, -kPointerSize)); __ StorePX(r0, MemOperand(sp, r8)); __ addi(r8, r8, Operand(kPointerSize)); __ bdnz(&loop); __ add(r3, r3, r7); } } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(r4); // Patch the receiver to [[BoundThis]]. __ LoadP(ip, FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset)); __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2)); __ StorePX(ip, MemOperand(sp, r0)); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ LoadP(r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(r4, &non_callable); __ bind(&non_smi); __ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq); __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Call]] internal method. __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset)); __ TestBit(r7, Map::IsCallableBit::kShift, r0); __ beq(&non_callable, cr0); // Check if target is a proxy and call CallProxy external builtin __ cmpi(r8, Operand(JS_PROXY_TYPE)); __ bne(&non_function); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver the (original) target. __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2)); __ StorePX(r4, MemOperand(sp, r8)); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (checked to be a JSFunction) // -- r6 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r4); __ AssertFunction(r4); // Calling convention for function specific ConstructStubs require // r5 to contain either an AllocationSite or undefined. __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset)); __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ and_(r7, r7, ip, SetRC); __ beq(&call_generic_stub, cr0); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSBoundFunction) // -- r6 : the new target (checked to be a constructor) // ----------------------------------- __ AssertConstructor(r4); __ AssertBoundFunction(r4); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. Label skip; __ cmp(r4, r6); __ bne(&skip); __ LoadP(r6, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&skip); // Construct the [[BoundTargetFunction]] via the Construct builtin. __ LoadP(r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (can be any Object) // -- r6 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(r4, &non_constructor); // Check if target has a [[Construct]] internal method. __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset)); __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset)); __ TestBit(r5, Map::IsConstructorBit::kShift, r0); __ beq(&non_constructor, cr0); // Dispatch based on instance type. __ CompareInstanceType(r7, r8, JS_FUNCTION_TYPE); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to bound functions after checking whether they are // constructors. __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE)); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET, eq); // Only dispatch to proxies after checking whether they are constructors. __ cmpi(r8, Operand(JS_PROXY_TYPE)); __ bne(&non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2)); __ StorePX(r4, MemOperand(sp, r8)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : actual number of arguments // -- r4 : function (passed through to callee) // -- r5 : expected number of arguments // -- r6 : new target (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ cmpli(r5, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ beq(&dont_adapt_arguments); __ cmp(r3, r5); __ blt(&too_few); { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow); // Calculate copy start address into r3 and copy end address into r7. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // adjust for return address and receiver __ addi(r3, r3, Operand(2 * kPointerSize)); __ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2)); __ sub(r7, r3, r7); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) // r7: copy end address Label copy; __ bind(©); __ LoadP(r0, MemOperand(r3, 0)); __ push(r0); __ cmp(r3, r7); // Compare before moving to next argument. __ subi(r3, r3, Operand(kPointerSize)); __ bne(©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); Generate_StackOverflowCheck(masm, r5, r8, &stack_overflow); // Calculate copy start address into r0 and copy end address is fp. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) Label copy; __ bind(©); // Adjust load for return address and receiver. __ LoadP(r0, MemOperand(r3, 2 * kPointerSize)); __ push(r0); __ cmp(r3, fp); // Compare before moving to next argument. __ subi(r3, r3, Operand(kPointerSize)); __ bne(©); // Fill the remaining expected arguments with undefined. // r4: function // r5: expected number of arguments // r6: new target (passed through to callee) __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ ShiftLeftImm(r7, r5, Operand(kPointerSizeLog2)); __ sub(r7, fp, r7); // Adjust for frame. __ subi(r7, r7, Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); Label fill; __ bind(&fill); __ push(r0); __ cmp(sp, r7); __ bne(&fill); } // Call the entry point. __ bind(&invoke); __ mr(r3, r5); // r3 : expected number of arguments // r4 : function (passed through to callee) // r6 : new target (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); __ CallJSEntry(r5); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ blr(); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch"); __ LoadP(r5, FieldMemOperand(r4, JSFunction::kCodeOffset)); __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(r5); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ bkpt(0); } } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in r15 by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(r15, r15); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. constexpr RegList gp_regs = Register::ListOf<r3, r4, r5, r6, r7, r8, r9, r10>(); constexpr RegList fp_regs = DoubleRegister::ListOf<d1, d2, d3, d4, d5, d6, d7, d8>(); __ MultiPush(gp_regs); __ MultiPushDoubles(fp_regs); // Pass instance and function index as explicit arguments to the runtime // function. __ Push(kWasmInstanceRegister, r15); // Load the correct CEntry builtin from the instance object. __ LoadP(r5, FieldMemOperand(kWasmInstanceRegister, WasmInstanceObject::kCEntryStubOffset)); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ LoadSmiLiteral(cp, Smi::kZero); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, r5); // The entrypoint address is the return value. __ mr(r11, kReturnRegister0); // Restore registers. __ MultiPopDoubles(fp_regs); __ MultiPop(gp_regs); } // Finally, jump to the entrypoint. __ Jump(r11); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // Called from JavaScript; parameters are on stack as if calling JS function. // r3: number of arguments including receiver // r4: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_mode == kArgvInRegister: // r5: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); __ mr(r15, r4); if (argv_mode == kArgvInRegister) { // Move argv into the correct register. __ mr(r4, r5); } else { // Compute the argv pointer. __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); __ add(r4, r4, sp); __ subi(r4, r4, Operand(kPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // Pass buffer for return value on stack if necessary bool needs_return_buffer = (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); if (needs_return_buffer) { arg_stack_space += result_size; } __ EnterExitFrame( save_doubles, arg_stack_space, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc in callee-saved registers for later. __ mr(r14, r3); // r3, r14: number of arguments including receiver (C callee-saved) // r4: pointer to the first argument // r15: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r5; if (needs_return_buffer) { // The return value is a non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument. __ mr(r5, r4); __ mr(r4, r3); __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); isolate_reg = r6; } // Call C built-in. __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate())); Register target = r15; if (ABI_USES_FUNCTION_DESCRIPTORS) { // AIX/PPC64BE Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize)); __ LoadP(ip, MemOperand(r15, 0)); // Instruction address target = ip; } else if (ABI_CALL_VIA_IP) { __ Move(ip, r15); target = ip; } // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. Label start_call; constexpr int after_call_offset = 5 * kInstrSize; DCHECK_NE(r7, target); __ LoadPC(r7); __ bind(&start_call); __ addi(r7, r7, Operand(after_call_offset)); __ StoreP(r7, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ Call(target); DCHECK_EQ(after_call_offset - kInstrSize, __ SizeOfCodeGeneratedSince(&start_call)); // If return value is on the stack, pop it to registers. if (needs_return_buffer) { __ LoadP(r4, MemOperand(r3, kPointerSize)); __ LoadP(r3, MemOperand(r3)); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r3, Heap::kExceptionRootIndex); __ beq(&exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ Move(r6, pending_exception_address); __ LoadP(r6, MemOperand(r6)); __ CompareRoot(r6, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r3:r4: result // sp: stack pointer // fp: frame pointer Register argc = argv_mode == kArgvInRegister // We don't want to pop arguments so set argc to no_reg. ? no_reg // r14: still holds argc (callee-saved). : r14; __ LeaveExitFrame(save_doubles, argc); __ blr(); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_constant_pool_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerConstantPoolAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set r3 to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r3); __ li(r3, Operand::Zero()); __ li(r4, Operand::Zero()); __ Move(r5, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ Move(cp, pending_handler_context_address); __ LoadP(cp, MemOperand(cp)); __ Move(sp, pending_handler_sp_address); __ LoadP(sp, MemOperand(sp)); __ Move(fp, pending_handler_fp_address); __ LoadP(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label skip; __ cmpi(cp, Operand::Zero()); __ beq(&skip); __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&skip); // Reset the masking register. if (FLAG_branch_load_poisoning) { __ ResetSpeculationPoisonRegister(); } // Compute the handler entry address and jump to it. ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ Move(ip, pending_handler_entrypoint_address); __ LoadP(ip, MemOperand(ip)); if (FLAG_enable_embedded_constant_pool) { __ Move(kConstantPoolRegister, pending_handler_constant_pool_address); __ LoadP(kConstantPoolRegister, MemOperand(kConstantPoolRegister)); } __ Jump(ip); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register result_reg = r3; HardAbortScope hard_abort(masm); // Avoid calls to Abort. // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ Push(result_reg, scratch); // Account for saved regs. int argument_offset = 2 * kPointerSize; // Load double input. __ lfd(double_scratch, MemOperand(sp, argument_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(double_scratch, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result_reg, d0); // Test for overflow #if V8_TARGET_ARCH_PPC64 __ TestIfInt32(result_reg, r0); #else __ TestIfInt32(scratch, result_reg, r0); #endif __ beq(&fastpath_done); __ Push(scratch_high, scratch_low); // Account for saved regs. argument_offset += 2 * kPointerSize; __ lwz(scratch_high, MemOperand(sp, argument_offset + Register::kExponentOffset)); __ lwz(scratch_low, MemOperand(sp, argument_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmpi(scratch, Operand(83)); __ bge(&out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ subfic(scratch, scratch, Operand(51)); __ cmpi(scratch, Operand::Zero()); __ ble(&only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ srw(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ subfic(scratch, scratch, Operand(32)); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); __ oris(result_reg, result_reg, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16))); __ slw(r0, result_reg, scratch); __ orx(result_reg, scratch_low, r0); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ neg(scratch, scratch); __ slw(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1. // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result. __ srawi(r0, scratch_high, 31); #if V8_TARGET_ARCH_PPC64 __ srdi(r0, r0, Operand(32)); #endif __ xor_(result_reg, result_reg, r0); __ srwi(r0, scratch_high, Operand(31)); __ add(result_reg, result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); // Account for saved regs. argument_offset -= 2 * kPointerSize; __ bind(&fastpath_done); __ StoreP(result_reg, MemOperand(sp, argument_offset)); __ Pop(result_reg, scratch); __ Ret(); } void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { const Register exponent = r5; const DoubleRegister double_base = d1; const DoubleRegister double_exponent = d2; const DoubleRegister double_result = d3; const DoubleRegister double_scratch = d0; const Register scratch = r11; const Register scratch2 = r10; Label call_runtime, done, int_exponent; // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch); __ beq(&int_exponent); __ mflr(r0); __ push(r0); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(r0); __ mtlr(r0); __ MovFromFloatResult(double_result); __ b(&done); // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. // Exponent has previously been stored into scratch as untagged integer. __ mr(exponent, scratch); __ fmr(double_scratch, double_base); // Back up base. __ li(scratch2, Operand(1)); __ ConvertIntToDouble(scratch2, double_result); // Get absolute value of exponent. __ cmpi(scratch, Operand::Zero()); if (CpuFeatures::IsSupported(ISELECT)) { __ neg(scratch2, scratch); __ isel(lt, scratch, scratch2, scratch); } else { Label positive_exponent; __ bge(&positive_exponent); __ neg(scratch, scratch); __ bind(&positive_exponent); } Label while_true, no_carry, loop_end; __ bind(&while_true); __ andi(scratch2, scratch, Operand(1)); __ beq(&no_carry, cr0); __ fmul(double_result, double_result, double_scratch); __ bind(&no_carry); __ ShiftRightImm(scratch, scratch, Operand(1), SetRC); __ beq(&loop_end, cr0); __ fmul(double_scratch, double_scratch, double_scratch); __ b(&while_true); __ bind(&loop_end); __ cmpi(exponent, Operand::Zero()); __ bge(&done); __ li(scratch2, Operand(1)); __ ConvertIntToDouble(scratch2, double_scratch); __ fdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ fcmpu(double_result, kDoubleRegZero); __ bne(&done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ ConvertIntToDouble(exponent, double_exponent); // Returning or bailing out. __ mflr(r0); __ push(r0); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2); } __ pop(r0); __ mtlr(r0); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } namespace { void GenerateInternalArrayConstructorCase(MacroAssembler* masm, ElementsKind kind) { __ cmpli(r3, Operand(1)); __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET, lt); __ Jump(BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor), RelocInfo::CODE_TARGET, gt); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ LoadP(r6, MemOperand(sp, 0)); __ cmpi(r6, Operand::Zero()); __ Jump(CodeFactory::InternalArraySingleArgumentConstructor( masm->isolate(), GetHoleyElementsKind(kind)) .code(), RelocInfo::CODE_TARGET, ne); } __ Jump( CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); } } // namespace void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- r4 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ TestIfSmi(r6, r0); __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r6, r6, r7, MAP_TYPE); __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(r6); if (FLAG_debug_code) { Label done; __ cmpi(r6, Operand(PACKED_ELEMENTS)); __ beq(&done); __ cmpi(r6, Operand(HOLEY_ELEMENTS)); __ Assert( eq, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmpi(r6, Operand(PACKED_ELEMENTS)); __ beq(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC