// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/platform/time.h" #if V8_OS_POSIX #include <fcntl.h> // for O_RDONLY #include <sys/time.h> #include <unistd.h> #endif #if V8_OS_MACOSX #include <mach/mach.h> #include <mach/mach_time.h> #include <pthread.h> #endif #include <cstring> #include <ostream> #if V8_OS_WIN #include "src/base/atomicops.h" #include "src/base/lazy-instance.h" #include "src/base/win32-headers.h" #endif #include "src/base/cpu.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" namespace { #if V8_OS_MACOSX int64_t ComputeThreadTicks() { mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t thread_info_data; kern_return_t kr = thread_info( pthread_mach_thread_np(pthread_self()), THREAD_BASIC_INFO, reinterpret_cast<thread_info_t>(&thread_info_data), &thread_info_count); CHECK_EQ(kr, KERN_SUCCESS); v8::base::CheckedNumeric<int64_t> absolute_micros( thread_info_data.user_time.seconds + thread_info_data.system_time.seconds); absolute_micros *= v8::base::Time::kMicrosecondsPerSecond; absolute_micros += (thread_info_data.user_time.microseconds + thread_info_data.system_time.microseconds); return absolute_micros.ValueOrDie(); } #elif V8_OS_POSIX // Helper function to get results from clock_gettime() and convert to a // microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported // on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines // _POSIX_MONOTONIC_CLOCK to -1. V8_INLINE int64_t ClockNow(clockid_t clk_id) { #if (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ defined(V8_OS_BSD) || defined(V8_OS_ANDROID) // On AIX clock_gettime for CLOCK_THREAD_CPUTIME_ID outputs time with // resolution of 10ms. thread_cputime API provides the time in ns #if defined(V8_OS_AIX) thread_cputime_t tc; if (clk_id == CLOCK_THREAD_CPUTIME_ID) { if (thread_cputime(-1, &tc) != 0) { UNREACHABLE(); } } #endif struct timespec ts; if (clock_gettime(clk_id, &ts) != 0) { UNREACHABLE(); } v8::base::internal::CheckedNumeric<int64_t> result(ts.tv_sec); result *= v8::base::Time::kMicrosecondsPerSecond; #if defined(V8_OS_AIX) if (clk_id == CLOCK_THREAD_CPUTIME_ID) { result += (tc.stime / v8::base::Time::kNanosecondsPerMicrosecond); } else { result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond); } #else result += (ts.tv_nsec / v8::base::Time::kNanosecondsPerMicrosecond); #endif return result.ValueOrDie(); #else // Monotonic clock not supported. return 0; #endif } V8_INLINE bool IsHighResolutionTimer(clockid_t clk_id) { // Limit duration of timer resolution measurement to 100 ms. If we cannot // measure timer resoltuion within this time, we assume a low resolution // timer. int64_t end = ClockNow(clk_id) + 100 * v8::base::Time::kMicrosecondsPerMillisecond; int64_t start, delta; do { start = ClockNow(clk_id); // Loop until we can detect that the clock has changed. Non-HighRes timers // will increment in chunks, i.e. 15ms. By spinning until we see a clock // change, we detect the minimum time between measurements. do { delta = ClockNow(clk_id) - start; } while (delta == 0); } while (delta > 1 && start < end); return delta <= 1; } #elif V8_OS_WIN V8_INLINE bool IsQPCReliable() { v8::base::CPU cpu; // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable. return strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15; } // Returns the current value of the performance counter. V8_INLINE uint64_t QPCNowRaw() { LARGE_INTEGER perf_counter_now = {}; // According to the MSDN documentation for QueryPerformanceCounter(), this // will never fail on systems that run XP or later. // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx BOOL result = ::QueryPerformanceCounter(&perf_counter_now); DCHECK(result); USE(result); return perf_counter_now.QuadPart; } #endif // V8_OS_MACOSX } // namespace namespace v8 { namespace base { TimeDelta TimeDelta::FromDays(int days) { return TimeDelta(days * Time::kMicrosecondsPerDay); } TimeDelta TimeDelta::FromHours(int hours) { return TimeDelta(hours * Time::kMicrosecondsPerHour); } TimeDelta TimeDelta::FromMinutes(int minutes) { return TimeDelta(minutes * Time::kMicrosecondsPerMinute); } TimeDelta TimeDelta::FromSeconds(int64_t seconds) { return TimeDelta(seconds * Time::kMicrosecondsPerSecond); } TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) { return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond); } TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) { return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond); } int TimeDelta::InDays() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int>::max(); } return static_cast<int>(delta_ / Time::kMicrosecondsPerDay); } int TimeDelta::InHours() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int>::max(); } return static_cast<int>(delta_ / Time::kMicrosecondsPerHour); } int TimeDelta::InMinutes() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int>::max(); } return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute); } double TimeDelta::InSecondsF() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<double>::infinity(); } return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond; } int64_t TimeDelta::InSeconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_ / Time::kMicrosecondsPerSecond; } double TimeDelta::InMillisecondsF() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<double>::infinity(); } return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMilliseconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_ / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMillisecondsRoundedUp() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return (delta_ + Time::kMicrosecondsPerMillisecond - 1) / Time::kMicrosecondsPerMillisecond; } int64_t TimeDelta::InMicroseconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_; } int64_t TimeDelta::InNanoseconds() const { if (IsMax()) { // Preserve max to prevent overflow. return std::numeric_limits<int64_t>::max(); } return delta_ * Time::kNanosecondsPerMicrosecond; } #if V8_OS_MACOSX TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct mach_timespec TimeDelta::ToMachTimespec() const { struct mach_timespec ts; DCHECK_GE(delta_, 0); ts.tv_sec = static_cast<unsigned>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_MACOSX #if V8_OS_POSIX TimeDelta TimeDelta::FromTimespec(struct timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + ts.tv_nsec / Time::kNanosecondsPerMicrosecond); } struct timespec TimeDelta::ToTimespec() const { struct timespec ts; ts.tv_sec = static_cast<time_t>(delta_ / Time::kMicrosecondsPerSecond); ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) * Time::kNanosecondsPerMicrosecond; return ts; } #endif // V8_OS_POSIX #if V8_OS_WIN // We implement time using the high-resolution timers so that we can get // timeouts which are smaller than 10-15ms. To avoid any drift, we // periodically resync the internal clock to the system clock. class Clock final { public: Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {} Time Now() { // Time between resampling the un-granular clock for this API (1 minute). const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1); LockGuard<Mutex> lock_guard(&mutex_); // Determine current time and ticks. TimeTicks ticks = GetSystemTicks(); Time time = GetSystemTime(); // Check if we need to synchronize with the system clock due to a backwards // time change or the amount of time elapsed. TimeDelta elapsed = ticks - initial_ticks_; if (time < initial_time_ || elapsed > kMaxElapsedTime) { initial_ticks_ = ticks; initial_time_ = time; return time; } return initial_time_ + elapsed; } Time NowFromSystemTime() { LockGuard<Mutex> lock_guard(&mutex_); initial_ticks_ = GetSystemTicks(); initial_time_ = GetSystemTime(); return initial_time_; } private: static TimeTicks GetSystemTicks() { return TimeTicks::Now(); } static Time GetSystemTime() { FILETIME ft; ::GetSystemTimeAsFileTime(&ft); return Time::FromFiletime(ft); } TimeTicks initial_ticks_; Time initial_time_; Mutex mutex_; }; static LazyStaticInstance<Clock, DefaultConstructTrait<Clock>, ThreadSafeInitOnceTrait>::type clock = LAZY_STATIC_INSTANCE_INITIALIZER; Time Time::Now() { return clock.Pointer()->Now(); } Time Time::NowFromSystemTime() { return clock.Pointer()->NowFromSystemTime(); } // Time between windows epoch and standard epoch. static const int64_t kTimeToEpochInMicroseconds = int64_t{11644473600000000}; Time Time::FromFiletime(FILETIME ft) { if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) { return Time(); } if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() && ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) { return Max(); } int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) + (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10; return Time(us - kTimeToEpochInMicroseconds); } FILETIME Time::ToFiletime() const { DCHECK_GE(us_, 0); FILETIME ft; if (IsNull()) { ft.dwLowDateTime = 0; ft.dwHighDateTime = 0; return ft; } if (IsMax()) { ft.dwLowDateTime = std::numeric_limits<DWORD>::max(); ft.dwHighDateTime = std::numeric_limits<DWORD>::max(); return ft; } uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10; ft.dwLowDateTime = static_cast<DWORD>(us); ft.dwHighDateTime = static_cast<DWORD>(us >> 32); return ft; } #elif V8_OS_POSIX Time Time::Now() { struct timeval tv; int result = gettimeofday(&tv, nullptr); DCHECK_EQ(0, result); USE(result); return FromTimeval(tv); } Time Time::NowFromSystemTime() { return Now(); } Time Time::FromTimespec(struct timespec ts) { DCHECK_GE(ts.tv_nsec, 0); DCHECK_LT(ts.tv_nsec, kNanosecondsPerSecond); if (ts.tv_nsec == 0 && ts.tv_sec == 0) { return Time(); } if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT ts.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(ts.tv_sec * kMicrosecondsPerSecond + ts.tv_nsec / kNanosecondsPerMicrosecond); } struct timespec Time::ToTimespec() const { struct timespec ts; if (IsNull()) { ts.tv_sec = 0; ts.tv_nsec = 0; return ts; } if (IsMax()) { ts.tv_sec = std::numeric_limits<time_t>::max(); ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT return ts; } ts.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond; return ts; } Time Time::FromTimeval(struct timeval tv) { DCHECK_GE(tv.tv_usec, 0); DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond)); if (tv.tv_usec == 0 && tv.tv_sec == 0) { return Time(); } if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) && tv.tv_sec == std::numeric_limits<time_t>::max()) { return Max(); } return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec); } struct timeval Time::ToTimeval() const { struct timeval tv; if (IsNull()) { tv.tv_sec = 0; tv.tv_usec = 0; return tv; } if (IsMax()) { tv.tv_sec = std::numeric_limits<time_t>::max(); tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1); return tv; } tv.tv_sec = static_cast<time_t>(us_ / kMicrosecondsPerSecond); tv.tv_usec = us_ % kMicrosecondsPerSecond; return tv; } #endif // V8_OS_WIN // static TimeTicks TimeTicks::HighResolutionNow() { // a DCHECK of TimeTicks::IsHighResolution() was removed from here // as it turns out this path is used in the wild for logs and counters. // // TODO(hpayer) We may eventually want to split TimedHistograms based // on low resolution clocks to avoid polluting metrics return TimeTicks::Now(); } Time Time::FromJsTime(double ms_since_epoch) { // The epoch is a valid time, so this constructor doesn't interpret // 0 as the null time. if (ms_since_epoch == std::numeric_limits<double>::max()) { return Max(); } return Time( static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond)); } double Time::ToJsTime() const { if (IsNull()) { // Preserve 0 so the invalid result doesn't depend on the platform. return 0; } if (IsMax()) { // Preserve max without offset to prevent overflow. return std::numeric_limits<double>::max(); } return static_cast<double>(us_) / kMicrosecondsPerMillisecond; } std::ostream& operator<<(std::ostream& os, const Time& time) { return os << time.ToJsTime(); } #if V8_OS_WIN namespace { // We define a wrapper to adapt between the __stdcall and __cdecl call of the // mock function, and to avoid a static constructor. Assigning an import to a // function pointer directly would require setup code to fetch from the IAT. DWORD timeGetTimeWrapper() { return timeGetTime(); } DWORD (*g_tick_function)(void) = &timeGetTimeWrapper; // A structure holding the most significant bits of "last seen" and a // "rollover" counter. union LastTimeAndRolloversState { // The state as a single 32-bit opaque value. base::Atomic32 as_opaque_32; // The state as usable values. struct { // The top 8-bits of the "last" time. This is enough to check for rollovers // and the small bit-size means fewer CompareAndSwap operations to store // changes in state, which in turn makes for fewer retries. uint8_t last_8; // A count of the number of detected rollovers. Using this as bits 47-32 // of the upper half of a 64-bit value results in a 48-bit tick counter. // This extends the total rollover period from about 49 days to about 8800 // years while still allowing it to be stored with last_8 in a single // 32-bit value. uint16_t rollovers; } as_values; }; base::Atomic32 g_last_time_and_rollovers = 0; static_assert(sizeof(LastTimeAndRolloversState) <= sizeof(g_last_time_and_rollovers), "LastTimeAndRolloversState does not fit in a single atomic word"); // We use timeGetTime() to implement TimeTicks::Now(). This can be problematic // because it returns the number of milliseconds since Windows has started, // which will roll over the 32-bit value every ~49 days. We try to track // rollover ourselves, which works if TimeTicks::Now() is called at least every // 48.8 days (not 49 days because only changes in the top 8 bits get noticed). TimeTicks RolloverProtectedNow() { LastTimeAndRolloversState state; DWORD now; // DWORD is always unsigned 32 bits. while (true) { // Fetch the "now" and "last" tick values, updating "last" with "now" and // incrementing the "rollovers" counter if the tick-value has wrapped back // around. Atomic operations ensure that both "last" and "rollovers" are // always updated together. int32_t original = base::Acquire_Load(&g_last_time_and_rollovers); state.as_opaque_32 = original; now = g_tick_function(); uint8_t now_8 = static_cast<uint8_t>(now >> 24); if (now_8 < state.as_values.last_8) ++state.as_values.rollovers; state.as_values.last_8 = now_8; // If the state hasn't changed, exit the loop. if (state.as_opaque_32 == original) break; // Save the changed state. If the existing value is unchanged from the // original, exit the loop. int32_t check = base::Release_CompareAndSwap(&g_last_time_and_rollovers, original, state.as_opaque_32); if (check == original) break; // Another thread has done something in between so retry from the top. } return TimeTicks() + TimeDelta::FromMilliseconds( now + (static_cast<uint64_t>(state.as_values.rollovers) << 32)); } // Discussion of tick counter options on Windows: // // (1) CPU cycle counter. (Retrieved via RDTSC) // The CPU counter provides the highest resolution time stamp and is the least // expensive to retrieve. However, on older CPUs, two issues can affect its // reliability: First it is maintained per processor and not synchronized // between processors. Also, the counters will change frequency due to thermal // and power changes, and stop in some states. // // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high- // resolution (<1 microsecond) time stamp. On most hardware running today, it // auto-detects and uses the constant-rate RDTSC counter to provide extremely // efficient and reliable time stamps. // // On older CPUs where RDTSC is unreliable, it falls back to using more // expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI // PM timer, and can involve system calls; and all this is up to the HAL (with // some help from ACPI). According to // http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the // worst case, it gets the counter from the rollover interrupt on the // programmable interrupt timer. In best cases, the HAL may conclude that the // RDTSC counter runs at a constant frequency, then it uses that instead. On // multiprocessor machines, it will try to verify the values returned from // RDTSC on each processor are consistent with each other, and apply a handful // of workarounds for known buggy hardware. In other words, QPC is supposed to // give consistent results on a multiprocessor computer, but for older CPUs it // can be unreliable due bugs in BIOS or HAL. // // (3) System time. The system time provides a low-resolution (from ~1 to ~15.6 // milliseconds) time stamp but is comparatively less expensive to retrieve and // more reliable. Time::EnableHighResolutionTimer() and // Time::ActivateHighResolutionTimer() can be called to alter the resolution of // this timer; and also other Windows applications can alter it, affecting this // one. TimeTicks InitialTimeTicksNowFunction(); // See "threading notes" in InitializeNowFunctionPointer() for details on how // concurrent reads/writes to these globals has been made safe. using TimeTicksNowFunction = decltype(&TimeTicks::Now); TimeTicksNowFunction