// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/base/adapters.h" #include "src/code-factory.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/frame-constants.h" #include "src/frames.h" #include "src/objects-inl.h" #include "src/objects/js-generator.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-objects.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, ExitFrameType exit_frame_type) { __ mov(kJavaScriptCallExtraArg1Register, Immediate(ExternalReference::Create(address))); if (exit_frame_type == BUILTIN_EXIT) { __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), RelocInfo::CODE_TARGET); } else { DCHECK(exit_frame_type == EXIT); __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), RelocInfo::CODE_TARGET); } } static void GenerateTailCallToReturnedCode(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee) // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Push the number of arguments to the callee. __ SmiTag(eax); __ push(eax); // Push a copy of the target function and the new target. __ push(edi); __ push(edx); // Function is also the parameter to the runtime call. __ push(edi); __ CallRuntime(function_id, 1); __ mov(ecx, eax); // Restore target function and new target. __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize)); __ jmp(ecx); } namespace { void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments // -- edi: constructor function // -- edx: new target // -- esi: context // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ SmiTag(eax); __ push(esi); __ push(eax); __ SmiUntag(eax); // The receiver for the builtin/api call. __ PushRoot(Heap::kTheHoleValueRootIndex); // Set up pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); // ----------- S t a t e ------------- // -- eax: number of arguments (untagged) // -- edi: constructor function // -- edx: new target // -- ebx: pointer to last argument // -- ecx: counter // -- sp[0*kPointerSize]: the hole (receiver) // -- sp[1*kPointerSize]: number of arguments (tagged) // -- sp[2*kPointerSize]: context // ----------------------------------- __ jmp(&entry); __ bind(&loop); __ push(Operand(ebx, ecx, times_4, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. // eax: number of arguments (untagged) // edi: constructor function // edx: new target ParameterCount actual(eax); __ InvokeFunction(edi, edx, actual, CALL_FUNCTION); // Restore context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); // Restore smi-tagged arguments count from the frame. __ mov(ebx, Operand(ebp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); __ ret(0); } } // namespace // The construct stub for ES5 constructor functions and ES6 class constructors. void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax: number of arguments (untagged) // -- edi: constructor function // -- edx: new target // -- esi: context // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); Label post_instantiation_deopt_entry, not_create_implicit_receiver; // Preserve the incoming parameters on the stack. __ mov(ecx, eax); __ SmiTag(ecx); __ Push(esi); __ Push(ecx); __ Push(edi); __ PushRoot(Heap::kTheHoleValueRootIndex); __ Push(edx); // ----------- S t a t e ------------- // -- sp[0*kPointerSize]: new target // -- sp[1*kPointerSize]: padding // -- edi and sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: argument count // -- sp[4*kPointerSize]: context // ----------------------------------- __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test(FieldOperand(ebx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsDerivedConstructorBit::kMask)); __ j(not_zero, ¬_create_implicit_receiver); // If not derived class constructor: Allocate the new receiver object. __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET); __ jmp(&post_instantiation_deopt_entry, Label::kNear); // Else: use TheHoleValue as receiver for constructor call __ bind(¬_create_implicit_receiver); __ LoadRoot(eax, Heap::kTheHoleValueRootIndex); // ----------- S t a t e ------------- // -- eax: implicit receiver // -- Slot 4 / sp[0*kPointerSize]: new target // -- Slot 3 / sp[1*kPointerSize]: padding // -- Slot 2 / sp[2*kPointerSize]: constructor function // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) // -- Slot 0 / sp[4*kPointerSize]: context // ----------------------------------- // Deoptimizer enters here. masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( masm->pc_offset()); __ bind(&post_instantiation_deopt_entry); // Restore new target. __ Pop(edx); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(eax); __ Push(eax); // ----------- S t a t e ------------- // -- edx: new target // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- // Restore constructor function and argument count. __ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset)); __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset)); __ SmiUntag(eax); // Set up pointer to last argument. __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ mov(ecx, eax); // ----------- S t a t e ------------- // -- eax: number of arguments (untagged) // -- edx: new target // -- ebx: pointer to last argument // -- ecx: counter (tagged) // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: implicit receiver // -- sp[2*kPointerSize]: padding // -- edi and sp[3*kPointerSize]: constructor function // -- sp[4*kPointerSize]: number of arguments (tagged) // -- sp[5*kPointerSize]: context // ----------------------------------- __ jmp(&entry, Label::kNear); __ bind(&loop); __ Push(Operand(ebx, ecx, times_pointer_size, 0)); __ bind(&entry); __ dec(ecx); __ j(greater_equal, &loop); // Call the function. ParameterCount actual(eax); __ InvokeFunction(edi, edx, actual, CALL_FUNCTION); // ----------- S t a t e ------------- // -- eax: constructor result // -- sp[0*kPointerSize]: implicit receiver // -- sp[1*kPointerSize]: padding // -- sp[2*kPointerSize]: constructor function // -- sp[3*kPointerSize]: number of arguments // -- sp[4*kPointerSize]: context // ----------------------------------- // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( masm->pc_offset()); // Restore context from the frame. __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, do_throw, leave_frame; // If the result is undefined, we jump out to using the implicit receiver. __ JumpIfRoot(eax, Heap::kUndefinedValueRootIndex, &use_receiver, Label::kNear); // Otherwise we do a smi check and fall through to check if the return value // is a valid receiver. // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(eax, &use_receiver, Label::kNear); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); __ j(above_equal, &leave_frame, Label::kNear); __ jmp(&use_receiver, Label::kNear); __ bind(&do_throw); __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ mov(eax, Operand(esp, 0 * kPointerSize)); __ JumpIfRoot(eax, Heap::kTheHoleValueRootIndex, &do_throw); __ bind(&leave_frame); // Restore smi-tagged arguments count from the frame. __ mov(ebx, Operand(ebp, ConstructFrameConstants::kLengthOffset)); // Leave construct frame. } // Remove caller arguments from the stack and return. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); __ ret(0); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSBuiltinsConstructStubHelper(masm); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ push(edi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, Register scratch1, Register scratch2, Label* stack_overflow, bool include_receiver = false) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(scratch1, __ StaticVariable(real_stack_limit)); // Make scratch2 the space we have left. The stack might already be overflowed // here which will cause scratch2 to become negative. __ mov(scratch2, esp); __ sub(scratch2, scratch1); // Make scratch1 the space we need for the array when it is unrolled onto the // stack. __ mov(scratch1, num_args); if (include_receiver) { __ add(scratch1, Immediate(1)); } __ shl(scratch1, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(scratch2, scratch1); __ j(less_equal, stack_overflow); // Signed comparison. } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address = ExternalReference::Create( IsolateAddressId::kContextAddress, masm->isolate()); __ mov(esi, __ StaticVariable(context_address)); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Push the function and the receiver onto the stack. __ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset)); // Load the number of arguments and setup pointer to the arguments. __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset)); __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset)); // Check if we have enough stack space to push all arguments. // Argument count in eax. Clobbers ecx and edx. Label enough_stack_space, stack_overflow; Generate_StackOverflowCheck(masm, eax, ecx, edx, &stack_overflow); __ jmp(&enough_stack_space); __ bind(&stack_overflow); __ CallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); __ bind(&enough_stack_space); // Copy arguments to the stack in a loop. Label loop, entry; __ Move(ecx, Immediate(0)); __ jmp(&entry, Label::kNear); __ bind(&loop); __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv __ push(Operand(edx, 0)); // dereference handle __ inc(ecx); __ bind(&entry); __ cmp(ecx, eax); __ j(not_equal, &loop); // Load the previous frame pointer (ebx) to access C arguments __ mov(ebx, Operand(ebp, 0)); // Get the new.target and function from the frame. __ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset)); __ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset)); // Invoke the code. Handle<Code> builtin = is_construct ? BUILTIN_CODE(masm->isolate(), Construct) : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty. // context and the function left on the stack by the code // invocation. } __ ret(0); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, Register sfi_data, Register scratch1) { Label done; __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1); __ j(not_equal, &done, Label::kNear); __ mov(sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); __ bind(&done); } // static void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the value to pass to the generator // -- edx : the JSGeneratorObject to resume // -- esp[0] : return address // ----------------------------------- __ AssertGeneratorObject(edx); // Store input value into generator object. __ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax); __ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx, kDontSaveFPRegs); // Load suspended function and context. __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Flood function if we are stepping. Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; Label stepping_prepared; ExternalReference debug_hook = ExternalReference::debug_hook_on_function_call_address(masm->isolate()); __ cmpb(__ StaticVariable(debug_hook), Immediate(0)); __ j(not_equal, &prepare_step_in_if_stepping); // Flood function if we need to continue stepping in the suspended generator. ExternalReference debug_suspended_generator = ExternalReference::debug_suspended_generator_address(masm->isolate()); __ cmp(edx, __ StaticVariable(debug_suspended_generator)); __ j(equal, &prepare_step_in_suspended_generator); __ bind(&stepping_prepared); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label stack_overflow; __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex); __ j(below, &stack_overflow); // Pop return address. __ PopReturnAddressTo(eax); // Push receiver. __ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset)); // ----------- S t a t e ------------- // -- eax : return address // -- edx : the JSGeneratorObject to resume // -- edi : generator function // -- esi : generator context // -- esp[0] : generator receiver // ----------------------------------- // Copy the function arguments from the generator object's register file. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ movzx_w( ecx, FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(ebx, FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset)); { Label done_loop, loop; __ Set(edi, 0); __ bind(&loop); __ cmp(edi, ecx); __ j(greater_equal, &done_loop); __ Push( FieldOperand(ebx, edi, times_pointer_size, FixedArray::kHeaderSize)); __ add(edi, Immediate(1)); __ jmp(&loop); __ bind(&done_loop); __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); } // Underlying function needs to have bytecode available. if (FLAG_debug_code) { __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset)); __ Push(eax); GetSharedFunctionInfoBytecode(masm, ecx, eax); __ Pop(eax); __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx); __ Assert(equal, AbortReason::kMissingBytecodeArray); } // Resume (Ignition/TurboFan) generator object. { __ PushReturnAddressFrom(eax); __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ movzx_w(eax, FieldOperand( eax, SharedFunctionInfo::kFormalParameterCountOffset)); // We abuse new.target both to indicate that this is a resume call and to // pass in the generator object. In ordinary calls, new.target is always // undefined because generator functions are non-constructable. static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(ecx); } __ bind(&prepare_step_in_if_stepping); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edx); __ Push(edi); // Push hole as receiver since we do not use it for stepping. __ PushRoot(Heap::kTheHoleValueRootIndex); __ CallRuntime(Runtime::kDebugOnFunctionCall); __ Pop(edx); __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&prepare_step_in_suspended_generator); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edx); __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); __ Pop(edx); __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); } __ jmp(&stepping_prepared); __ bind(&stack_overflow); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); // This should be unreachable. } } static void ReplaceClosureCodeWithOptimizedCode( MacroAssembler* masm, Register optimized_code, Register closure, Register scratch1, Register scratch2, Register scratch3) { // Store the optimized code in the closure. __ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code); __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, Register scratch2) { Register args_count = scratch1; Register return_pc = scratch2; // Get the arguments + receiver count. __ mov(args_count, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(args_count, FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments. __ pop(return_pc); __ add(esp, args_count); __ push(return_pc); } // Tail-call |function_id| if |smi_entry| == |marker| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, Register smi_entry, OptimizationMarker marker, Runtime::FunctionId function_id) { Label no_match; __ cmp(smi_entry, Immediate(Smi::FromEnum(marker))); __ j(not_equal, &no_match, Label::kNear); GenerateTailCallToReturnedCode(masm, function_id); __ bind(&no_match); } static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, Register feedback_vector, Register scratch) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee if needed, and caller) // -- edx : new target (preserved for callee if needed, and caller) // -- edi : target function (preserved for callee if needed, and caller) // -- feedback vector (preserved for caller if needed) // ----------------------------------- DCHECK(!AreAliased(feedback_vector, eax, edx, edi, scratch)); Label optimized_code_slot_is_weak_ref, fallthrough; Register closure = edi; Register optimized_code_entry = scratch; __ mov(optimized_code_entry, FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); // Check if the code entry is a Smi. If yes, we interpret it as an // optimisation marker. Otherwise, interpret it as a weak reference to a code // object. __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); { // Optimized code slot is an optimization marker. // Fall through if no optimization trigger. __ cmp(optimized_code_entry, Immediate(Smi::FromEnum(OptimizationMarker::kNone))); __ j(equal, &fallthrough); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kLogFirstExecution, Runtime::kFunctionFirstExecution); TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, OptimizationMarker::kCompileOptimized, Runtime::kCompileOptimized_NotConcurrent); TailCallRuntimeIfMarkerEquals( masm, optimized_code_entry, OptimizationMarker::kCompileOptimizedConcurrent, Runtime::kCompileOptimized_Concurrent); { // Otherwise, the marker is InOptimizationQueue, so fall through hoping // that an interrupt will eventually update the slot with optimized code. if (FLAG_debug_code) { __ cmp( optimized_code_entry, Immediate(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); __ Assert(equal, AbortReason::kExpectedOptimizationSentinel); } __ jmp(&fallthrough); } } { // Optimized code slot is a weak reference. __ bind(&optimized_code_slot_is_weak_ref); __ LoadWeakValue(optimized_code_entry, &fallthrough); __ push(eax); __ push(edx); // Check if the optimized code is marked for deopt. If it is, bailout to a // given label. Label found_deoptimized_code; __ mov(eax, FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset), Immediate(1 << Code::kMarkedForDeoptimizationBit)); __ j(not_zero, &found_deoptimized_code); // Optimized code is good, get it into the closure and link the closure into // the optimized functions list, then tail call the optimized code. // The feedback vector is no longer used, so re-use it as a scratch // register. ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, edx, eax, feedback_vector); static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ Move(ecx, optimized_code_entry); __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ pop(edx); __ pop(eax); __ jmp(ecx); // Optimized code slot contains deoptimized code, evict it and re-enter the // closure's code. __ bind(&found_deoptimized_code); __ pop(edx); __ pop(eax); GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); } // Fall-through if the optimized code cell is clear and there is no // optimization marker. __ bind(&fallthrough); } // Advance the current bytecode offset. This simulates what all bytecode // handlers do upon completion of the underlying operation. Will bail out to a // label if the bytecode (without prefix) is a return bytecode. static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, Register bytecode_array, Register bytecode_offset, Register bytecode, Register scratch1, Label* if_return) { Register bytecode_size_table = scratch1; DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, bytecode)); __ Move(bytecode_size_table, Immediate(ExternalReference::bytecode_size_table_address())); // Check if the bytecode is a Wide or ExtraWide prefix bytecode. Label process_bytecode, extra_wide; STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); STATIC_ASSERT(3 == static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); __ cmpb(bytecode, Immediate(0x3)); __ j(above, &process_bytecode, Label::kNear); __ test(bytecode, Immediate(0x1)); __ j(not_equal, &extra_wide, Label::kNear); // Load the next bytecode and update table to the wide scaled table. __ inc(bytecode_offset); __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ add(bytecode_size_table, Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ jmp(&process_bytecode, Label::kNear); __ bind(&extra_wide); // Load the next bytecode and update table to the extra wide scaled table. __ inc(bytecode_offset); __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); __ add(bytecode_size_table, Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); __ bind(&process_bytecode); // Bailout to the return label if this is a return bytecode. #define JUMP_IF_EQUAL(NAME) \ __ cmpb(bytecode, \ Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \ __ j(equal, if_return); RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) #undef JUMP_IF_EQUAL // Otherwise, load the size of the current bytecode and advance the offset. __ add(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0)); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o edi: the JS function object being called // o edx: the incoming new target or generator object // o esi: our context // o ebp: the caller's frame pointer // o esp: stack pointer (pointing to return address) // // The function builds an interpreter frame. See InterpreterFrameConstants in // frames.h for its layout. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { ProfileEntryHookStub::MaybeCallEntryHook(masm); Register closure = edi; Register feedback_vector = ebx; // Load the feedback vector from the closure. __ mov(feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset)); __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); // Read off the optimized code slot in the feedback vector, and if there // is optimized code or an optimization marker, call that instead. MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, ecx); // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set // up the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS function. // Get the bytecode array from the function object and load it into // kInterpreterBytecodeArrayRegister. __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(kInterpreterBytecodeArrayRegister, FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset)); __ Push(eax); GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax); __ Pop(eax); __ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); // Check function data field is actually a BytecodeArray object. if (FLAG_debug_code) { __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, eax); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Reset code age. __ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kBytecodeAgeOffset), Immediate(BytecodeArray::kNoAgeBytecodeAge)); // Push bytecode array. __ push(kInterpreterBytecodeArrayRegister); // Push Smi tagged initial bytecode array offset. __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag))); // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ mov(ecx, esp); __ sub(ecx, ebx); ExternalReference stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ cmp(ecx, __ StaticVariable(stack_limit)); __ j(above_equal, &ok); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value())); __ jmp(&loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(eax); // Continue loop if not done. __ bind(&loop_check); __ sub(ebx, Immediate(kPointerSize)); __ j(greater_equal, &loop_header); } // If the bytecode array has a valid incoming new target or generator object // register, initialize it with incoming value which was passed in edx. Label no_incoming_new_target_or_generator_register; __ mov(eax, FieldOperand( kInterpreterBytecodeArrayRegister, BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); __ test(eax, eax); __ j(zero, &no_incoming_new_target_or_generator_register); __ mov(Operand(ebp, eax, times_pointer_size, 0), edx); __ bind(&no_incoming_new_target_or_generator_register); // Load accumulator and bytecode offset into registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ mov(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); // Load the dispatch table into a register and dispatch to the bytecode // handler at the current bytecode offset. Label do_dispatch; __ bind(&do_dispatch); __ mov(kInterpreterDispatchTableRegister, Immediate(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov( kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0)); __ call(kJavaScriptCallCodeStartRegister); masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); // Any returns to the entry trampoline are either due to the return bytecode // or the interpreter tail calling a builtin and then a dispatch. // Get bytecode array and bytecode offset from the stack frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Either return, or advance to the next bytecode and dispatch. Label do_return; __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, ebx, ecx, &do_return); __ jmp(&do_dispatch); __ bind(&do_return); // The return value is in eax. LeaveInterpreterFrame(masm, ebx, ecx); __ ret(0); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register array_limit, Register start_address) { // ----------- S t a t e ------------- // -- start_address : Pointer to the last argument in the args array. // -- array_limit : Pointer to one before the first argument in the // args array. // ----------------------------------- Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ Push(Operand(start_address, 0)); __ sub(start_address, Immediate(kPointerSize)); __ bind(&loop_check); __ cmp(start_address, array_limit); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsThenCallImpl( MacroAssembler* masm, ConvertReceiverMode receiver_mode, InterpreterPushArgsMode mode) { DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- ebx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- edi : the target to call (can be any Object). // ----------------------------------- Label stack_overflow; // Compute the expected number of arguments. __ mov(ecx, eax); __ add(ecx, Immediate(1)); // Add one for receiver. // Add a stack check before pushing the arguments. We need an extra register // to perform a stack check. So push it onto the stack temporarily. This // might cause stack overflow, but it will be detected by the check. __ Push(edi); Generate_StackOverflowCheck(masm, ecx, edx, edi, &stack_overflow); __ Pop(edi); // Pop return address to allow tail-call after pushing arguments. __ Pop(edx); // Push "undefined" as the receiver arg if we need to. if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { __ PushRoot(Heap::kUndefinedValueRootIndex); __ sub(ecx, Immediate(1)); // Subtract one for receiver. } // Find the address of the last argument. __ shl(ecx, kPointerSizeLog2); __ neg(ecx); __ add(ecx, ebx); Generate_InterpreterPushArgs(masm, ecx, ebx); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Pop(ebx); // Pass the spread in a register __ sub(eax, Immediate(1)); // Subtract one for spread } // Call the target. __ Push(edx); // Re-push return address. if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), RelocInfo::CODE_TARGET); } else { __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { // Pop the temporary registers, so that return address is on top of stack. __ Pop(edi); __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } namespace { // This function modified start_addr, and only reads the contents of num_args // register. scratch1 and scratch2 are used as