// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Platform-specific code for Win32. // Secure API functions are not available using MinGW with msvcrt.dll // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to // disable definition of secure API functions in standard headers that // would conflict with our own implementation. #ifdef __MINGW32__ #include <_mingw.h> #ifdef MINGW_HAS_SECURE_API #undef MINGW_HAS_SECURE_API #endif // MINGW_HAS_SECURE_API #endif // __MINGW32__ #include <limits> #include "src/base/win32-headers.h" #include "src/base/bits.h" #include "src/base/lazy-instance.h" #include "src/base/macros.h" #include "src/base/platform/platform.h" #include "src/base/platform/time.h" #include "src/base/timezone-cache.h" #include "src/base/utils/random-number-generator.h" #include <VersionHelpers.h> #if defined(_MSC_VER) #include <crtdbg.h> // NOLINT #endif // defined(_MSC_VER) // Extra functions for MinGW. Most of these are the _s functions which are in // the Microsoft Visual Studio C++ CRT. #ifdef __MINGW32__ #ifndef __MINGW64_VERSION_MAJOR #define _TRUNCATE 0 #define STRUNCATE 80 inline void MemoryFence() { int barrier = 0; __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); } #endif // __MINGW64_VERSION_MAJOR int localtime_s(tm* out_tm, const time_t* time) { tm* posix_local_time_struct = localtime_r(time, out_tm); if (posix_local_time_struct == nullptr) return 1; return 0; } int fopen_s(FILE** pFile, const char* filename, const char* mode) { *pFile = fopen(filename, mode); return *pFile != nullptr ? 0 : 1; } int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, const char* format, va_list argptr) { DCHECK(count == _TRUNCATE); return _vsnprintf(buffer, sizeOfBuffer, format, argptr); } int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { CHECK(source != nullptr); CHECK(dest != nullptr); CHECK_GT(dest_size, 0); if (count == _TRUNCATE) { while (dest_size > 0 && *source != 0) { *(dest++) = *(source++); --dest_size; } if (dest_size == 0) { *(dest - 1) = 0; return STRUNCATE; } } else { while (dest_size > 0 && count > 0 && *source != 0) { *(dest++) = *(source++); --dest_size; --count; } } CHECK_GT(dest_size, 0); *dest = 0; return 0; } #endif // __MINGW32__ namespace v8 { namespace base { namespace { bool g_hard_abort = false; } // namespace class WindowsTimezoneCache : public TimezoneCache { public: WindowsTimezoneCache() : initialized_(false) {} ~WindowsTimezoneCache() override {} void Clear() override { initialized_ = false; } const char* LocalTimezone(double time) override; double LocalTimeOffset(double time, bool is_utc) override; double DaylightSavingsOffset(double time) override; // Initialize timezone information. The timezone information is obtained from // windows. If we cannot get the timezone information we fall back to CET. void InitializeIfNeeded() { // Just return if timezone information has already been initialized. if (initialized_) return; // Initialize POSIX time zone data. _tzset(); // Obtain timezone information from operating system. memset(&tzinfo_, 0, sizeof(tzinfo_)); if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { // If we cannot get timezone information we fall back to CET. tzinfo_.Bias = -60; tzinfo_.StandardDate.wMonth = 10; tzinfo_.StandardDate.wDay = 5; tzinfo_.StandardDate.wHour = 3; tzinfo_.StandardBias = 0; tzinfo_.DaylightDate.wMonth = 3; tzinfo_.DaylightDate.wDay = 5; tzinfo_.DaylightDate.wHour = 2; tzinfo_.DaylightBias = -60; } // Make standard and DST timezone names. WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, std_tz_name_, kTzNameSize, nullptr, nullptr); std_tz_name_[kTzNameSize - 1] = '\0'; WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, dst_tz_name_, kTzNameSize, nullptr, nullptr); dst_tz_name_[kTzNameSize - 1] = '\0'; // If OS returned empty string or resource id (like "@tzres.dll,-211") // simply guess the name from the UTC bias of the timezone. // To properly resolve the resource identifier requires a library load, // which is not possible in a sandbox. if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { OS::SNPrintF(std_tz_name_, kTzNameSize - 1, "%s Standard Time", GuessTimezoneNameFromBias(tzinfo_.Bias)); } if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { OS::SNPrintF(dst_tz_name_, kTzNameSize - 1, "%s Daylight Time", GuessTimezoneNameFromBias(tzinfo_.Bias)); } // Timezone information initialized. initialized_ = true; } // Guess the name of the timezone from the bias. // The guess is very biased towards the northern hemisphere. const char* GuessTimezoneNameFromBias(int bias) { static const int kHour = 60; switch (-bias) { case -9*kHour: return "Alaska"; case -8*kHour: return "Pacific"; case -7*kHour: return "Mountain"; case -6*kHour: return "Central"; case -5*kHour: return "Eastern"; case -4*kHour: return "Atlantic"; case 