g_time_ticks_now_function = &InitialTimeTicksNowFunction; int64_t g_qpc_ticks_per_second = 0; // As of January 2015, use of <atomic> is forbidden in Chromium code. This is // what std::atomic_thread_fence does on Windows on all Intel architectures when // the memory_order argument is anything but std::memory_order_seq_cst: #define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier(); TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) { // Ensure that the assignment to |g_qpc_ticks_per_second|, made in // InitializeNowFunctionPointer(), has happened by this point. ATOMIC_THREAD_FENCE(memory_order_acquire); DCHECK_GT(g_qpc_ticks_per_second, 0); // If the QPC Value is below the overflow threshold, we proceed with // simple multiply and divide. if (qpc_value < TimeTicks::kQPCOverflowThreshold) { return TimeDelta::FromMicroseconds( qpc_value * TimeTicks::kMicrosecondsPerSecond / g_qpc_ticks_per_second); } // Otherwise, calculate microseconds in a round about manner to avoid // overflow and precision issues. int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second; int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second); return TimeDelta::FromMicroseconds( (whole_seconds * TimeTicks::kMicrosecondsPerSecond) + ((leftover_ticks * TimeTicks::kMicrosecondsPerSecond) / g_qpc_ticks_per_second)); } TimeTicks QPCNow() { return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw()); } bool IsBuggyAthlon(const CPU& cpu) { // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is unreliable. return strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15; } void InitializeTimeTicksNowFunctionPointer() { LARGE_INTEGER ticks_per_sec = {}; if (!QueryPerformanceFrequency(&ticks_per_sec)) ticks_per_sec.QuadPart = 0; // If Windows cannot provide a QPC implementation, TimeTicks::Now() must use // the low-resolution clock. // // If the QPC implementation is expensive and/or unreliable, TimeTicks::Now() // will still use the low-resolution clock. A CPU lacking a non-stop time // counter will cause Windows to provide an alternate QPC implementation that // works, but is expensive to use. Certain Athlon CPUs are known to make the // QPC implementation unreliable. // // Otherwise, Now uses the high-resolution QPC clock. As of 21 August 2015, // ~72% of users fall within this category. TimeTicksNowFunction now_function; CPU cpu; if (ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter() || IsBuggyAthlon(cpu)) { now_function = &RolloverProtectedNow; } else { now_function = &QPCNow; } // Threading note 1: In an unlikely race condition, it's possible for two or // more threads to enter InitializeNowFunctionPointer() in parallel. This is // not a problem since all threads should end up writing out the same values // to the global variables. // // Threading note 2: A release fence is placed here to ensure, from the // perspective of other threads using the function pointers, that the // assignment to |g_qpc_ticks_per_second| happens before the function pointers // are changed. g_qpc_ticks_per_second = ticks_per_sec.QuadPart; ATOMIC_THREAD_FENCE(memory_order_release); g_time_ticks_now_function = now_function; } TimeTicks InitialTimeTicksNowFunction() { InitializeTimeTicksNowFunctionPointer(); return g_time_ticks_now_function(); } #undef ATOMIC_THREAD_FENCE } // namespace // static TimeTicks TimeTicks::Now() { // Make sure we never return 0 here. TimeTicks ticks(g_time_ticks_now_function()); DCHECK(!ticks.IsNull()); return ticks; } // static bool TimeTicks::IsHighResolution() { if (g_time_ticks_now_function == &InitialTimeTicksNowFunction) InitializeTimeTicksNowFunctionPointer(); return g_time_ticks_now_function == &QPCNow; } #else // V8_OS_WIN TimeTicks TimeTicks::Now() { int64_t ticks; #if V8_OS_MACOSX static struct mach_timebase_info info; if (info.denom == 0) { kern_return_t result = mach_timebase_info(&info); DCHECK_EQ(KERN_SUCCESS, result); USE(result); } ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond * info.numer / info.denom); #elif V8_OS_SOLARIS ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_POSIX ticks = ClockNow(CLOCK_MONOTONIC); #else #error platform does not implement TimeTicks::HighResolutionNow. #endif // V8_OS_MACOSX // Make sure we never return 0 here. return TimeTicks(ticks + 