temporary registers. Their // original values are restored after the use. void Generate_InterpreterPushZeroAndArgsAndReturnAddress( MacroAssembler* masm, Register num_args, Register start_addr, Register scratch1, Register scratch2, int num_slots_above_ret_addr, Label* stack_overflow) { // We have to move return address and the temporary registers above it // before we can copy arguments onto the stack. To achieve this: // Step 1: Increment the stack pointer by num_args + 1 (for receiver). // Step 2: Move the return address and values above it to the top of stack. // Step 3: Copy the arguments into the correct locations. // current stack =====> required stack layout // | | | scratch1 | (2) <-- esp(1) // | | | .... | (2) // | | | scratch-n | (2) // | | | return addr | (2) // | | | arg N | (3) // | scratch1 | <-- esp | .... | // | .... | | arg 1 | // | scratch-n | | arg 0 | // | return addr | | receiver slot | // Check for stack overflow before we increment the stack pointer. Generate_StackOverflowCheck(masm, num_args, scratch1, scratch2, stack_overflow, true); // Step 1 - Update the stack pointer. scratch1 already contains the required // increment to the stack. i.e. num_args + 1 stack slots. This is computed in // Generate_StackOverflowCheck. __ AllocateStackFrame(scratch1); // Step 2 move return_address and slots above it to the correct locations. // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1, // basically when the source and destination overlap. We at least need one // extra slot for receiver, so no extra checks are required to avoid copy. for (int i = 0; i < num_slots_above_ret_addr + 1; i++) { __ mov(scratch1, Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize)); __ mov(Operand(esp, i * kPointerSize), scratch1); } // Step 3 copy arguments to correct locations. // Slot meant for receiver contains return address. Reset it so that // we will not incorrectly interpret return address as an object. __ mov(Operand(esp, num_args, times_pointer_size, (num_slots_above_ret_addr + 1) * kPointerSize), Immediate(0)); __ mov(scratch1, num_args); Label loop_header, loop_check; __ jmp(&loop_check); __ bind(&loop_header); __ mov(scratch2, Operand(start_addr, 0)); __ mov(Operand(esp, scratch1, times_pointer_size, num_slots_above_ret_addr * kPointerSize), scratch2); __ sub(start_addr, Immediate(kPointerSize)); __ sub(scratch1, Immediate(1)); __ bind(&loop_check); __ cmp(scratch1, Immediate(0)); __ j(greater, &loop_header, Label::kNear); } } // end anonymous namespace // static void Builtins::Generate_InterpreterPushArgsThenConstructImpl( MacroAssembler* masm, InterpreterPushArgsMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target // -- edi : the constructor // -- ebx : allocation site feedback (if available or undefined) // -- ecx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- Label stack_overflow; // We need two scratch registers. Push edi and edx onto stack. __ Push(edi); __ Push(edx); // Push arguments and move return address to the top of stack. // The eax register is readonly. The ecx register will be modified. The edx // and edi registers will be modified but restored to their original values. Generate_InterpreterPushZeroAndArgsAndReturnAddress(masm, eax, ecx, edx, edi, 2, &stack_overflow); // Restore edi and edx __ Pop(edx); __ Pop(edi); if (mode == InterpreterPushArgsMode::kWithFinalSpread) { __ PopReturnAddressTo(ecx); __ Pop(ebx); // Pass the spread in a register __ PushReturnAddressFrom(ecx); __ sub(eax, Immediate(1)); // Subtract one for spread } else { __ AssertUndefinedOrAllocationSite(ebx); } if (mode == InterpreterPushArgsMode::kArrayFunction) { // Tail call to the array construct stub (still in the caller // context at this point). __ AssertFunction(edi); // TODO(v8:6666): When rewriting ia32 ASM builtins to not clobber the // kRootRegister ebx, this useless move can be removed. __ Move(kJavaScriptCallExtraArg1Register, ebx); Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); __ Jump(code, RelocInfo::CODE_TARGET); } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { // Call the constructor with unmodified eax, edi, edx values. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), RelocInfo::CODE_TARGET); } else { DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); // Call the constructor with unmodified eax, edi, edx values. __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } __ bind(&stack_overflow); { // Pop the temporary registers, so that return address is on top of stack. __ Pop(edx); __ Pop(edi); __ TailCallRuntime(Runtime::kThrowStackOverflow); // This should be unreachable. __ int3(); } } static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { // Set the return address to the correct point in the interpreter entry // trampoline. Label builtin_trampoline, trampoline_loaded; Smi* interpreter_entry_return_pc_offset( masm->isolate()->heap()->interpreter_entry_return_pc_offset()); DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); // If the SFI function_data is an InterpreterData, get the trampoline stored // in it, otherwise get the trampoline from the builtins list. __ mov(ebx, Operand(ebp, StandardFrameConstants::kFunctionOffset)); __ mov(ebx, FieldOperand(ebx, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFunctionDataOffset)); __ Push(eax); __ CmpObjectType(ebx, INTERPRETER_DATA_TYPE, eax); __ j(not_equal, &builtin_trampoline, Label::kNear); __ mov(ebx, FieldOperand(ebx, InterpreterData::kInterpreterTrampolineOffset)); __ jmp(&trampoline_loaded, Label::kNear); __ bind(&builtin_trampoline); __ Move(ebx, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); __ bind(&trampoline_loaded); __ Pop(eax); __ add(ebx, Immediate(interpreter_entry_return_pc_offset->value() + Code::kHeaderSize - kHeapObjectTag)); __ push(ebx); // Initialize the dispatch table register. __ mov(kInterpreterDispatchTableRegister, Immediate(ExternalReference::interpreter_dispatch_table_address( masm->isolate()))); // Get the bytecode array pointer from the frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, ebx); __ Assert( equal, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ mov( kJavaScriptCallCodeStartRegister, Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0)); __ jmp(kJavaScriptCallCodeStartRegister); } void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { // Get bytecode array and bytecode offset from the stack frame. __ mov(kInterpreterBytecodeArrayRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); __ SmiUntag(kInterpreterBytecodeOffsetRegister); // Load the current bytecode __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); // Advance to the next bytecode. Label if_return; AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, ebx, ecx, &if_return); // Convert new bytecode offset to a Smi and save in the stackframe. __ mov(ebx, kInterpreterBytecodeOffsetRegister); __ SmiTag(ebx); __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ebx); Generate_InterpreterEnterBytecode(masm); // We should never take the if_return path. __ bind(&if_return); __ Abort(AbortReason::kInvalidBytecodeAdvance); } void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { Generate_InterpreterEnterBytecode(masm); } void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argument count (preserved for callee) // -- edx : new target (preserved for callee) // -- edi : target function (preserved for callee) // ----------------------------------- Label failed; { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve argument count for later compare. __ mov(ecx, eax); // Push the number of arguments to the callee. __ SmiTag(eax); __ push(eax); // Push a copy of the target function and the new target. __ push(edi); __ push(edx); // The function. __ push(edi); // Copy arguments from caller (stdlib, foreign, heap). Label args_done; for (int j = 0; j < 4; ++j) { Label over; if (j < 3) { __ cmp(ecx, Immediate(j)); __ j(not_equal, &over, Label::kNear); } for (int i = j - 1; i >= 0; --i) { __ Push(Operand( ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); } for (int i = 0; i < 3 - j; ++i) { __ PushRoot(Heap::kUndefinedValueRootIndex); } if (j < 3) { __ jmp(&args_done, Label::kNear); __ bind(&over); } } __ bind(&args_done); // Call runtime, on success unwind frame, and parent frame. __ CallRuntime(Runtime::kInstantiateAsmJs, 4); // A smi 0 is returned on failure, an object on success. __ JumpIfSmi(eax, &failed, Label::kNear); __ Drop(2); __ Pop(ecx); __ SmiUntag(ecx); scope.GenerateLeaveFrame(); __ PopReturnAddressTo(ebx); __ inc(ecx); __ lea(esp, Operand(esp, ecx, times_pointer_size, 0)); __ PushReturnAddressFrom(ebx); __ ret(0); __ bind(&failed); // Restore target function and new target. __ pop(edx); __ pop(edi); __ pop(eax); __ SmiUntag(eax); } // On failure, tail call back to regular js by re-calling the function // which