// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARM64_UTILS_ARM64_H_ #define V8_ARM64_UTILS_ARM64_H_ #include <cmath> #include "src/arm64/constants-arm64.h" #include "src/utils.h" namespace v8 { namespace internal { // These are global assumptions in v8. STATIC_ASSERT((static_cast<int32_t>(-1) >> 1) == -1); STATIC_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF); uint32_t float_sign(float val); uint32_t float_exp(float val); uint32_t float_mantissa(float val); uint32_t double_sign(double val); uint32_t double_exp(double val); uint64_t double_mantissa(double val); float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa); double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa); // An fpclassify() function for 16-bit half-precision floats. int float16classify(float16 value); // Bit counting. int CountLeadingZeros(uint64_t value, int width); int CountLeadingSignBits(int64_t value, int width); int CountTrailingZeros(uint64_t value, int width); int CountSetBits(uint64_t value, int width); int LowestSetBitPosition(uint64_t value); int HighestSetBitPosition(uint64_t value); uint64_t LargestPowerOf2Divisor(uint64_t value); int MaskToBit(uint64_t mask); template <typename T> T ReverseBytes(T value, int block_bytes_log2) { DCHECK((sizeof(value) == 4) || (sizeof(value) == 8)); DCHECK((1U << block_bytes_log2) <= sizeof(value)); // Split the 64-bit value into an 8-bit array, where b[0] is the least // significant byte, and b[7] is the most significant. uint8_t bytes[8]; uint64_t mask = 0xff00000000000000; for (int i = 7; i >= 0; i--) { bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8); mask >>= 8; } // Permutation tables for REV instructions. // permute_table[0] is used by REV16_x, REV16_w // permute_table[1] is used by REV32_x, REV_w // permute_table[2] is used by REV_x DCHECK((0 < block_bytes_log2) && (block_bytes_log2 < 4)); static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1}, {4, 5, 6, 7, 0, 1, 2, 3}, {0, 1, 2, 3, 4, 5, 6, 7}}; T result = 0; for (int i = 0; i < 8; i++) { result <<= 8; result |= bytes[permute_table[block_bytes_log2 - 1][i]]; } return result; } // NaN tests. inline bool IsSignallingNaN(double num) { uint64_t raw = bit_cast<uint64_t>(num); if (std::isnan(num) && ((raw & kDQuietNanMask) == 0)) { return true; } return false; } inline bool IsSignallingNaN(float num) { uint32_t raw = bit_cast<uint32_t>(num); if (std::isnan(num) && ((raw & kSQuietNanMask) == 0)) { return true; } return false; } inline bool IsSignallingNaN(float16 num) { const uint16_t kFP16QuietNaNMask = 0x0200; return (float16classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0); } template <typename T> inline bool IsQuietNaN(T num) { return std::isnan(num) && !IsSignallingNaN(num); } // Convert the NaN in 'num' to a quiet NaN. inline double ToQuietNaN(double num) { DCHECK(std::isnan(num)); return bit_cast<double>(bit_cast<uint64_t>(num) | kDQuietNanMask); } inline float ToQuietNaN(float num) { DCHECK(std::isnan(num)); return bit_cast<float>(bit_cast<uint32_t>(num) | static_cast<uint32_t>(kSQuietNanMask)); } // Fused multiply-add. inline double FusedMultiplyAdd(double op1, double op2, double a) { return fma(op1, op2, a); } inline float FusedMultiplyAdd(float op1, float op2, float a) { return fmaf(op1, op2, a); } } // namespace internal } // namespace v8 #endif // V8_ARM64_UTILS_ARM64_H_