// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARM64_DECODER_ARM64_INL_H_ #define V8_ARM64_DECODER_ARM64_INL_H_ #include "src/arm64/decoder-arm64.h" #include "src/globals.h" #include "src/utils.h" namespace v8 { namespace internal { // Top-level instruction decode function. template<typename V> void Decoder<V>::Decode(Instruction *instr) { if (instr->Bits(28, 27) == 0) { V::VisitUnallocated(instr); } else { switch (instr->Bits(27, 24)) { // 0: PC relative addressing. case 0x0: DecodePCRelAddressing(instr); break; // 1: Add/sub immediate. case 0x1: DecodeAddSubImmediate(instr); break; // A: Logical shifted register. // Add/sub with carry. // Conditional compare register. // Conditional compare immediate. // Conditional select. // Data processing 1 source. // Data processing 2 source. // B: Add/sub shifted register. // Add/sub extended register. // Data processing 3 source. case 0xA: case 0xB: DecodeDataProcessing(instr); break; // 2: Logical immediate. // Move wide immediate. case 0x2: DecodeLogical(instr); break; // 3: Bitfield. // Extract. case 0x3: DecodeBitfieldExtract(instr); break; // 4: Unconditional branch immediate. // Exception generation. // Compare and branch immediate. // 5: Compare and branch immediate. // Conditional branch. // System. // 6,7: Unconditional branch. // Test and branch immediate. case 0x4: case 0x5: case 0x6: case 0x7: DecodeBranchSystemException(instr); break; // 8,9: Load/store register pair post-index. // Load register literal. // Load/store register unscaled immediate. // Load/store register immediate post-index. // Load/store register immediate pre-index. // Load/store register offset. // C,D: Load/store register pair offset. // Load/store register pair pre-index. // Load/store register unsigned immediate. // Advanced SIMD. case 0x8: case 0x9: case 0xC: case 0xD: DecodeLoadStore(instr); break; // E: FP fixed point conversion. // FP integer conversion. // FP data processing 1 source. // FP compare. // FP immediate. // FP data processing 2 source. // FP conditional compare. // FP conditional select. // Advanced SIMD. // F: FP data processing 3 source. // Advanced SIMD. case 0xE: case 0xF: DecodeFP(instr); break; } } } template<typename V> void Decoder<V>::DecodePCRelAddressing(Instruction* instr) { DCHECK_EQ(0x0, instr->Bits(27, 24)); // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level // decode. DCHECK_EQ(0x1, instr->Bit(28)); V::VisitPCRelAddressing(instr); } template<typename V> void Decoder<V>::DecodeBranchSystemException(Instruction* instr) { DCHECK_EQ(0x4, instr->Bits(27, 24) & 0xC); // 0x4, 0x5, 0x6, 0x7 switch (instr->Bits(31, 29)) { case 0: case 4: { V::VisitUnconditionalBranch(instr); break; } case 1: case 5: { if (instr->Bit(25) == 0) { V::VisitCompareBranch(instr); } else { V::VisitTestBranch(instr); } break; } case 2: { if (instr->Bit(25) == 0) { if ((instr->Bit(24) == 0x1) || (instr->Mask(0x01000010) == 0x00000010)) { V::VisitUnallocated(instr); } else { V::VisitConditionalBranch(instr); } } else { V::VisitUnallocated(instr); } break; } case 6: { if (instr->Bit(25) == 0) { if (instr->Bit(24) == 0) { if ((instr->Bits(4, 2) != 0) || (instr->Mask(0x00E0001D) == 0x00200001) || (instr->Mask(0x00E0001D) == 0x00400001) || (instr->Mask(0x00E0001E) == 0x00200002) || (instr->Mask(0x00E0001E) == 0x00400002) || (instr->Mask(0x00E0001C) == 0x00600000) || (instr->Mask(0x00E0001C) == 0x00800000) || (instr->Mask(0x00E0001F) == 0x00A00000) || (instr->Mask(0x00C0001C) == 0x00C00000)) { V::VisitUnallocated(instr); } else { V::VisitException(instr); } } else { if (instr->Bits(23, 22) == 0) { const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0); if ((instr->Bits(21, 19) == 0x4) || (masked_003FF0E0 == 0x00033000) || (masked_003FF0E0 == 0x003FF020) || (masked_003FF0E0 == 0x003FF060) || (masked_003FF0E0 == 0x003FF0E0) || (instr->Mask(0x00388000) == 0x00008000) || (instr->Mask(0x0038E000) == 0x00000000) || (instr->Mask(0x0039E000) == 0x00002000) || (instr->Mask(0x003AE000) == 0x00002000) || (instr->Mask(0x003CE000) == 0x00042000) || (instr->Mask(0x0038F000) == 0x00005000) || (instr->Mask(0x0038E000) == 0x00006000)) { V::VisitUnallocated(instr); } else { V::VisitSystem(instr); } } else { V::VisitUnallocated(instr); } } } else { if ((instr->Bit(24) == 0x1) || (instr->Bits(20, 16) != 0x1F) || (instr->Bits(15, 10) != 0) || (instr->Bits(4, 0) != 0) || (instr->Bits(24, 21) == 0x3) || (instr->Bits(24, 22) == 0x3)) { V::VisitUnallocated(instr); } else { V::VisitUnconditionalBranchToRegister(instr); } } break; } case 3: case 7: { V::VisitUnallocated(instr); break; } } } template<typename V> void Decoder<V>::DecodeLoadStore(Instruction* instr) { DCHECK_EQ(0x8, instr->Bits(27, 24) & 0xA); // 0x8, 0x9, 0xC, 0xD if ((instr->Bit(28) == 0) && (instr->Bit(29) == 0) && (instr->Bit(26) == 1)) { DecodeNEONLoadStore(instr); return; } if (instr->Bit(24) == 0) { if (instr->Bit(28) == 0) { if (instr->Bit(29) == 0) { if (instr->Bit(26) == 0) { if (instr->Mask(0xA08000) == 0x800000 || instr->Mask(0xA00000) == 0xA00000) { V::VisitUnallocated(instr); } else if (instr->Mask(0x808000) == 0) { // Load/Store exclusive without acquire/release are unimplemented. V::VisitUnimplemented(instr); } else { V::VisitLoadStoreAcquireRelease(instr); } } } else { if ((instr->Bits(31, 30) == 0x3) || (instr->Mask(0xC4400000) == 0x40000000)) { V::VisitUnallocated(instr); } else { if (instr->Bit(23) == 0) { if (instr->Mask(0xC4400000) == 0xC0400000) { V::VisitUnallocated(instr); } else { // Nontemporals are unimplemented. V::VisitUnimplemented(instr); } } else { V::VisitLoadStorePairPostIndex(instr); } } } } else { if (instr->Bit(29) == 0) { if (instr->Mask(0xC4000000) == 0xC4000000) { V::VisitUnallocated(instr); } else { V::VisitLoadLiteral(instr); } } else { if ((instr->Mask(0x84C00000) == 0x80C00000) || (instr->Mask(0x44800000) == 0x44800000) || (instr->Mask(0x84800000) == 0x84800000)) { V::VisitUnallocated(instr); } else { if (instr->Bit(21) == 0) { switch (instr->Bits(11, 10)) { case 0: { V::VisitLoadStoreUnscaledOffset(instr); break; } case 1: { if (instr->Mask(0xC4C00000) == 0xC0800000) { V::VisitUnallocated(instr); } else { V::VisitLoadStorePostIndex(instr); } break; } case 2: { // TODO(all): VisitLoadStoreRegisterOffsetUnpriv. V::VisitUnimplemented(instr); break; } case 3: { if (instr->Mask(0xC4C00000) == 0xC0800000) { V::VisitUnallocated(instr); } else { V::VisitLoadStorePreIndex(instr); } break; } } } else { if (instr->Bits(11, 10) == 0x2) { if (instr->Bit(14) == 0) { V::VisitUnallocated(instr); } else { V::VisitLoadStoreRegisterOffset(instr); } } else { V::VisitUnallocated(instr); } } } } } } else { if (instr->Bit(28) == 0) { if (instr->Bit(29) == 0) { V::VisitUnallocated(instr); } else { if ((instr->Bits(31, 30) == 0x3) || (instr->Mask(0xC4400000) == 0x40000000)) { V::VisitUnallocated(instr); } else { if (instr->Bit(23) == 0) { V::VisitLoadStorePairOffset(instr); } else { V::VisitLoadStorePairPreIndex(instr); } } } } else { if (instr->Bit(29) == 0) { V::VisitUnallocated(instr); } else { if ((instr->Mask(0x84C00000) == 0x80C00000) || (instr->Mask(0x44800000) == 