1); } // static bool TimeTicks::IsHighResolution() { #if V8_OS_MACOSX return true; #elif V8_OS_POSIX static bool is_high_resolution = IsHighResolutionTimer(CLOCK_MONOTONIC); return is_high_resolution; #else return true; #endif } #endif // V8_OS_WIN bool ThreadTicks::IsSupported() { #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(V8_OS_MACOSX) || defined(V8_OS_ANDROID) || defined(V8_OS_SOLARIS) return true; #elif defined(V8_OS_WIN) return IsSupportedWin(); #else return false; #endif } ThreadTicks ThreadTicks::Now() { #if V8_OS_MACOSX return ThreadTicks(ComputeThreadTicks()); #elif(defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(V8_OS_ANDROID) return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID)); #elif V8_OS_SOLARIS return ThreadTicks(gethrvtime() / Time::kNanosecondsPerMicrosecond); #elif V8_OS_WIN return ThreadTicks::GetForThread(::GetCurrentThread()); #else UNREACHABLE(); #endif } #if V8_OS_WIN ThreadTicks ThreadTicks::GetForThread(const HANDLE& thread_handle) { DCHECK(IsSupported()); // Get the number of TSC ticks used by the current thread. ULONG64 thread_cycle_time = 0; ::QueryThreadCycleTime(thread_handle, &thread_cycle_time); // Get the frequency of the TSC. double tsc_ticks_per_second = TSCTicksPerSecond(); if (tsc_ticks_per_second == 0) return ThreadTicks(); // Return the CPU time of the current thread. double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second; return ThreadTicks( static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond)); } // static bool ThreadTicks::IsSupportedWin() { static bool is_supported = base::CPU().has_non_stop_time_stamp_counter() && !IsQPCReliable(); return is_supported; } // static void ThreadTicks::WaitUntilInitializedWin() { while (TSCTicksPerSecond() == 0) ::Sleep(10); } double ThreadTicks::TSCTicksPerSecond() { DCHECK(IsSupported()); // The value returned by QueryPerformanceFrequency() cannot be used as the TSC // frequency, because there is no guarantee that the TSC frequency is equal to // the performance counter frequency. // The TSC frequency is cached in a static variable because it takes some time // to compute it. static double tsc_ticks_per_second = 0; if (tsc_ticks_per_second != 0) return tsc_ticks_per_second; // Increase the thread priority to reduces the chances of having a context // switch during a reading of the TSC and the performance counter. int previous_priority = ::GetThreadPriority(::GetCurrentThread()); ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST); // The first time that this function is called, make an initial reading of the // TSC and the performance counter. static const uint64_t tsc_initial = __rdtsc(); static const uint64_t perf_counter_initial = QPCNowRaw(); // Make a another reading of the TSC and the performance counter every time // that this function is called. uint64_t tsc_now = __rdtsc(); uint64_t perf_counter_now = QPCNowRaw(); // Reset the thread priority. ::SetThreadPriority(::GetCurrentThread(), previous_priority); // Make sure that at least 50 ms elapsed between the 2 readings. The first // time that this function is called, we don't expect this to be the case. // Note: The longer the elapsed time between the 2 readings is, the more // accurate the computed TSC frequency will be. The 50 ms value was // chosen because local benchmarks show that it allows us to get a // stddev of less than 1 tick/us between multiple runs. // Note: According to the MSDN documentation for QueryPerformanceFrequency(), // this will never fail on systems that run XP or later. // https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx LARGE_INTEGER perf_counter_frequency = {}; ::QueryPerformanceFrequency(&perf_counter_frequency); DCHECK_GE(perf_counter_now, perf_counter_initial); uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial; double elapsed_time_seconds = perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart); const double kMinimumEvaluationPeriodSeconds = 0.05; if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds) return 0; // Compute the frequency of the TSC. DCHECK_GE(tsc_now, tsc_initial); uint64_t tsc_ticks = tsc_now - tsc_initial; tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds; return tsc_ticks_per_second; } #endif // V8_OS_WIN } // namespace base } // namespace v8