has be reset to the compile lazy builtin. static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(ecx); } namespace { void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, bool java_script_builtin, bool with_result) { const RegisterConfiguration* config(RegisterConfiguration::Default()); int allocatable_register_count = config->num_allocatable_general_registers(); if (with_result) { // Overwrite the hole inserted by the deoptimizer with the return value from // the LAZY deopt point. __ mov(Operand(esp, config->num_allocatable_general_registers() * kPointerSize + BuiltinContinuationFrameConstants::kFixedFrameSize), eax); } for (int i = allocatable_register_count - 1; i >= 0; --i) { int code = config->GetAllocatableGeneralCode(i); __ pop(Register::from_code(code)); if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { __ SmiUntag(Register::from_code(code)); } } __ mov( ebp, Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); const int offsetToPC = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize; __ pop(Operand(esp, offsetToPC)); __ Drop(offsetToPC / kPointerSize); __ add(Operand(esp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag)); __ ret(0); } } // namespace void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, false); } void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, false, true); } void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, false); } void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( MacroAssembler* masm) { Generate_ContinueToBuiltinHelper(masm, true, true); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code()); __ mov(eax, Operand(esp, 1 * kPointerSize)); __ ret(1 * kPointerSize); // Remove eax. } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : argArray // -- esp[8] : thisArg // -- esp[12] : receiver // ----------------------------------- // 1. Load receiver into edi, argArray into ebx (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; __ LoadRoot(edx, Heap::kUndefinedValueRootIndex); __ mov(ebx, edx); __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize)); __ test(eax, eax); __ j(zero, &no_this_arg, Label::kNear); { __ mov(edx, Operand(esp, eax, times_pointer_size, 0)); __ cmp(eax, Immediate(1)); __ j(equal, &no_arg_array, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, -kPointerSize)); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ Push(edx); __ PushReturnAddressFrom(ecx); } // ----------- S t a t e ------------- // -- ebx : argArray // -- edi : receiver // -- esp[0] : return address // -- esp[4] : thisArg // ----------------------------------- // 2. We don't need to check explicitly for callable receiver here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(ebx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear); __ JumpIfRoot(ebx, Heap::kUndefinedValueRootIndex, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ Set(eax, 0); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // esp[0] : Return address // esp[8] : Argument n // esp[16] : Argument n-1 // ... // esp[8 * n] : Argument 1 // esp[8 * (n + 1)] : Receiver (callable to call) // // eax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ test(eax, eax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(ebx); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(ebx); __ inc(eax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ mov(ecx, eax); __ bind(&loop); __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0)); __ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx); __ dec(ecx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(ebx); // Discard copy of return address. __ dec(eax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : argumentsList // -- esp[8] : thisArgument // -- esp[12] : target // -- esp[16] : receiver // ----------------------------------- // 1. Load target into edi (if present), argumentsList into ebx (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; __ LoadRoot(edi, Heap::kUndefinedValueRootIndex); __ mov(edx, edi); __ mov(ebx, edi); __ cmp(eax, Immediate(1)); __ j(below, &done, Label::kNear); __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize)); __ j(equal, &done, Label::kNear); __ mov(edx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize)); __ cmp(eax, Immediate(3)); __ j(below, &done, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize)); __ bind(&done); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ Push(edx); __ PushReturnAddressFrom(ecx); } // ----------- S t a t e ------------- // -- ebx : argumentsList // -- edi : target // -- esp[0] : return address // -- esp[4] : thisArgument // ----------------------------------- // 2. We don't need to check explicitly for callable target here, // since that's the first thing the Call/CallWithArrayLike builtins // will do. // 3. Apply the target to the given argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : new.target (optional) // -- esp[8] : argumentsList // -- esp[12] : target // -- esp[16] : receiver // ----------------------------------- // 1. Load target into edi (if present), argumentsList into ebx (if present), // new.target into edx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; __ LoadRoot(edi, Heap::kUndefinedValueRootIndex); __ mov(edx, edi); __ mov(ebx, edi); __ cmp(eax, Immediate(1)); __ j(below, &done, Label::kNear); __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize)); __ mov(edx, edi); __ j(equal, &done, Label::kNear); __ mov(ebx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize)); __ cmp(eax, Immediate(3)); __ j(below, &done, Label::kNear); __ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize)); __ bind(&done); __ PopReturnAddressTo(ecx); __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(ecx); } // ----------- S t a t e ------------- // -- ebx : argumentsList // -- edx : new.target // -- edi : target // -- esp[0] : return address // -- esp[4] : receiver (undefined) // ----------------------------------- // 2. We don't need to check explicitly for constructor target here, // since that's the first thing the Construct/ConstructWithArrayLike // builtins will do. // 3. We don't need to check explicitly for constructor new.target here, // since that's the second thing the Construct/ConstructWithArrayLike // builtins will do. // 4. Construct the target with the given new.target and argumentsList. __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), RelocInfo::CODE_TARGET); } void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- Label generic_array_code; if (FLAG_debug_code) { // Initial map for the builtin InternalArray function should be a map. __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ test(ebx, Immediate(kSmiTagMask)); __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(ebx, MAP_TYPE, ecx); __ Assert(equal, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. __ mov(ebx, masm->isolate()->factory()->undefined_value()); __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), RelocInfo::CODE_TARGET); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(ebp); __ mov(ebp, esp); // Store the arguments adaptor context sentinel. __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); // Push the function on the stack. __ push(edi); // Preserve the number of arguments on the stack. Must preserve eax, // ebx and ecx because these registers are used when copying the // arguments and the receiver. STATIC_ASSERT(kSmiTagSize == 1); __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); __ push(edi); __ Push(Immediate(0)); // Padding. } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ leave(); // Remove caller arguments from the stack. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ pop(ecx); __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver __ push(ecx); } // static void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, Handle<Code> code) { // ----------- S t a t e ------------- // -- edi : target // -- eax : number of parameters on the stack (not including the receiver) // -- ebx : arguments list (a FixedArray) // -- ecx : len (number of elements to from args) // -- edx : new.target (checked to be constructor or undefined) // -- esp[0] : return address. // ----------------------------------- // We need to preserve eax, edi and ebx. __ movd(xmm0, edx); __ movd(xmm1, edi); __ movd(xmm2, eax); if (masm->emit_debug_code()) { // Allow ebx to be a FixedArray, or a FixedDoubleArray if ecx == 0. Label ok, fail; __ AssertNotSmi(ebx); __ mov(edx, FieldOperand(ebx, HeapObject::kMapOffset)); __ CmpInstanceType(edx, FIXED_ARRAY_TYPE); __ j(equal, &ok); __ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE); __ j(not_equal, &fail); __ cmp(ecx, 0); __ j(equal, &ok); // Fall through. __ bind(&fail); __ Abort(AbortReason::kOperandIsNotAFixedArray); __ bind(&ok); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; ExternalReference real_stack_limit = ExternalReference::address_of_real_stack_limit(masm->isolate()); __ mov(edx, __ StaticVariable(real_stack_limit)); // Make edx the space we have left. The stack might already be overflowed // here which will cause edx to become negative. __ neg(edx); __ add(edx, esp); __ sar(edx, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(edx, ecx); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Push additional arguments onto the stack. { __ PopReturnAddressTo(edx); __ Move(eax, Immediate(0)); Label done, push, loop; __ bind(&loop); __ cmp(eax, ecx); __ j(equal, &done, Label::kNear); // Turn the hole into undefined as we go. __ mov(edi, FieldOperand(ebx, eax, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(edi, Heap::kTheHoleValueRootIndex); __ j(not_equal, &push, Label::kNear); __ LoadRoot(edi, Heap::kUndefinedValueRootIndex); __ bind(&push); __ Push(edi); __ inc(eax); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(edx); } // Restore eax, edi and edx. __ movd(eax, xmm2); __ movd(edi, xmm1); __ movd(edx, xmm0); // Compute the actual parameter count. __ add(eax, ecx); // Tail-call to the actual Call or Construct builtin. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, CallOrConstructMode mode, Handle<Code> code) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object) // -- edx : the new target (for [[Construct]] calls) // -- ecx : start index (to support rest parameters) // ----------------------------------- // Check if new.target has a [[Construct]] internal method. if (mode == CallOrConstructMode::kConstruct) { Label new_target_constructor, new_target_not_constructor; __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), Immediate(Map::IsConstructorBit::kMask)); __ j(not_zero, &new_target_constructor, Label::kNear); __ bind(&new_target_not_constructor); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ Push(edx); __ CallRuntime(Runtime::kThrowNotConstructor); } __ bind(&new_target_constructor); } // Preserve new.target (in case of [[Construct]]). __ movd(xmm0, edx); // Check if we have an arguments adaptor frame below the function frame. Label arguments_adaptor, arguments_done; __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &arguments_adaptor, Label::kNear); { __ mov(edx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset)); __ movzx_w(edx, FieldOperand( edx, SharedFunctionInfo::kFormalParameterCountOffset)); __ mov(ebx, ebp); } __ jmp(&arguments_done, Label::kNear); __ bind(&arguments_adaptor); { // Just load the length from the ArgumentsAdaptorFrame. __ mov(edx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(edx); } __ bind(&arguments_done); Label stack_done; __ sub(edx, ecx); __ j(less_equal, &stack_done); { // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". Label done; __ LoadRoot(ecx, Heap::kRealStackLimitRootIndex); // Make ecx the space we have left. The stack might already be // overflowed here which will cause ecx to become negative. __ neg(ecx); __ add(ecx, esp); __ sar(ecx, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmp(ecx, edx); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // Forward the arguments from the caller frame. { Label loop; __ add(eax, edx); __ PopReturnAddressTo(ecx); __ bind(&loop); { __ Push(Operand(ebx, edx, times_pointer_size, 1 * kPointerSize)); __ dec(edx); __ j(not_zero, &loop); } __ PushReturnAddressFrom(ecx); } } __ bind(&stack_done); // Restore new.target (in case of [[Construct]]). __ movd(edx, xmm0); // Tail-call to the {code} handler. __ Jump(code, RelocInfo::CODE_TARGET); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(edi); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask)); __ j(not_zero, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } else { Label convert_to_object, convert_receiver; __ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize)); __ JumpIfSmi(ecx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx); __ j(above_equal, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(ecx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(eax); __ Push(eax); __ Push(edi); __ mov(eax, ecx); __ Push(esi); __ Call(BUILTIN_CODE(masm->isolate(), ToObject), RelocInfo::CODE_TARGET); __ Pop(esi); __ mov(ecx, eax); __ Pop(edi); __ Pop(eax); __ SmiUntag(eax); } __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the shared function info. // -- edi : the function to call (checked to be a JSFunction) // -- esi : the function context. // ----------------------------------- __ movzx_w( ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); ParameterCount actual(eax); ParameterCount expected(ebx); __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ push(edi); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : new.target (only in case of [[Construct]]) // -- edi : target (checked to be a JSBoundFunction) // ----------------------------------- // Load [[BoundArguments]] into ecx and length of that into ebx. Label no_bound_arguments; __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ SmiUntag(ebx); __ test(ebx, ebx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : new.target (only in case of [[Construct]]) // -- edi : target (checked to be a JSBoundFunction) // -- ecx : the [[BoundArguments]] (implemented as FixedArray) // -- ebx : the number of [[BoundArguments]] // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ lea(ecx, Operand(ebx, times_pointer_size, 0)); __ sub(esp, ecx); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex); __ j(greater, &done, Label::kNear); // Signed comparison. // Restore the stack pointer. __ lea(esp, Operand(esp, ebx, times_pointer_size, 0)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Adjust effective number of arguments to include return address. __ inc(eax); // Relocate arguments and return address down the stack. { Label loop; __ Set(ecx, 0); __ lea(ebx, Operand(esp, ebx, times_pointer_size, 0)); __ bind(&loop); __ movd(xmm0, Operand(ebx, ecx, times_pointer_size, 0)); __ movd(Operand(esp, ecx, times_pointer_size, 0), xmm0); __ inc(ecx); __ cmp(ecx, eax); __ j(less, &loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset)); __ SmiUntag(ebx); __ bind(&loop); __ dec(ebx); __ movd(xmm0, FieldOperand(ecx, ebx, times_pointer_size, FixedArray::kHeaderSize)); __ movd(Operand(esp, eax, times_pointer_size, 0), xmm0); __ lea(eax, Operand(eax, 1)); __ j(greater, &loop); } // Adjust effective number of arguments (eax contains the number of // arguments from the call plus return address plus the number of // [[BoundArguments]]), so we need to subtract one for the return address. __ dec(eax); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(edi); // Patch the receiver to [[BoundThis]]. __ mov(ebx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset)); __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ebx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edi : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(edi, &non_callable); __ bind(&non_smi); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(equal, masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET); __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); __ j(equal, BUILTIN_CODE(masm->isolate(), CallBoundFunction), RelocInfo::CODE_TARGET); // Check if target is a proxy and call CallProxy external builtin __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(Map::IsCallableBit::kMask)); __ j(zero, &non_callable); // Call CallProxy external builtin __ CmpInstanceType(ecx, JS_PROXY_TYPE); __ j(not_equal, &non_function); __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(edi); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (checked to be a constructor) // -- edi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertConstructor(edi); __ AssertFunction(edi); // Calling convention for function specific ConstructStubs require // ebx to contain either an AllocationSite or undefined. __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex); Label call_generic_stub; // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset), Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); __ j(zero, &call_generic_stub, Label::kNear); __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), RelocInfo::CODE_TARGET); __ bind(&call_generic_stub); __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (checked to be a constructor) // -- edi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertConstructor(edi); __ AssertBoundFunction(edi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmp(edi, edx); __ j(not_equal, &done, Label::kNear); __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : the number of arguments (not including the receiver) // -- edx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- edi : the constructor to call (can be any Object) // ----------------------------------- // Check