// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_ #define V8_ARM64_ASSEMBLER_ARM64_INL_H_ #include "src/arm64/assembler-arm64.h" #include "src/assembler.h" #include "src/debug/debug.h" #include "src/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return true; } bool CpuFeatures::SupportsWasmSimd128() { return true; } void RelocInfo::apply(intptr_t delta) { // On arm64 only internal references and immediate branches need extra work. if (RelocInfo::IsInternalReference(rmode_)) { // Absolute code pointer inside code object moves with the code object. intptr_t* p = reinterpret_cast<intptr_t*>(pc_); *p += delta; // Relocate entry. } else { Instruction* instr = reinterpret_cast<Instruction*>(pc_); if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) { Address old_target = reinterpret_cast<Address>(instr->ImmPCOffsetTarget()); Address new_target = old_target - delta; instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(new_target)); } } } inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const { return (reg_size_ == other.reg_size_) && (reg_type_ == other.reg_type_); } inline bool CPURegister::IsZero() const { DCHECK(IsValid()); return IsRegister() && (reg_code_ == kZeroRegCode); } inline bool CPURegister::IsSP() const { DCHECK(IsValid()); return IsRegister() && (reg_code_ == kSPRegInternalCode); } inline void CPURegList::Combine(const CPURegList& other) { DCHECK(IsValid()); DCHECK(other.type() == type_); DCHECK(other.RegisterSizeInBits() == size_); list_ |= other.list(); } inline void CPURegList::Remove(const CPURegList& other) { DCHECK(IsValid()); if (other.type() == type_) { list_ &= ~other.list(); } } inline void CPURegList::Combine(const CPURegister& other) { DCHECK(other.type() == type_); DCHECK(other.SizeInBits() == size_); Combine(other.code()); } inline void CPURegList::Remove(const CPURegister& other1, const CPURegister& other2, const CPURegister& other3, const CPURegister& other4) { if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code()); if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code()); if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code()); if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code()); } inline void CPURegList::Combine(int code) { DCHECK(IsValid()); DCHECK(CPURegister::Create(code, size_, type_).IsValid()); list_ |= (1UL << code); } inline void CPURegList::Remove(int code) { DCHECK(IsValid()); DCHECK(CPURegister::Create(code, size_, type_).IsValid()); list_ &= ~(1UL << code); } inline Register Register::XRegFromCode(unsigned code) { if (code == kSPRegInternalCode) { return sp; } else { DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters)); return Register::Create(code, kXRegSizeInBits); } } inline Register Register::WRegFromCode(unsigned code) { if (code == kSPRegInternalCode) { return wsp; } else { DCHECK_LT(code, static_cast<unsigned>(kNumberOfRegisters)); return Register::Create(code, kWRegSizeInBits); } } inline VRegister VRegister::BRegFromCode(unsigned code) { DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); return VRegister::Create(code, kBRegSizeInBits); } inline VRegister VRegister::HRegFromCode(unsigned code) { DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); return VRegister::Create(code, kHRegSizeInBits); } inline VRegister VRegister::SRegFromCode(unsigned code) { DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); return VRegister::Create(code, kSRegSizeInBits); } inline VRegister VRegister::DRegFromCode(unsigned code) { DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); return VRegister::Create(code, kDRegSizeInBits); } inline VRegister VRegister::QRegFromCode(unsigned code) { DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); return VRegister::Create(code, kQRegSizeInBits); } inline VRegister VRegister::VRegFromCode(unsigned code) { DCHECK_LT(code, static_cast<unsigned>(kNumberOfVRegisters)); return VRegister::Create(code, kVRegSizeInBits); } inline Register CPURegister::W() const { DCHECK(IsRegister()); return Register::WRegFromCode(reg_code_); } inline Register CPURegister::Reg() const { DCHECK(IsRegister()); return Register::Create(reg_code_, reg_size_); } inline