0x44800000) || (instr->Mask(0x84800000) == 0x84800000)) { V::VisitUnallocated(instr); } else { V::VisitLoadStoreUnsignedOffset(instr); } } } } } template<typename V> void Decoder<V>::DecodeLogical(Instruction* instr) { DCHECK_EQ(0x2, instr->Bits(27, 24)); if (instr->Mask(0x80400000) == 0x00400000) { V::VisitUnallocated(instr); } else { if (instr->Bit(23) == 0) { V::VisitLogicalImmediate(instr); } else { if (instr->Bits(30, 29) == 0x1) { V::VisitUnallocated(instr); } else { V::VisitMoveWideImmediate(instr); } } } } template<typename V> void Decoder<V>::DecodeBitfieldExtract(Instruction* instr) { DCHECK_EQ(0x3, instr->Bits(27, 24)); if ((instr->Mask(0x80400000) == 0x80000000) || (instr->Mask(0x80400000) == 0x00400000) || (instr->Mask(0x80008000) == 0x00008000)) { V::VisitUnallocated(instr); } else if (instr->Bit(23) == 0) { if ((instr->Mask(0x80200000) == 0x00200000) || (instr->Mask(0x60000000) == 0x60000000)) { V::VisitUnallocated(instr); } else { V::VisitBitfield(instr); } } else { if ((instr->Mask(0x60200000) == 0x00200000) || (instr->Mask(0x60000000) != 0x00000000)) { V::VisitUnallocated(instr); } else { V::VisitExtract(instr); } } } template<typename V> void Decoder<V>::DecodeAddSubImmediate(Instruction* instr) { DCHECK_EQ(0x1, instr->Bits(27, 24)); if (instr->Bit(23) == 1) { V::VisitUnallocated(instr); } else { V::VisitAddSubImmediate(instr); } } template<typename V> void Decoder<V>::DecodeDataProcessing(Instruction* instr) { DCHECK((instr->Bits(27, 24) == 0xA) || (instr->Bits(27, 24) == 0xB) ); if (instr->Bit(24) == 0) { if (instr->Bit(28) == 0) { if (instr->Mask(0x80008000) == 0x00008000) { V::VisitUnallocated(instr); } else { V::VisitLogicalShifted(instr); } } else { switch (instr->Bits(23, 21)) { case 0: { if (instr->Mask(0x0000FC00) != 0) { V::VisitUnallocated(instr); } else { V::VisitAddSubWithCarry(instr); } break; } case 2: { if ((instr->Bit(29) == 0) || (instr->Mask(0x00000410) != 0)) { V::VisitUnallocated(instr); } else { if (instr->Bit(11) == 0) { V::VisitConditionalCompareRegister(instr); } else { V::VisitConditionalCompareImmediate(instr); } } break; } case 4: { if (instr->Mask(0x20000800) != 0x00000000) { V::VisitUnallocated(instr); } else { V::VisitConditionalSelect(instr); } break; } case 6: { if (instr->Bit(29) == 0x1) { V::VisitUnallocated(instr); } else { if (instr->Bit(30) == 0) { if ((instr->Bit(15) == 0x1) || (instr->Bits(15, 11) == 0) || (instr->Bits(15, 12) == 0x1) || (instr->Bits(15, 12) == 0x3) || (instr->Bits(15, 13) == 0x3) || (instr->Mask(0x8000EC00) == 0x00004C00) || (instr->Mask(0x8000E800) == 0x80004000) || (instr->Mask(0x8000E400) == 0x80004000)) { V::VisitUnallocated(instr); } else { V::VisitDataProcessing2Source(instr); } } else { if ((instr->Bit(13) == 1) || (instr->Bits(20, 16) != 0) || (instr->Bits(15, 14) != 0) || (instr->Mask(0xA01FFC00) == 0x00000C00) || (instr->Mask(0x201FF800) == 0x00001800)) { V::VisitUnallocated(instr); } else { V::VisitDataProcessing1Source(instr); } } break; } V8_FALLTHROUGH; } case 1: case 3: case 5: case 7: V::VisitUnallocated(instr); break; } } } else { if (instr->Bit(28) == 0) { if (instr->Bit(21) == 0) { if ((instr->Bits(23, 22) == 0x3) || (instr->Mask(0x80008000) == 0x00008000)) { V::VisitUnallocated(instr); } else { V::VisitAddSubShifted(instr); } } else { if ((instr->Mask(0x00C00000) != 0x00000000) || (instr->Mask(0x00001400) == 0x00001400) || (instr->Mask(0x00001800) == 0x00001800)) { V::VisitUnallocated(instr); } else { V::VisitAddSubExtended(instr); } } } else { if ((instr->Bit(30) == 0x1) || (instr->Bits(30, 29) == 