if target is a Smi. Label non_constructor, non_proxy; __ JumpIfSmi(edi, &non_constructor, Label::kNear); // Check if target has a [[Construct]] internal method. __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), Immediate(Map::IsConstructorBit::kMask)); __ j(zero, &non_constructor, Label::kNear); // Dispatch based on instance type. __ CmpInstanceType(ecx, JS_FUNCTION_TYPE); __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructFunction), RelocInfo::CODE_TARGET); // Only dispatch to bound functions after checking whether they are // constructors. __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), RelocInfo::CODE_TARGET); // Only dispatch to proxies after checking whether they are constructors. __ CmpInstanceType(ecx, JS_PROXY_TYPE); __ j(not_equal, &non_proxy); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. __ bind(&non_proxy); { // Overwrite the original receiver with the (original) target. __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : actual number of arguments // -- ebx : expected number of arguments // -- edx : new target (passed through to callee) // -- edi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1); Label enough, too_few; __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ j(equal, &dont_adapt_arguments); __ cmp(eax, ebx); __ j(less, &too_few); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // edi is used as a scratch register. It should be restored from the frame // when needed. Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); __ mov(eax, -1); // account for receiver Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ cmp(eax, ebx); __ j(less, ©); // eax now contains the expected number of arguments. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // edi is used as a scratch register. It should be restored from the frame // when needed. Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow); // Remember expected arguments in ecx. __ mov(ecx, ebx); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(edi, Operand(ebp, eax, times_4, offset)); // ebx = expected - actual. __ sub(ebx, eax); // eax = -actual - 1 __ neg(eax); __ sub(eax, Immediate(1)); Label copy; __ bind(©); __ inc(eax); __ push(Operand(edi, 0)); __ sub(edi, Immediate(kPointerSize)); __ test(eax, eax); __ j(not_zero, ©); // Fill remaining expected arguments with undefined values. Label fill; __ bind(&fill); __ inc(eax); __ push(Immediate(masm->isolate()->factory()->undefined_value())); __ cmp(eax, ebx); __ j(less, &fill); // Restore expected arguments. __ mov(eax, ecx); } // Call the entry point. __ bind(&invoke); // Restore function pointer. __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); // eax : expected number of arguments // edx : new target (passed through to callee) // edi : function (passed through to callee) static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(ecx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(ecx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); } } static void Generate_OnStackReplacementHelper(MacroAssembler* masm, bool has_handler_frame) { // Lookup the function in the JavaScript frame. if (has_handler_frame) { __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset)); } else { __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(eax); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } Label skip; // If the code object is null, just return to the caller. __ cmp(eax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Drop any potential handler frame that is be sitting on top of the actual // JavaScript frame. This is the case then OSR is triggered from bytecode. if (has_handler_frame) { __ leave(); } // Load deoptimization data from the code object. __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt( DeoptimizationData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(ebx); // Compute the target address = code_obj + header_size + osr_offset __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ mov(Operand(esp, 0), eax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, false); } void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { Generate_OnStackReplacementHelper(masm, true); } void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { // The function index was put in edi by the jump table trampoline. // Convert to Smi for the runtime call. __ SmiTag(edi); { HardAbortScope hard_abort(masm); // Avoid calls to Abort. FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); // Save all parameter registers (see wasm-linkage.cc). They might be // overwritten in the runtime call below. We don't have any callee-saved // registers in wasm, so no need to store anything else. static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs == arraysize(wasm::kGpParamRegisters), "frame size mismatch"); for (Register reg : wasm::kGpParamRegisters) { __ Push(reg); } static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs == arraysize(wasm::kFpParamRegisters), "frame size mismatch"); __ sub(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); int offset = 0; for (DoubleRegister reg : wasm::kFpParamRegisters) { __ movdqu(Operand(esp, offset), reg); offset += kSimd128Size; } // Push the WASM instance as an explicit argument to WasmCompileLazy. __ Push(kWasmInstanceRegister); // Push the function index as second argument. __ Push(edi); // Load the correct CEntry builtin from the instance object. __ mov(ecx, FieldOperand(kWasmInstanceRegister, WasmInstanceObject::kCEntryStubOffset)); // Initialize the JavaScript context with 0. CEntry will use it to // set the current context on the isolate. __ Move(kContextRegister, Smi::kZero); __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, ecx); // The entrypoint address is the return value. __ mov(edi, kReturnRegister0); // Restore registers. for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { offset -= kSimd128Size; __ movdqu(reg, Operand(esp, offset)); } DCHECK_EQ(0, offset); __ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { __ Pop(reg); } } // Finally, jump to the entrypoint. __ jmp(edi); } void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, SaveFPRegsMode save_doubles, ArgvMode argv_mode, bool builtin_exit_frame) { // eax: number of arguments including receiver // edx: pointer to C function // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) // // If argv_mode == kArgvInRegister: // ecx: pointer to the first argument STATIC_ASSERT(eax == kRuntimeCallArgCountRegister); STATIC_ASSERT(ecx == kRuntimeCallArgvRegister); STATIC_ASSERT(edx == kRuntimeCallFunctionRegister); STATIC_ASSERT(esi == kContextRegister); STATIC_ASSERT(edi == kJSFunctionRegister); DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister, kRuntimeCallFunctionRegister, kContextRegister, kJSFunctionRegister, kRootRegister)); ProfileEntryHookStub::MaybeCallEntryHook(masm); // Reserve space on the stack for the three arguments passed to the call. If // result size is greater than can be returned in registers, also reserve // space for the hidden argument for the result location, and space for the // result itself. int arg_stack_space = 3; // Enter the exit frame that transitions from JavaScript to C++. if (argv_mode == kArgvInRegister) { DCHECK(save_doubles == kDontSaveFPRegs); DCHECK(!builtin_exit_frame); __ EnterApiExitFrame(arg_stack_space); // Move argc and argv into the correct registers. __ mov(esi, ecx); __ mov(edi, eax); } else { __ EnterExitFrame( arg_stack_space, save_doubles == kSaveFPRegs, builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); } // edx: pointer to C function // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) // Result returned in eax, or eax+edx if result size is 2. // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } // Call C function. __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ call(kRuntimeCallFunctionRegister); // Result is in eax or edx:eax - do not destroy these registers! // Check result for exception sentinel. Label exception_returned; __ cmp(eax, masm->isolate()->factory()->exception()); __ j(equal, &exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { __ push(edx); __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); Label okay; ExternalReference pending_exception_address = ExternalReference::Create( IsolateAddressId::kPendingExceptionAddress, masm->isolate()); __ cmp(edx, __ StaticVariable(pending_exception_address)); // Cannot use check here as it attempts to generate call into runtime. __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); __ pop(edx); } // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack); __ ret(0); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); ExternalReference pending_handler_entrypoint_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); ExternalReference pending_handler_fp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); ExternalReference