0*kHour: return "GMT"; case +1*kHour: return "Central Europe"; case +2*kHour: return "Eastern Europe"; case +3*kHour: return "Russia"; case +5*kHour + 30: return "India"; case +8*kHour: return "China"; case +9*kHour: return "Japan"; case +12*kHour: return "New Zealand"; default: return "Local"; } } private: static const int kTzNameSize = 128; bool initialized_; char std_tz_name_[kTzNameSize]; char dst_tz_name_[kTzNameSize]; TIME_ZONE_INFORMATION tzinfo_; friend class Win32Time; }; // ---------------------------------------------------------------------------- // The Time class represents time on win32. A timestamp is represented as // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, // January 1, 1970. class Win32Time { public: // Constructors. Win32Time(); explicit Win32Time(double jstime); Win32Time(int year, int mon, int day, int hour, int min, int sec); // Convert timestamp to JavaScript representation. double ToJSTime(); // Set timestamp to current time. void SetToCurrentTime(); // Returns the local timezone offset in milliseconds east of UTC. This is // the number of milliseconds you must add to UTC to get local time, i.e. // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This // routine also takes into account whether daylight saving is effect // at the time. int64_t LocalOffset(WindowsTimezoneCache* cache); // Returns the daylight savings time offset for the time in milliseconds. int64_t DaylightSavingsOffset(WindowsTimezoneCache* cache); // Returns a string identifying the current timezone for the // timestamp taking into account daylight saving. char* LocalTimezone(WindowsTimezoneCache* cache); private: // Constants for time conversion. static const int64_t kTimeEpoc = 116444736000000000LL; static const int64_t kTimeScaler = 10000; static const int64_t kMsPerMinute = 60000; // Constants for timezone information. static const bool kShortTzNames = false; // Return whether or not daylight savings time is in effect at this time. bool InDST(WindowsTimezoneCache* cache); // Accessor for FILETIME representation. FILETIME& ft() { return time_.ft_; } // Accessor for integer representation. int64_t& t() { return time_.t_; } // Although win32 uses 64-bit integers for representing timestamps, // these are packed into a FILETIME structure. The FILETIME structure // is just a struct representing a 64-bit integer. The TimeStamp union // allows access to both a FILETIME and an integer representation of // the timestamp. union TimeStamp { FILETIME ft_; int64_t t_; }; TimeStamp time_; }; // Initialize timestamp to start of epoc. Win32Time::Win32Time() { t() = 0; } // Initialize timestamp from a JavaScript timestamp. Win32Time::Win32Time(double jstime) { t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; } // Initialize timestamp from date/time components. Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) { SYSTEMTIME st; st.wYear = year; st.wMonth = mon; st.wDay = day; st.wHour = hour; st.wMinute = min; st.wSecond = sec; st.wMilliseconds = 0; SystemTimeToFileTime(&st, &ft()); } // Convert timestamp to JavaScript timestamp. double Win32Time::ToJSTime() { return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); } // Set timestamp to current time. void Win32Time::SetToCurrentTime() { // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. // Because we're fast, we like fast timers which have at least a // 1ms resolution. // // timeGetTime() provides 1ms granularity when combined with // timeBeginPeriod(). If the host application for v8 wants fast // timers, it can use timeBeginPeriod to increase the resolution. // // Using timeGetTime() has a drawback because it is a 32bit value // and hence rolls-over every ~49days. // // To use the clock, we use GetSystemTimeAsFileTime as our base; // and then use timeGetTime to extrapolate current time from the // start time. To deal with rollovers, we resync the clock // any time when more than kMaxClockElapsedTime has passed or // whenever timeGetTime creates a rollover. static bool initialized = false; static TimeStamp init_time; static DWORD init_ticks; static const int64_t kHundredNanosecondsPerSecond = 10000000; static const int64_t kMaxClockElapsedTime = 60*kHundredNanosecondsPerSecond; // 1 minute // If we are uninitialized, we need to resync the clock. bool needs_resync = !initialized; // Get the current time. TimeStamp time_now; GetSystemTimeAsFileTime(&time_now.ft_); DWORD ticks_now = timeGetTime(); // Check if we need to resync due to clock rollover. needs_resync |= ticks_now < init_ticks; // Check if we need to resync due to elapsed time. needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; // Check if we need to resync due to backwards time change. needs_resync |= time_now.t_ < init_time.t_; // Resync the clock if necessary. if (needs_resync) { GetSystemTimeAsFileTime(&init_time.ft_); init_ticks = ticks_now = timeGetTime(); initialized = true; } // Finally, compute the actual time. Why is this so hard. DWORD elapsed = ticks_now - init_ticks; this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); } // Return the local timezone offset in milliseconds east of UTC. This // takes into account whether daylight saving is in effect at the time. // Only times in the 32-bit Unix range may be passed to this function. // Also, adding the time-zone offset to the input must not overflow. // The function EquivalentTime() in date.js guarantees this. int64_t Win32Time::LocalOffset(WindowsTimezoneCache* cache) { cache->InitializeIfNeeded(); Win32Time rounded_to_second(*this); rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler; // Convert to local time using POSIX localtime function. // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() // very slow. Other browsers use localtime(). // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to // POSIX seconds past 1/1/1970 0:00:00. double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { return 0; } // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. time_t posix_time = static_cast<time_t>(unchecked_posix_time); // Convert to local time, as struct with fields for day, hour, year, etc. tm posix_local_time_struct; if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; if (posix_local_time_struct.tm_isdst > 0) { return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute; } else if (posix_local_time_struct.tm_isdst == 0) { return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute; } else { return cache->tzinfo_.Bias * -kMsPerMinute; } } // Return whether or not daylight savings time is in effect at this time. bool Win32Time::InDST(WindowsTimezoneCache* cache) { cache->InitializeIfNeeded(); // Determine if DST is in effect at the specified time. bool in_dst = false; if (cache->tzinfo_.StandardDate.wMonth != 0 || cache->tzinfo_.DaylightDate.wMonth != 0) { // Get the local timezone offset for the timestamp in milliseconds. int64_t offset = LocalOffset(cache); // Compute the offset for DST. The bias parameters in the timezone info // are specified in minutes. These must be converted to milliseconds. int64_t dstofs = -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute; // If the local time offset equals the timezone bias plus the daylight // bias then DST is in effect. in_dst = offset == dstofs; } return in_dst; } // Return the daylight savings time offset for this time. int64_t Win32Time::DaylightSavingsOffset(WindowsTimezoneCache* cache) { return InDST(cache) ? 60 * kMsPerMinute : 0; } // Returns a string identifying the current timezone for the // timestamp taking into account daylight saving. char* Win32Time::LocalTimezone(WindowsTimezoneCache* cache) { // Return the standard or DST time zone name based on whether daylight // saving is in effect at the given time. return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_; } // Returns the accumulated user time for thread. int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) { FILETIME dummy; uint64_t usertime; // Get the amount of time that the thread has executed in user mode. if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, reinterpret_cast<FILETIME*>(&usertime))) return -1; // Adjust the resolution to micro-seconds. usertime /= 10; // Convert to seconds and microseconds *secs = static_cast<uint32_t>(usertime / 1000000); *usecs = static_cast<uint32_t>(usertime % 1000000); return 0; } // Returns current time as the number of milliseconds since // 00:00:00 UTC, January 1, 1970. double OS::TimeCurrentMillis() { return Time::Now().ToJsTime(); } // Returns a string identifying the current timezone taking into // account daylight saving. const char* WindowsTimezoneCache::LocalTimezone(double time) { return Win32Time(time).LocalTimezone(this); } // Returns the local time offset in milliseconds east of UTC without // taking daylight savings time into account. double WindowsTimezoneCache::LocalTimeOffset(double time_ms, bool is_utc) { // Ignore is_utc and time_ms for now. That way, the behavior wouldn't // change with icu_timezone_data disabled. // Use current time, rounded to the millisecond. Win32Time t(OS::TimeCurrentMillis()); // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. return static_cast<double>(t.LocalOffset(this) - t.DaylightSavingsOffset(this)); } // Returns the daylight savings offset in milliseconds for the given // time. double WindowsTimezoneCache::DaylightSavingsOffset(double time) { int64_t offset = Win32Time(time).DaylightSavingsOffset(this); return static_cast<double>(offset); } TimezoneCache* OS::CreateTimezoneCache() { return new WindowsTimezoneCache(); } int OS::GetLastError() { return ::GetLastError(); } int OS::GetCurrentProcessId() { return static_cast<int>(::GetCurrentProcessId()); } int OS::GetCurrentThreadId() { return static_cast<int>(::GetCurrentThreadId()); } void OS::ExitProcess(int exit_code) { // Use TerminateProcess avoid races between isolate threads and // static destructors. fflush(stdout); fflush(stderr); TerminateProcess(GetCurrentProcess(), exit_code); } // ---------------------------------------------------------------------------- // Win32 console output. // // If a Win32 application is linked as a console application it has a normal // standard output and standard error. In this case normal printf works fine // for output. However, if the application is linked as a GUI application, // the process doesn't have a console, and therefore (debugging) output is lost. // This is the case if we are embedded in a windows program (like a browser). // In order to be able to get debug output in this case the the debugging // facility using OutputDebugString. This output goes to the active debugger // for the process (if any). Else the output can be monitored using DBMON.EXE. enum OutputMode { UNKNOWN, // Output method has not yet been determined. CONSOLE, // Output is written to stdout. ODS // Output is written to debug facility. }; static OutputMode output_mode = UNKNOWN; // Current output mode. // Determine if the process has a console for output. static bool HasConsole() { // Only check the first time. Eventual race conditions are not a problem, // because all threads will eventually determine the same mode. if (output_mode == UNKNOWN) { // We cannot just check that the standard output is attached to a console // because this would fail if output is redirected to a file. Therefore we // say that a process does not have an output console if either the // standard output handle is invalid or its file type is unknown. if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) output_mode = CONSOLE; else output_mode = ODS; } return output_mode == CONSOLE; } static void VPrintHelper(FILE* stream, const char* format, va_list args) { if ((stream == stdout || stream == stderr) && !HasConsole()) { // It is important to use safe print here in order to avoid // overflowing the buffer. We might truncate the output, but this // does not crash. char buffer[4096]; OS::VSNPrintF(buffer, sizeof(buffer), format, args); OutputDebugStringA(buffer); } else { vfprintf(stream, format, args); } } FILE* OS::FOpen(const char* path, const char* mode) { FILE* result; if (fopen_s(&result, path, mode) == 0) { return result; } else { return nullptr; } } bool OS::Remove(const char* path) { return (DeleteFileA(path) != 0); } char OS::DirectorySeparator() { return '\\'; } bool OS::isDirectorySeparator(const char ch) { return ch == '/' || ch == '\\'; } FILE* OS::OpenTemporaryFile() { // tmpfile_s tries to use the root dir, don't use it. char tempPathBuffer[MAX_PATH]; DWORD path_result = 0; path_result = GetTempPathA(MAX_PATH, tempPathBuffer); if (path_result > MAX_PATH || path_result == 0) return nullptr; UINT name_result = 0; char tempNameBuffer[MAX_PATH]; name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); if (name_result == 0) return nullptr; FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses. if (result != nullptr) { Remove(tempNameBuffer); // Delete on close. } return result; } // Open log file in binary mode to avoid /n -> /r/n conversion. const char* const OS::LogFileOpenMode = "wb"; // Print (debug) message to console. void OS::Print(const char* format, ...) { va_list args; va_start(args, format); VPrint(format, args); va_end(args); } void OS::VPrint(const char* format, va_list args) { VPrintHelper(stdout, format, args); } void OS::FPrint(FILE* out, const char* format, ...) { va_list args; va_start(args, format); VFPrint(out, format, args); va_end(args); } void OS::VFPrint(FILE* out, const char* format, va_list args) { VPrintHelper(out, format, args); } // Print error message to console. void OS::PrintError(const char* format, ...) { va_list args; va_start(args, format); VPrintError(format, args); va_end(args); } void OS::VPrintError(const char* format, va_list args) { VPrintHelper(stderr, format, args); } int OS::SNPrintF(char* str, int length, const char* format, ...) { va_list args; va_start(args, format); int result = VSNPrintF(str, length, format, args); va_end(args); return result; } int OS::VSNPrintF(char* str, int length, const char* format, va_list args) { int n = _vsnprintf_s(str, length, _TRUNCATE, format, args); // Make sure to zero-terminate the string if the output was // truncated or if there was an error. if (n < 0 || n >= length) { if (length > 0) str[length - 1] = '\0'; return -1; } else { return n; } } char* OS::StrChr(char* str, int c) { return const_cast<char*>(strchr(str, c)); } void OS::StrNCpy(char* dest, int length, const