// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Slightly adapted for inclusion in V8. // Copyright 2016 the V8 project authors. All rights reserved. #include "src/base/debug/stack_trace.h" #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <sys/param.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <map> #include <memory> #include <ostream> #include <string> #include <vector> #if V8_LIBC_GLIBC || V8_LIBC_BSD || V8_LIBC_UCLIBC || V8_OS_SOLARIS #define HAVE_EXECINFO_H 1 #endif #if HAVE_EXECINFO_H #include <cxxabi.h> #include <execinfo.h> #endif #if V8_OS_MACOSX #include <AvailabilityMacros.h> #endif #include "src/base/build_config.h" #include "src/base/free_deleter.h" #include "src/base/logging.h" #include "src/base/macros.h" namespace v8 { namespace base { namespace debug { namespace internal { // POSIX doesn't define any async-signal safe function for converting // an integer to ASCII. We'll have to define our own version. // itoa_r() converts a (signed) integer to ASCII. It returns "buf", if the // conversion was successful or nullptr otherwise. It never writes more than // "sz" bytes. Output will be truncated as needed, and a NUL character is always // appended. char* itoa_r(intptr_t i, char* buf, size_t sz, int base, size_t padding); } // namespace internal namespace { volatile sig_atomic_t in_signal_handler = 0; bool dump_stack_in_signal_handler = 1; // The prefix used for mangled symbols, per the Itanium C++ ABI: // http://www.codesourcery.com/cxx-abi/abi.html#mangling const char kMangledSymbolPrefix[] = "_Z"; // Characters that can be used for symbols, generated by Ruby: // (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join const char kSymbolCharacters[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; #if HAVE_EXECINFO_H // Demangles C++ symbols in the given text. Example: // // "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]" // => // "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]" void DemangleSymbols(std::string* text) { // Note: code in this function is NOT async-signal safe (std::string uses // malloc internally). std::string::size_type search_from = 0; while (search_from < text->size()) { // Look for the start of a mangled symbol, from search_from. std::string::size_type mangled_start = text->find(kMangledSymbolPrefix, search_from); if (mangled_start == std::string::npos) { break; // Mangled symbol not found. } // Look for the end of the mangled symbol. std::string::size_type mangled_end = text->find_first_not_of(kSymbolCharacters, mangled_start); if (mangled_end == std::string::npos) { mangled_end = text->size(); } std::string mangled_symbol = text->substr(mangled_start, mangled_end - mangled_start); // Try to demangle the mangled symbol candidate. int status = 0; std::unique_ptr<char, FreeDeleter> demangled_symbol( abi::__cxa_demangle(mangled_symbol.c_str(), nullptr, 0, &status)); if (status == 0) { // Demangling is successful. // Remove the mangled symbol. text->erase(mangled_start, mangled_end - mangled_start); // Insert the demangled symbol. text->insert(mangled_start, demangled_symbol.get()); // Next time, we'll start right after the demangled symbol we inserted. search_from = mangled_start + strlen(demangled_symbol.get()); } else { // Failed to demangle. Retry after the "_Z" we just found. search_from = mangled_start + 2; } } } #endif // HAVE_EXECINFO_H class BacktraceOutputHandler { public: virtual void HandleOutput(const char* output) = 0; protected: virtual ~BacktraceOutputHandler() {} }; #if HAVE_EXECINFO_H void OutputPointer(void* pointer, BacktraceOutputHandler* handler) { // This should be more than enough to store a 64-bit number in hex: // 16 hex digits + 1 for null-terminator. char buf[17] = {'\0'}; handler->HandleOutput("0x"); internal::itoa_r(reinterpret_cast<intptr_t>(pointer), buf, sizeof(buf), 16, 12); handler->HandleOutput(buf); } void ProcessBacktrace(void* const* trace, size_t size, BacktraceOutputHandler* handler) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. handler->HandleOutput("\n"); handler->HandleOutput("==== C stack trace ===============================\n"); handler->HandleOutput("\n"); bool printed = false; // Below part is async-signal unsafe (uses malloc), so execute it only // when we are not executing the signal handler. if (in_signal_handler == 0) { std::unique_ptr<char*, FreeDeleter> trace_symbols( backtrace_symbols(trace, static_cast<int>(size))); if (trace_symbols.get()) { for (size_t i = 0; i < size; ++i) { std::string trace_symbol = trace_symbols.get()[i]; DemangleSymbols(&trace_symbol); handler->HandleOutput(" "); handler->HandleOutput(trace_symbol.c_str()); handler->HandleOutput("\n"); } printed = true; } } if (!printed) { for (size_t i = 0; i < size; ++i) { handler->HandleOutput(" ["); OutputPointer(trace[i], handler); handler->HandleOutput("]\n"); } } } #endif // HAVE_EXECINFO_H void PrintToStderr(const char* output) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. ssize_t return_val = write(STDERR_FILENO, output, strlen(output)); USE(return_val); } void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) { // NOTE: This code MUST be async-signal safe. // NO malloc or stdio is allowed here. // Record the fact that we are in the signal handler now, so that the rest // of StackTrace can behave in an async-signal-safe manner. in_signal_handler = 1; PrintToStderr("Received signal "); char buf[1024] = {0}; internal::itoa_r(signal, buf, sizeof(buf), 10, 0); PrintToStderr(buf); if (signal == SIGBUS) { if (info->si_code == BUS_ADRALN) PrintToStderr(" BUS_ADRALN "); else if (info->si_code == BUS_ADRERR) PrintToStderr(" BUS_ADRERR "); else if (info->si_code == BUS_OBJERR) PrintToStderr(" BUS_OBJERR "); else PrintToStderr(" <unknown> "); } else if (signal == SIGFPE) { if (info->si_code == FPE_FLTDIV) PrintToStderr(" FPE_FLTDIV "); else if (info->si_code == FPE_FLTINV) PrintToStderr(" FPE_FLTINV "); else if (info->si_code == FPE_FLTOVF) PrintToStderr(" FPE_FLTOVF "); else if (info->si_code == FPE_FLTRES) PrintToStderr(" FPE_FLTRES "); else if (info->si_code == FPE_FLTSUB) PrintToStderr(" FPE_FLTSUB "); else if (info->si_code == FPE_FLTUND) PrintToStderr(" FPE_FLTUND "); else if (info->si_code == FPE_INTDIV) PrintToStderr(" FPE_INTDIV "); else if (info->si_code == FPE_INTOVF) PrintToStderr(" FPE_INTOVF "); else PrintToStderr(" <unknown> "); } else if (signal == SIGILL) { if (info->si_code == ILL_BADSTK) PrintToStderr(" ILL_BADSTK "); else if (info->si_code == ILL_COPROC) PrintToStderr(" ILL_COPROC "); else if (info->si_code == ILL_ILLOPN) PrintToStderr(" ILL_ILLOPN "); else if (info->si_code == ILL_ILLADR) PrintToStderr(" ILL_ILLADR "); else if (info->si_code == ILL_ILLTRP) PrintToStderr(" ILL_ILLTRP "); else if (info->si_code == ILL_PRVOPC) PrintToStderr(" ILL_PRVOPC "); else if (info->si_code == ILL_PRVREG) PrintToStderr(" ILL_PRVREG "); else PrintToStderr(" <unknown> "); } else if (signal == SIGSEGV) { if (info->si_code == SEGV_MAPERR) PrintToStderr(" SEGV_MAPERR "); else if (info->si_code == SEGV_ACCERR) PrintToStderr(" SEGV_ACCERR "); else PrintToStderr(" <unknown> "); } if (signal == SIGBUS || signal == SIGFPE || signal == SIGILL || signal == SIGSEGV) { internal::itoa_r(reinterpret_cast<intptr_t>(info->si_addr), buf, sizeof(buf), 16, 12); PrintToStderr(buf); } PrintToStderr("\n"); if (dump_stack_in_signal_handler) { debug::StackTrace().Print(); PrintToStderr("[end of stack trace]\n"); } if (::signal(signal, SIG_DFL) == SIG_ERR) _exit(1); } class PrintBacktraceOutputHandler : public BacktraceOutputHandler { public: PrintBacktraceOutputHandler() {} void HandleOutput(const char* output) override { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. PrintToStderr(output); } private: DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler); }; class StreamBacktraceOutputHandler : public BacktraceOutputHandler { public: explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) {} void HandleOutput(const char* output) override { (*os_) << output; } private: std::ostream* os_; DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler); }; void WarmUpBacktrace() { // Warm up stack trace infrastructure. It turns out that on the first // call glibc initializes some internal data structures using pthread_once, // and even backtrace() can call malloc(), leading to hangs. // // Example stack trace snippet (with tcmalloc): // // #8 0x0000000000a173b5 in tc_malloc // at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161 // #9 