pending_handler_sp_address = ExternalReference::Create( IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); // Ask the runtime for help to determine the handler. This will set eax to // contain the current pending exception, don't clobber it. ExternalReference find_handler = ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, eax); __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc. __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ mov(esi, __ StaticVariable(pending_handler_context_address)); __ mov(esp, __ StaticVariable(pending_handler_sp_address)); __ mov(ebp, __ StaticVariable(pending_handler_fp_address)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (esi == 0) for non-JS frames. Label skip; __ test(esi, esi); __ j(zero, &skip, Label::kNear); __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); __ bind(&skip); // Reset the masking register. This is done independent of the underlying // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with // both configurations. It is safe to always do this, because the underlying // register is caller-saved and can be arbitrarily clobbered. __ ResetSpeculationPoisonRegister(); // Compute the handler entry address and jump to it. __ mov(edi, __ StaticVariable(pending_handler_entrypoint_address)); __ jmp(edi); } void Builtins::Generate_DoubleToI(MacroAssembler* masm) { Label check_negative, process_64_bits, done; // Account for return address and saved regs. const int kArgumentOffset = 4 * kPointerSize; MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset)); MemOperand exponent_operand( MemOperand(esp, kArgumentOffset + kDoubleSize / 2)); // The result is returned on the stack. MemOperand return_operand = mantissa_operand; Register scratch1 = ebx; // Since we must use ecx for shifts below, use some other register (eax) // to calculate the result. Register result_reg = eax; // Save ecx if it isn't the return register and therefore volatile, or if it // is the return register, then save the temp register we use in its stead for // the result. Register save_reg = eax; __ push(ecx); __ push(scratch1); __ push(save_reg); __ mov(scratch1, mantissa_operand); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); // Load x87 register with heap number. __ fld_d(mantissa_operand); } __ mov(ecx, exponent_operand); __ and_(ecx, HeapNumber::kExponentMask); __ shr(ecx, HeapNumber::kExponentShift); __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias)); __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits)); __ j(below, &process_64_bits); // Result is entirely in lower 32-bits of mantissa int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; if (CpuFeatures::IsSupported(SSE3)) { __ fstp(0); } __ sub(ecx, Immediate(delta)); __ xor_(result_reg, result_reg); __ cmp(ecx, Immediate(31)); __ j(above, &done); __ shl_cl(scratch1); __ jmp(&check_negative); __ bind(&process_64_bits); if (CpuFeatures::IsSupported(SSE3)) { CpuFeatureScope scope(masm, SSE3); // Reserve space for 64 bit answer. __ sub(esp, Immediate(kDoubleSize)); // Nolint. // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result __ add(esp, Immediate(kDoubleSize)); __ jmp(&done); } else { // Result must be extracted from shifted 32-bit mantissa __ sub(ecx, Immediate(delta)); __ neg(ecx); __ mov(result_reg, exponent_operand); __ and_(result_reg, Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32))); __ add(result_reg, Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32))); __ shrd_cl(scratch1, result_reg); __ shr_cl(result_reg); __ test(ecx, Immediate(32)); __ cmov(not_equal, scratch1, result_reg); } // If the double was negative, negate the integer result. __ bind(&check_negative); __ mov(result_reg, scratch1); __ neg(result_reg); __ cmp(exponent_operand, Immediate(0)); __ cmov(greater, result_reg, scratch1); // Restore registers __ bind(&done); __ mov(return_operand, result_reg); __ pop(save_reg); __ pop(scratch1); __ pop(ecx); __ ret(0); } void Builtins::Generate_MathPowInternal(MacroAssembler* masm) { const Register exponent = eax; const Register scratch = ecx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ mov(scratch, Immediate(1)); __ Cvtsi2sd(double_result, scratch); Label fast_power, try_arithmetic_simplification; __ DoubleToI(exponent, double_exponent, double_scratch, &try_arithmetic_simplification, &try_arithmetic_simplification); __ jmp(&int_exponent); __ bind(&try_arithmetic_simplification); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cvttsd2si(exponent, Operand(double_exponent)); __ cmp(exponent, Immediate(0x1)); __ j(overflow, &call_runtime); // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ sub(esp, Immediate(kDoubleSize)); __ movsd(Operand(esp, 0), double_exponent); __ fld_d(Operand(esp, 0)); // E __ movsd(Operand(esp, 0), double_base); __ fld_d(Operand(esp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // 2^X // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ test_b(eax, Immediate(0x5F)); // We check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(esp, 0)); __ movsd(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ add(esp, Immediate(kDoubleSize)); __ jmp(&call_runtime); // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; __ mov(scratch, exponent); // Back up exponent. __ movsd(double_scratch, double_base); // Back up base. __ movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, while_false; __ test(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ neg(scratch); __ bind(&no_neg); __ j(zero, &while_false, Label::kNear); __ shr(scratch, 1); // Above condition means CF==0 && ZF==0. This means that the // bit that has been shifted out is 0 and the result is not 0. __ j(above, &while_true, Label::kNear); __ movsd(double_result, double_scratch); __ j(zero, &while_false, Label::kNear); __ bind(&while_true); __ shr(scratch, 1); __ mulsd(double_scratch, double_scratch); __ j(above, &while_true, Label::kNear); __ mulsd(double_result, double_scratch); __ j(not_zero, &while_true); __ bind(&while_false); // scratch has the original value of the exponent - if the exponent is // negative, return 1/result. __ test(exponent, exponent); __ j(positive, &done); __ divsd(double_scratch2, double_result); __ movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ xorps(double_scratch2, double_scratch2); __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // exponent is a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ Cvtsi2sd(double_exponent, exponent); // Returning or bailing out. __ bind(&call_runtime); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(4, scratch); __ movsd(Operand(esp, 0 * kDoubleSize), double_base); __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent); __ CallCFunction(ExternalReference::power_double_double_function(), 4); } // Return value is in st(0) on ia32. // Store it into the (fixed) result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movsd(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ bind(&done); __ ret(0); } namespace { void GenerateInternalArrayConstructorCase(MacroAssembler* masm, ElementsKind kind) { Label not_zero_case, not_one_case; Label normal_sequence; __ test(eax, eax); __ j(not_zero, ¬_zero_case); __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); __ bind(¬_zero_case); __ cmp(eax, 1); __ j(greater, ¬_one_case); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ mov(ecx, Operand(esp, kPointerSize)); __ test(ecx, ecx); __ j(zero, &normal_sequence); __ Jump(CodeFactory::InternalArraySingleArgumentConstructor( masm->isolate(), GetHoleyElementsKind(kind)) .code(), RelocInfo::CODE_TARGET); } __ bind(&normal_sequence); __ Jump( CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind) .code(), RelocInfo::CODE_TARGET); __ bind(¬_one_case); // TODO(v8:6666): When rewriting ia32 ASM builtins to not clobber the // kRootRegister ebx, this useless move can be removed. __ Move(kJavaScriptCallExtraArg1Register, ebx); Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor); __ Jump(code, RelocInfo::CODE_TARGET); } } // namespace void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : argc // -- edi : constructor // -- esp[0] : return address // -- esp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a nullptr and a Smi. __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(ecx, MAP_TYPE, ecx); __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following masking takes care of that anyway. __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(ecx); if (FLAG_debug_code) { Label done; __ cmp(ecx, Immediate(PACKED_ELEMENTS)); __ j(equal, &done); __ cmp(ecx, Immediate(HOLEY_ELEMENTS)); __ Assert( equal, AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmp(ecx, Immediate(PACKED_ELEMENTS)); __ j(equal, &fast_elements_case); GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32