char* src, size_t n) { // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. size_t buffer_size = static_cast<size_t>(length); if (n + 1 > buffer_size) // count for trailing '\0' n = _TRUNCATE; int result = strncpy_s(dest, length, src, n); USE(result); DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); } #undef _TRUNCATE #undef STRUNCATE static LazyInstance<RandomNumberGenerator>::type platform_random_number_generator = LAZY_INSTANCE_INITIALIZER; static LazyMutex rng_mutex = LAZY_MUTEX_INITIALIZER; void OS::Initialize(bool hard_abort, const char* const gc_fake_mmap) { g_hard_abort = hard_abort; } // static size_t OS::AllocatePageSize() { static size_t allocate_alignment = 0; if (allocate_alignment == 0) { SYSTEM_INFO info; GetSystemInfo(&info); allocate_alignment = info.dwAllocationGranularity; } return allocate_alignment; } // static size_t OS::CommitPageSize() { static size_t page_size = 0; if (page_size == 0) { SYSTEM_INFO info; GetSystemInfo(&info); page_size = info.dwPageSize; DCHECK_EQ(4096, page_size); } return page_size; } // static void OS::SetRandomMmapSeed(int64_t seed) { if (seed) { LockGuard<Mutex> guard(rng_mutex.Pointer()); platform_random_number_generator.Pointer()->SetSeed(seed); } } // static void* OS::GetRandomMmapAddr() { // The address range used to randomize RWX allocations in OS::Allocate // Try not to map pages into the default range that windows loads DLLs // Use a multiple of 64k to prevent committing unused memory. // Note: This does not guarantee RWX regions will be within the // range kAllocationRandomAddressMin to kAllocationRandomAddressMax #ifdef V8_HOST_ARCH_64_BIT static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000; static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; #else static const uintptr_t kAllocationRandomAddressMin = 0x04000000; static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000; #endif uintptr_t address; { LockGuard<Mutex> guard(rng_mutex.Pointer()); platform_random_number_generator.Pointer()->NextBytes(&address, sizeof(address)); } address <<= kPageSizeBits; address += kAllocationRandomAddressMin; address &= kAllocationRandomAddressMax; return reinterpret_cast<void*>(address); } namespace { DWORD GetProtectionFromMemoryPermission(OS::MemoryPermission access) { switch (access) { case OS::MemoryPermission::kNoAccess: return PAGE_NOACCESS; case OS::MemoryPermission::kRead: return PAGE_READONLY; case OS::MemoryPermission::kReadWrite: return PAGE_READWRITE; case OS::MemoryPermission::kReadWriteExecute: if (IsWindows10OrGreater()) return PAGE_EXECUTE_READWRITE | PAGE_TARGETS_INVALID; return PAGE_EXECUTE_READWRITE; case OS::MemoryPermission::kReadExecute: if (IsWindows10OrGreater()) return PAGE_EXECUTE_READ | PAGE_TARGETS_INVALID; return PAGE_EXECUTE_READ; } UNREACHABLE(); } uint8_t* RandomizedVirtualAlloc(size_t size, DWORD flags, DWORD protect, void* hint) { LPVOID base = nullptr; static BOOL use_aslr = -1; #ifdef V8_HOST_ARCH_32_BIT // Don't bother randomizing on 32-bit hosts, because they lack the room and // don't have viable ASLR anyway. if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr)) use_aslr = FALSE; #else use_aslr = TRUE; #endif if (use_aslr && protect != PAGE_READWRITE) { // For executable or reserved pages try to randomize the allocation address. base = VirtualAlloc(hint, size, flags, protect); } // On failure, let the OS find an address to use. if (base == nullptr) { base = VirtualAlloc(nullptr, size, flags, protect); } return reinterpret_cast<uint8_t*>(base); } } // namespace // static void* OS::Allocate(void* address, size_t size, size_t alignment, MemoryPermission access) { size_t page_size = AllocatePageSize(); DCHECK_EQ(0, size % page_size); DCHECK_EQ(0, alignment % page_size); DCHECK_LE(page_size, alignment); address = AlignedAddress(address, alignment); DWORD flags = (access == OS::MemoryPermission::kNoAccess) ? MEM_RESERVE : MEM_RESERVE | MEM_COMMIT; DWORD protect = GetProtectionFromMemoryPermission(access); // First, try an exact size aligned allocation. uint8_t* base = RandomizedVirtualAlloc(size, flags, protect, address); if (base == nullptr) return nullptr; // Can't allocate, we're OOM. // If address is suitably aligned, we're done. uint8_t* aligned_base = RoundUp(base, alignment); if (base == aligned_base) return reinterpret_cast<void*>(base); // Otherwise, free it and try a larger allocation. CHECK(Free(base, size)); // Clear the hint. It's unlikely we can allocate at this address. address = nullptr; // Add the maximum misalignment so we are guaranteed an aligned base address // in the allocated region. size_t padded_size = size + (alignment - page_size); const int kMaxAttempts = 3; aligned_base = nullptr; for (int i = 0; i < kMaxAttempts; ++i) { base = RandomizedVirtualAlloc(padded_size, flags, protect, address); if (base == nullptr) return nullptr; // Can't allocate, we're OOM. // Try to trim the allocation by freeing the padded allocation and then // calling VirtualAlloc at the aligned base. CHECK(Free(base, padded_size)); aligned_base = RoundUp(base, alignment); base = reinterpret_cast<uint8_t*>( VirtualAlloc(aligned_base, size, flags, protect)); // We might not get the reduced allocation due to a race. In that case, // base will be nullptr. if (base != nullptr) break; } DCHECK_IMPLIES(base, base == aligned_base); return reinterpret_cast<void*>(base); } // static bool OS::Free(void* address, const size_t size) { DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % AllocatePageSize()); DCHECK_EQ(0, size % AllocatePageSize()); USE(size); return VirtualFree(address, 0, MEM_RELEASE) != 0; } // static bool OS::Release(void* address, size_t size) { DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize()); DCHECK_EQ(0, size % CommitPageSize()); return VirtualFree(address, size, MEM_DECOMMIT) != 0; } // static bool OS::SetPermissions(void* address, size_t size, MemoryPermission access) { DCHECK_EQ(0, reinterpret_cast<uintptr_t>(address) % CommitPageSize()); DCHECK_EQ(0, size % CommitPageSize()); if (access == MemoryPermission::kNoAccess) { return VirtualFree(address, size, MEM_DECOMMIT) != 0; } DWORD protect = GetProtectionFromMemoryPermission(access); return VirtualAlloc(address, size, MEM_COMMIT, protect) != nullptr; } // static bool OS::HasLazyCommits() { // TODO(alph): implement for the platform. return false; } void OS::Sleep(TimeDelta interval) { ::Sleep(static_cast<DWORD>(interval.InMilliseconds())); } void OS::Abort() { // Before aborting, make sure to flush output buffers. fflush(stdout); fflush(stderr); if (g_hard_abort) { V8_IMMEDIATE_CRASH(); } // Make the MSVCRT do a silent abort. raise(SIGABRT); // Make sure function doesn't return. abort(); } void OS::DebugBreak() { #if V8_CC_MSVC // To avoid Visual Studio runtime support the following code can be used // instead // __asm { int 3 } __debugbreak(); #else ::DebugBreak(); #endif } class Win32MemoryMappedFile final : public OS::MemoryMappedFile { public: Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory, size_t size) : file_(file), file_mapping_(file_mapping), memory_(memory), size_(size) {} ~Win32MemoryMappedFile() final; void* memory() const final { return memory_; } size_t size() const final { return size_; } private: HANDLE const file_; HANDLE const file_mapping_; void* const memory_; size_t const size_; }; // static OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { // Open a physical file HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, OPEN_EXISTING, 0, nullptr); if (file == INVALID_HANDLE_VALUE) return nullptr; DWORD size = GetFileSize(file, nullptr); // Create a file mapping for the physical file HANDLE file_mapping = CreateFileMapping(file, nullptr, PAGE_READWRITE, 0, size, nullptr); if (file_mapping == nullptr) return nullptr; // Map a view of the file into memory void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); return new Win32MemoryMappedFile(file, file_mapping, memory, size); } // static OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, size_t size, void* initial) { // Open a physical file HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, OPEN_ALWAYS, 0, nullptr); if (file == nullptr) return nullptr; // Create a file mapping for the physical file HANDLE file_mapping = CreateFileMapping(file, nullptr, PAGE_READWRITE, 0, static_cast<DWORD>(size), nullptr); if (file_mapping == nullptr) return nullptr; // Map a view of the file into memory void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); if (memory) memmove(memory, initial, size); return new Win32MemoryMappedFile(file, file_mapping, memory, size); } Win32MemoryMappedFile::~Win32MemoryMappedFile() { if (memory_) UnmapViewOfFile(memory_); CloseHandle(file_mapping_); CloseHandle(file_); } // The following code loads functions defined in DbhHelp.h and TlHelp32.h // dynamically. This is to avoid being depending on dbghelp.dll and // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to // kernel32.dll at some point so loading functions defines in TlHelp32.h // dynamically might not be necessary any more - for some versions of Windows?). // Function pointers to functions dynamically loaded from dbghelp.dll. #define DBGHELP_FUNCTION_LIST(V) \ V(SymInitialize) \ V(SymGetOptions) \ V(SymSetOptions) \ V(SymGetSearchPath) \ V(SymLoadModule64) \ V(StackWalk64) \ V(SymGetSymFromAddr64) \ V(SymGetLineFromAddr64) \ V(SymFunctionTableAccess64) \ V(SymGetModuleBase64) // Function pointers to functions dynamically loaded from dbghelp.dll. #define TLHELP32_FUNCTION_LIST(V) \ V(CreateToolhelp32Snapshot) \ V(Module32FirstW) \ V(Module32NextW) // Define the decoration to use for the type and