// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file is an internal atomic implementation, use atomicops.h instead. // // This implementation uses C++11 atomics' member functions. The code base is // currently written assuming atomicity revolves around accesses instead of // C++11's memory locations. The burden is on the programmer to ensure that all // memory locations accessed atomically are never accessed non-atomically (tsan // should help with this). // // Of note in this implementation: // * All NoBarrier variants are implemented as relaxed. // * All Barrier variants are implemented as sequentially-consistent. // * Compare exchange's failure ordering is always the same as the success one // (except for release, which fails as relaxed): using a weaker ordering is // only valid under certain uses of compare exchange. // * Acquire store doesn't exist in the C11 memory model, it is instead // implemented as a relaxed store followed by a sequentially consistent // fence. // * Release load doesn't exist in the C11 memory model, it is instead // implemented as sequentially consistent fence followed by a relaxed load. // * Atomic increment is expected to return the post-incremented value, whereas // C11 fetch add returns the previous value. The implementation therefore // needs to increment twice (which the compiler should be able to detect and // optimize). #ifndef V8_BASE_ATOMICOPS_INTERNALS_PORTABLE_H_ #define V8_BASE_ATOMICOPS_INTERNALS_PORTABLE_H_ #include <atomic> #include "src/base/build_config.h" #include "src/base/macros.h" namespace v8 { namespace base { // This implementation is transitional and maintains the original API for // atomicops.h. inline void SeqCst_MemoryFence() { #if defined(__GLIBCXX__) // Work around libstdc++ bug 51038 where atomic_thread_fence was declared but // not defined, leading to the linker complaining about undefined references. __atomic_thread_fence(std::memory_order_seq_cst); #else std::atomic_thread_fence(std::memory_order_seq_cst); #endif } inline Atomic32 Relaxed_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_RELAXED, __ATOMIC_RELAXED); return old_value; } inline Atomic32 Relaxed_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value) { return __atomic_exchange_n(ptr, new_value, __ATOMIC_RELAXED); } inline Atomic32 Relaxed_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { return increment + __atomic_fetch_add(ptr, increment, __ATOMIC_RELAXED); } inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { return increment + __atomic_fetch_add(ptr, increment, __ATOMIC_SEQ_CST); } inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE); return old_value; } inline Atomic8 Release_CompareAndSwap(volatile Atomic8* ptr, Atomic8 old_value, Atomic8 new_value) { bool result = __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_RELEASE, __ATOMIC_RELAXED); USE(result); // Make gcc compiler happy. return old_value; } inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return old_value; } inline void Relaxed_Store(volatile Atomic8* ptr, Atomic8 value) { __atomic_store_n(ptr, value, __ATOMIC_RELAXED); } inline void Relaxed_Store(volatile Atomic32* ptr, Atomic32 value) { __atomic_store_n(ptr, value, __ATOMIC_RELAXED); } inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { __atomic_store_n(ptr, value, __ATOMIC_RELEASE); } inline Atomic8 Relaxed_Load(volatile const Atomic8* ptr) { return __atomic_load_n(ptr, __ATOMIC_RELAXED); } inline Atomic32 Relaxed_Load(volatile const Atomic32* ptr) { return __atomic_load_n(ptr, __ATOMIC_RELAXED); } inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { return __atomic_load_n(ptr, __ATOMIC_ACQUIRE); } #if defined(V8_HOST_ARCH_64_BIT) inline Atomic64 Relaxed_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_RELAXED, __ATOMIC_RELAXED); return old_value; } inline Atomic64 Relaxed_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value) { return __atomic_exchange_n(ptr, new_value, __ATOMIC_RELAXED); } inline Atomic64 Relaxed_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { return increment + __atomic_fetch_add(ptr, increment, __ATOMIC_RELAXED); } inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { return increment + __atomic_fetch_add(ptr, increment, __ATOMIC_SEQ_CST); } inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE); return old_value; } inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { __atomic_compare_exchange_n(ptr, &old_value, new_value, false, __ATOMIC_RELEASE, __ATOMIC_RELAXED); return old_value; } inline void Relaxed_Store(volatile Atomic64* ptr, Atomic64 value) { __atomic_store_n(ptr, value, __ATOMIC_RELAXED); } inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { __atomic_store_n(ptr, value, __ATOMIC_RELEASE); } inline Atomic64 Relaxed_Load(volatile const Atomic64* ptr) { return __atomic_load_n(ptr, __ATOMIC_RELAXED); } inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { return __atomic_load_n(ptr, __ATOMIC_ACQUIRE); } #endif // defined(V8_HOST_ARCH_64_BIT) } // namespace base } // namespace v8 #endif // V8_BASE_ATOMICOPS_INTERNALS_PORTABLE_H_