0x1) || (instr->Mask(0xE0600000) == 0x00200000) || (instr->Mask(0xE0608000) == 0x00400000) || (instr->Mask(0x60608000) == 0x00408000) || (instr->Mask(0x60E00000) == 0x00E00000) || (instr->Mask(0x60E00000) == 0x00800000) || (instr->Mask(0x60E00000) == 0x00600000)) { V::VisitUnallocated(instr); } else { V::VisitDataProcessing3Source(instr); } } } } template<typename V> void Decoder<V>::DecodeFP(Instruction* instr) { DCHECK((instr->Bits(27, 24) == 0xE) || (instr->Bits(27, 24) == 0xF) ); if (instr->Bit(28) == 0) { DecodeNEONVectorDataProcessing(instr); } else { if (instr->Bits(31, 30) == 0x3) { V::VisitUnallocated(instr); } else if (instr->Bits(31, 30) == 0x1) { DecodeNEONScalarDataProcessing(instr); } else { if (instr->Bit(29) == 0) { if (instr->Bit(24) == 0) { if (instr->Bit(21) == 0) { if ((instr->Bit(23) == 1) || (instr->Bit(18) == 1) || (instr->Mask(0x80008000) == 0x00000000) || (instr->Mask(0x000E0000) == 0x00000000) || (instr->Mask(0x000E0000) == 0x000A0000) || (instr->Mask(0x00160000) == 0x00000000) || (instr->Mask(0x00160000) == 0x00120000)) { V::VisitUnallocated(instr); } else { V::VisitFPFixedPointConvert(instr); } } else { if (instr->Bits(15, 10) == 32) { V::VisitUnallocated(instr); } else if (instr->Bits(15, 10) == 0) { if ((instr->Bits(23, 22) == 0x3) || (instr->Mask(0x000E0000) == 0x000A0000) || (instr->Mask(0x000E0000) == 0x000C0000) || (instr->Mask(0x00160000) == 0x00120000) || (instr->Mask(0x00160000) == 0x00140000) || (instr->Mask(0x20C40000) == 0x00800000) || (instr->Mask(0x20C60000) == 0x00840000) || (instr->Mask(0xA0C60000) == 0x80060000) || (instr->Mask(0xA0C60000) == 0x00860000) || (instr->Mask(0xA0C60000) == 0x00460000) || (instr->Mask(0xA0CE0000) == 0x80860000) || (instr->Mask(0xA0CE0000) == 0x804E0000) || (instr->Mask(0xA0CE0000) == 0x000E0000) || (instr->Mask(0xA0D60000) == 0x00160000) || (instr->Mask(0xA0D60000) == 0x80560000) || (instr->Mask(0xA0D60000) == 0x80960000)) { V::VisitUnallocated(instr); } else { V::VisitFPIntegerConvert(instr); } } else if (instr->Bits(14, 10) == 16) { const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000); if ((instr->Mask(0x80180000) != 0) || (masked_A0DF8000 == 0x00020000) || (masked_A0DF8000 == 0x00030000) || (masked_A0DF8000 == 0x00068000) || (masked_A0DF8000 == 0x00428000) || (masked_A0DF8000 == 0x00430000) || (masked_A0DF8000 == 0x00468000) || (instr->Mask(0xA0D80000) == 0x00800000) || (instr->Mask(0xA0DE0000) == 0x00C00000) || (instr->Mask(0xA0DF0000) == 0x00C30000) || (instr->Mask(0xA0DC0000) == 0x00C40000)) { V::VisitUnallocated(instr); } else { V::VisitFPDataProcessing1Source(instr); } } else if (instr->Bits(13, 10) == 8) { if ((instr->Bits(15, 14) != 0) || (instr->Bits(2, 0) != 0) || (instr->Mask(0x80800000) != 0x00000000)) { V::VisitUnallocated(instr); } else { V::VisitFPCompare(instr); } } else if (instr->Bits(12, 10) == 4) { if ((instr->Bits(9, 5) != 0) || (instr->Mask(0x80800000) != 0x00000000)) { V::VisitUnallocated(instr); } else { V::VisitFPImmediate(instr); } } else { if (instr->Mask(0x80800000) != 0x00000000) { V::VisitUnallocated(instr); } else { switch (instr->Bits(11, 10)) { case 1: { V::VisitFPConditionalCompare(instr); break; } case 2: { if ((instr->Bits(15, 14) == 0x3) || (instr->Mask(0x00009000) == 0x00009000) || (instr->Mask(0x0000A000) == 0x0000A000)) { V::VisitUnallocated(instr); } else { V::VisitFPDataProcessing2Source(instr); } break; } case 3: { V::VisitFPConditionalSelect(instr); break; } default: UNREACHABLE(); } } } } } else { // Bit 30 == 1 has been handled earlier. DCHECK_EQ(0, instr->Bit(30)); if (instr->Mask(0xA0800000) != 0) { V::VisitUnallocated(instr); } else { V::VisitFPDataProcessing3Source(instr); } } } else { V::VisitUnallocated(instr); } } } } template <typename V> void Decoder<V>::DecodeNEONLoadStore(Instruction* instr) { DCHECK_EQ(0x6, instr->Bits(29, 25)); if (instr->Bit(31) == 0) { if ((instr->Bit(24) == 0) && (instr->Bit(21) == 1)) { V::VisitUnallocated(instr); return; } if (instr->Bit(23) == 0) { if (instr->Bits(20, 16) == 0) { if (instr->Bit(24) == 0) { V::VisitNEONLoadStoreMultiStruct(instr); } else { V::VisitNEONLoadStoreSingleStruct(instr); } } else { V::VisitUnallocated(instr); } } else { if (instr->Bit(24) == 0) { V::VisitNEONLoadStoreMultiStructPostIndex(instr); } else { V::VisitNEONLoadStoreSingleStructPostIndex(instr); } } } else { V::VisitUnallocated(instr); } } template <typename V> void Decoder<V>::DecodeNEONVectorDataProcessing(Instruction* instr) { DCHECK_EQ(0x7, instr->Bits(28, 25)); if (instr->Bit(31) == 0) { if (instr->Bit(24) == 0) { if (instr->Bit(21) == 0) { if (instr->Bit(15) == 0) { if (instr->Bit(10) == 0) { if (instr->Bit(29) == 0) { if (instr->Bit(11) == 0) { V::VisitNEONTable(instr); } else { V::VisitNEONPerm(instr); } } else { V::VisitNEONExtract(instr); } } else { if (instr->Bits(23, 22) == 0) { V::VisitNEONCopy(instr); } else { V::VisitUnallocated(instr); } } } else { V::VisitUnallocated(instr); } } else { if (instr->Bit(10) == 0) { if (instr->Bit(11) == 0) { V::VisitNEON3Different(instr); } else { if (instr->Bits(18, 17) == 0) { if (instr->Bit(20) == 0) { if (instr->Bit(19) == 0) { V::VisitNEON2RegMisc(instr); } else { if (instr->Bits(30, 29) == 0x2) { V::VisitUnallocated(instr); } else { V::VisitUnallocated(instr); } } } else { if (instr->Bit(19) == 0) { V::VisitNEONAcrossLanes(instr); } else { V::VisitUnallocated(instr); } } } else { V::VisitUnallocated(instr); } } } else { V::VisitNEON3Same(instr); } } } else { if (instr->Bit(10) == 0) { V::VisitNEONByIndexedElement(instr); } else { if (instr->Bit(23) == 0) { if (instr->Bits(22, 19) == 0) { V::VisitNEONModifiedImmediate(instr); } else { V::VisitNEONShiftImmediate(instr); } } else { V::VisitUnallocated(instr); } } } } else { V::VisitUnallocated(instr); } } template <typename V> void Decoder<V>::DecodeNEONScalarDataProcessing(Instruction* instr) { DCHECK_EQ(0xF, instr->Bits(28, 25)); if (instr->Bit(24) == 0) { if (instr->Bit(21) == 0) { if (instr->Bit(15) == 0) { if (instr->Bit(10) == 0) { if (instr->Bit(29) == 0) { if (instr->Bit(11) == 0) { V::VisitUnallocated(instr); } else { V::VisitUnallocated(instr); } } else { V::VisitUnallocated(instr); } } else { if (instr->Bits(23, 22) == 0) { V::VisitNEONScalarCopy(instr); } else { V::VisitUnallocated(instr); } } } else { V::VisitUnallocated(instr); } } else { if (instr->Bit(10) == 0) { if (instr->Bit(11) == 0) { V::VisitNEONScalar3Diff(instr); } else { if (instr->Bits(18, 17) == 0) { if (instr->Bit(20) == 0) { if (instr->Bit(19) == 0) { V::VisitNEONScalar2RegMisc(instr); } else { if (instr->Bit(29) == 0) { V::VisitUnallocated(instr); } else { V::VisitUnallocated(instr); } } } else { if (instr->Bit(19) == 0) { V::VisitNEONScalarPairwise(instr); } else { V::VisitUnallocated(instr); } } } else { V::VisitUnallocated(instr); } } } else { V::VisitNEONScalar3Same(instr); } } } else { if (instr->Bit(10) == 0) { V::VisitNEONScalarByIndexedElement(instr); } else { if (instr->Bit(23) == 0) { V::VisitNEONScalarShiftImmediate(instr); } else { V::VisitUnallocated(instr); } } } } } // namespace internal } // namespace v8 #endif // V8_ARM64_DECODER_ARM64_INL_H_