variable name used for // dynamically loaded DLL function.. #define DLL_FUNC_TYPE(name) _##name##_ #define DLL_FUNC_VAR(name) _##name // Define the type for each dynamically loaded DLL function. The function // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros // from the Windows include files are redefined here to have the function // definitions to be as close to the ones in the original .h files as possible. #ifndef IN #define IN #endif #ifndef VOID #define VOID void #endif // DbgHelp isn't supported on MinGW yet #ifndef __MINGW32__ // DbgHelp.h functions. typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, IN PSTR UserSearchPath, IN BOOL fInvadeProcess); typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( IN HANDLE hProcess, OUT PSTR SearchPath, IN DWORD SearchPathLength); typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( IN HANDLE hProcess, IN HANDLE hFile, IN PSTR ImageName, IN PSTR ModuleName, IN DWORD64 BaseOfDll, IN DWORD SizeOfDll); typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( DWORD MachineType, HANDLE hProcess, HANDLE hThread, LPSTACKFRAME64 StackFrame, PVOID ContextRecord, PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD64 pdwDisplacement, OUT PIMAGEHLP_SYMBOL64 Symbol); typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( IN HANDLE hProcess, IN DWORD64 qwAddr, OUT PDWORD pdwDisplacement, OUT PIMAGEHLP_LINE64 Line64); // DbgHelp.h typedefs. Implementation found in dbghelp.dll. typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( HANDLE hProcess, DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( HANDLE hProcess, DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 // TlHelp32.h functions. typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( DWORD dwFlags, DWORD th32ProcessID); typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, LPMODULEENTRY32W lpme); typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, LPMODULEENTRY32W lpme); #undef IN #undef VOID // Declare a variable for each dynamically loaded DLL function. #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = nullptr; DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) #undef DEF_DLL_FUNCTION // Load the functions. This function has a lot of "ugly" macros in order to // keep down code duplication. static bool LoadDbgHelpAndTlHelp32() { static bool dbghelp_loaded = false; if (dbghelp_loaded) return true; HMODULE module; // Load functions from the dbghelp.dll module. module = LoadLibrary(TEXT("dbghelp.dll")); if (module == nullptr) { return false; } #define LOAD_DLL_FUNC(name) \ DLL_FUNC_VAR(name) = \ reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) #undef LOAD_DLL_FUNC // Load functions from the kernel32.dll module (the TlHelp32.h function used // to be in tlhelp32.dll but are now moved to kernel32.dll). module = LoadLibrary(TEXT("kernel32.dll")); if (module == nullptr) { return false; } #define LOAD_DLL_FUNC(name) \ DLL_FUNC_VAR(name) = \ reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) #undef LOAD_DLL_FUNC // Check that all functions where loaded. bool result = #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != nullptr)&& DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) #undef DLL_FUNC_LOADED true; dbghelp_loaded = result; return result; // NOTE: The modules are never unloaded and will stay around until the // application is closed. } #undef DBGHELP_FUNCTION_LIST #undef TLHELP32_FUNCTION_LIST #undef DLL_FUNC_VAR #undef DLL_FUNC_TYPE // Load the symbols for generating stack traces. static std::vector<OS::SharedLibraryAddress> LoadSymbols( HANDLE process_handle) { static std::vector<OS::SharedLibraryAddress> result; static bool symbols_loaded = false; if (symbols_loaded) return result; BOOL ok; // Initialize the symbol engine. ok = _SymInitialize(process_handle, // hProcess nullptr, // UserSearchPath false); // fInvadeProcess if (!ok) return result; DWORD options = _SymGetOptions(); options |= SYMOPT_LOAD_LINES; options |= SYMOPT_FAIL_CRITICAL_ERRORS; options = _SymSetOptions(options); char buf[OS::kStackWalkMaxNameLen] = {0}; ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); if (!ok) { int err = GetLastError(); OS::Print("%d\n", err); return result; } HANDLE snapshot = _CreateToolhelp32Snapshot( TH32CS_SNAPMODULE, // dwFlags GetCurrentProcessId()); // th32ProcessId if (snapshot == INVALID_HANDLE_VALUE) return result; MODULEENTRY32W module_entry; module_entry.dwSize = sizeof(module_entry); // Set the size of the structure. BOOL cont = _Module32FirstW(snapshot, &module_entry); while (cont) { DWORD64 base; // NOTE the SymLoadModule64 function has the peculiarity of accepting a // both unicode and ASCII strings even though the parameter is PSTR. base = _SymLoadModule64( process_handle, // hProcess 0, // hFile reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll module_entry.modBaseSize); // SizeOfDll if (base == 0) { int err = GetLastError(); if (err != ERROR_MOD_NOT_FOUND && err != ERROR_INVALID_HANDLE) { result.clear(); return result; } } int lib_name_length = WideCharToMultiByte( CP_UTF8, 0, module_entry.szExePath, -1, nullptr, 0, nullptr, nullptr); std::string lib_name(lib_name_length, 0); WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0], lib_name_length, nullptr, nullptr); result.push_back(OS::SharedLibraryAddress( lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr), reinterpret_cast<uintptr_t>(module_entry.modBaseAddr + module_entry.modBaseSize))); cont = _Module32NextW(snapshot, &module_entry); } CloseHandle(snapshot); symbols_loaded = true; return result; } std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { // SharedLibraryEvents are logged when loading symbol information. // Only the shared libraries loaded at the time of the call to // GetSharedLibraryAddresses are logged. DLLs loaded after // initialization are not accounted for. if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>(); HANDLE process_handle = GetCurrentProcess(); return LoadSymbols(process_handle); } void OS::SignalCodeMovingGC() {} #else // __MINGW32__ std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() { return std::vector<OS::SharedLibraryAddress>(); } void OS::SignalCodeMovingGC() {} #endif // __MINGW32__ int OS::ActivationFrameAlignment() { #ifdef _WIN64 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned. #elif defined(__MINGW32__) // With gcc 4.4 the tree vectorization optimizer can generate code // that requires 16 byte alignment such as movdqa on x86. return 16; #else return 8; // Floating-point math runs faster with 8-byte alignment. #endif } #if (defined(_WIN32) || defined(_WIN64)) void EnsureConsoleOutputWin32() { UINT new_flags = SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX; UINT existing_flags = SetErrorMode(new_flags); SetErrorMode(existing_flags | new_flags); #if defined(_MSC_VER) _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDERR); _CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); _CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); _CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_DEBUG | _CRTDBG_MODE_FILE); _CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDERR); _set_error_mode(_OUT_TO_STDERR); #endif // defined(_MSC_VER) } #endif // (defined(_WIN32) || defined(_WIN64)) // ---------------------------------------------------------------------------- // Win32 thread support. // Definition of invalid thread handle and id. static const HANDLE kNoThread = INVALID_HANDLE_VALUE; // Entry point for threads. The supplied argument is a pointer to the thread // object. The entry function dispatches to the run method in the thread // object. It is important that this function has __stdcall calling // convention. static unsigned int __stdcall ThreadEntry(void* arg) { Thread* thread = reinterpret_cast<Thread*>(arg); thread->NotifyStartedAndRun(); return 0; } class Thread::PlatformData { public: explicit PlatformData(HANDLE thread) : thread_(thread) {} HANDLE thread_; unsigned thread_id_; }; // Initialize a Win32 thread object. The thread has an invalid thread // handle until it is started. Thread::Thread(const Options& options) : stack_size_(options.stack_size()), start_semaphore_(nullptr) { data_ = new PlatformData(kNoThread); set_name(options.name()); } void Thread::set_name(const char* name) { OS::StrNCpy(name_, sizeof(name_), name, strlen(name)); name_[sizeof(name_) - 1] = '\0'; } // Close our own handle for the thread. Thread::~Thread() { if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); delete data_; } // Create a new thread. It is important to use _beginthreadex() instead of // the Win32 function CreateThread(), because the CreateThread() does not // initialize thread specific structures in the C runtime library. void Thread::Start() { data_->thread_ = reinterpret_cast<HANDLE>( _beginthreadex(nullptr, static_cast<unsigned>(stack_size_), ThreadEntry, this, 0, &data_->thread_id_)); } // Wait for thread to terminate. void Thread::Join() { if (data_->thread_id_ != GetCurrentThreadId()) { WaitForSingleObject(data_->thread_, INFINITE); } } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { DWORD result = TlsAlloc(); DCHECK(result != TLS_OUT_OF_INDEXES); return static_cast<LocalStorageKey>(result); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { BOOL result = TlsFree(static_cast<DWORD>(key)); USE(result); DCHECK(result); } void* Thread::GetThreadLocal(LocalStorageKey key) { return TlsGetValue(static_cast<DWORD>(key)); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { BOOL result = TlsSetValue(static_cast<DWORD>(key), value); USE(result); DCHECK(result); } } // namespace base } // namespace v8