0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517 // #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262 // #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1") // at dl-open.c:639 // #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89 // #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48 // #16 __GI___libc_dlopen_mode at dl-libc.c:165 // #17 0x00007ffff61ef8f5 in init // at ../sysdeps/x86_64/../ia64/backtrace.c:53 // #18 0x00007ffff6aad400 in pthread_once // at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104 // #19 0x00007ffff61efa14 in __GI___backtrace // at ../sysdeps/x86_64/../ia64/backtrace.c:104 // #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace // at base/debug/stack_trace_posix.cc:175 // #21 0x00000000007a4ae5 in // base::(anonymous namespace)::StackDumpSignalHandler // at base/process_util_posix.cc:172 // #22 <signal handler called> StackTrace stack_trace; } } // namespace bool EnableInProcessStackDumping() { // When running in an application, our code typically expects SIGPIPE // to be ignored. Therefore, when testing that same code, it should run // with SIGPIPE ignored as well. struct sigaction sigpipe_action; memset(&sigpipe_action, 0, sizeof(sigpipe_action)); sigpipe_action.sa_handler = SIG_IGN; sigemptyset(&sigpipe_action.sa_mask); bool success = (sigaction(SIGPIPE, &sigpipe_action, nullptr) == 0); // Avoid hangs during backtrace initialization, see above. WarmUpBacktrace(); struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_flags = SA_RESETHAND | SA_SIGINFO; action.sa_sigaction = &StackDumpSignalHandler; sigemptyset(&action.sa_mask); success &= (sigaction(SIGILL, &action, nullptr) == 0); success &= (sigaction(SIGABRT, &action, nullptr) == 0); success &= (sigaction(SIGFPE, &action, nullptr) == 0); success &= (sigaction(SIGBUS, &action, nullptr) == 0); success &= (sigaction(SIGSEGV, &action, nullptr) == 0); success &= (sigaction(SIGSYS, &action, nullptr) == 0); dump_stack_in_signal_handler = true; return success; } void DisableSignalStackDump() { dump_stack_in_signal_handler = false; } StackTrace::StackTrace() { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if HAVE_EXECINFO_H // Though the backtrace API man page does not list any possible negative // return values, we take no chance. count_ = static_cast<size_t>(backtrace(trace_, arraysize(trace_))); #else count_ = 0; #endif } void StackTrace::Print() const { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if HAVE_EXECINFO_H PrintBacktraceOutputHandler handler; ProcessBacktrace(trace_, count_, &handler); #endif } void StackTrace::OutputToStream(std::ostream* os) const { #if HAVE_EXECINFO_H StreamBacktraceOutputHandler handler(os); ProcessBacktrace(trace_, count_, &handler); #endif } namespace internal { // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. char* itoa_r(intptr_t i, char* buf, size_t sz, int base, size_t padding) { // Make sure we can write at least one NUL byte. size_t n = 1; if (n > sz) return nullptr; if (base < 2 || base > 16) { buf[0] = '\0'; return nullptr; } char* start = buf; uintptr_t j = i; // Handle negative numbers (only for base 10). if (i < 0 && base == 10) { // This does "j = -i" while avoiding integer overflow. j = static_cast<uintptr_t>(-(i + 1)) + 1; // Make sure we can write the '-' character. if (++n > sz) { buf[0] = '\0'; return nullptr; } *start++ = '-'; } // Loop until we have converted the entire number. Output at least one // character (i.e. '0'). char* ptr = start; do { // Make sure there is still enough space left in our output buffer. if (++n > sz) { buf[0] = '\0'; return nullptr; } // Output the next digit. *ptr++ = "0123456789abcdef"[j % base]; j /= base; if (padding > 0) padding--; } while (j > 0 || padding > 0); // Terminate the output with a NUL character. *ptr = '\0'; // Conversion to ASCII actually resulted in the digits being in reverse // order. We can't easily generate them in forward order, as we can't tell // the number of characters needed until we are done converting. // So, now, we reverse the string (except for the possible "-" sign). while (--ptr > start) { char ch = *ptr; *ptr = *start; *start++ = ch; } return buf; } } // namespace internal } // namespace debug } // namespace base } // namespace v8