VRegister CPURegister::VReg() const { DCHECK(IsVRegister()); return VRegister::Create(reg_code_, reg_size_); } inline Register CPURegister::X() const { DCHECK(IsRegister()); return Register::XRegFromCode(reg_code_); } inline VRegister CPURegister::V() const { DCHECK(IsVRegister()); return VRegister::VRegFromCode(reg_code_); } inline VRegister CPURegister::B() const { DCHECK(IsVRegister()); return VRegister::BRegFromCode(reg_code_); } inline VRegister CPURegister::H() const { DCHECK(IsVRegister()); return VRegister::HRegFromCode(reg_code_); } inline VRegister CPURegister::S() const { DCHECK(IsVRegister()); return VRegister::SRegFromCode(reg_code_); } inline VRegister CPURegister::D() const { DCHECK(IsVRegister()); return VRegister::DRegFromCode(reg_code_); } inline VRegister CPURegister::Q() const { DCHECK(IsVRegister()); return VRegister::QRegFromCode(reg_code_); } // Immediate. // Default initializer is for int types template<typename T> struct ImmediateInitializer { static const bool kIsIntType = true; static inline RelocInfo::Mode rmode_for(T) { return RelocInfo::NONE; } static inline int64_t immediate_for(T t) { STATIC_ASSERT(sizeof(T) <= 8); return t; } }; template<> struct ImmediateInitializer<Smi*> { static const bool kIsIntType = false; static inline RelocInfo::Mode rmode_for(Smi* t) { return RelocInfo::NONE; } static inline int64_t immediate_for(Smi* t) {; return reinterpret_cast<int64_t>(t); } }; template<> struct ImmediateInitializer<ExternalReference> { static const bool kIsIntType = false; static inline RelocInfo::Mode rmode_for(ExternalReference t) { return RelocInfo::EXTERNAL_REFERENCE; } static inline int64_t immediate_for(ExternalReference t) {; return static_cast<int64_t>(t.address()); } }; template<typename T> Immediate::Immediate(Handle<T> value) { InitializeHandle(value); } template<typename T> Immediate::Immediate(T t) : value_(ImmediateInitializer<T>::immediate_for(t)), rmode_(ImmediateInitializer<T>::rmode_for(t)) {} template<typename T> Immediate::Immediate(T t, RelocInfo::Mode rmode) : value_(ImmediateInitializer<T>::immediate_for(t)), rmode_(rmode) { STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType); } // Operand. template<typename T> Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {} template<typename T> Operand::Operand(T t) : immediate_(t), reg_(NoReg) {} template<typename T> Operand::Operand(T t, RelocInfo::Mode rmode) : immediate_(t, rmode), reg_(NoReg) {} Operand::Operand(Register reg, Shift shift, unsigned shift_amount) : immediate_(0), reg_(reg), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits)); DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits)); DCHECK_IMPLIES(reg.IsSP(), shift_amount == 0); } Operand::Operand(Register reg, Extend extend, unsigned shift_amount) : immediate_(0), reg_(reg), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { DCHECK(reg.IsValid()); DCHECK_LE(shift_amount, 4); DCHECK(!reg.IsSP()); // Extend modes SXTX and UXTX require a 64-bit register. DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX))); } bool Operand::IsHeapObjectRequest() const { DCHECK_IMPLIES(heap_object_request_.has_value(), reg_.Is(NoReg)); DCHECK_IMPLIES(heap_object_request_.has_value(), immediate_.rmode() == RelocInfo::EMBEDDED_OBJECT || immediate_.rmode() == RelocInfo::CODE_TARGET); return heap_object_request_.has_value(); } HeapObjectRequest Operand::heap_object_request() const { DCHECK(IsHeapObjectRequest()); return *heap_object_request_; } bool Operand::IsImmediate() const { return reg_.Is(NoReg) && !IsHeapObjectRequest(); } bool Operand::IsShiftedRegister() const { return reg_.IsValid() && (shift_ != NO_SHIFT); } bool Operand::IsExtendedRegister() const { return reg_.IsValid() && (extend_ != NO_EXTEND); } bool Operand::IsZero() const { if (IsImmediate()) { return ImmediateValue() == 0; } else { return reg().IsZero(); } } Operand Operand::ToExtendedRegister() const { DCHECK(IsShiftedRegister()); DCHECK((shift_ == LSL) && (shift_amount_ <= 4)); return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_); } Immediate Operand::immediate_for_heap_object_request() const { DCHECK((heap_object_request().kind() == HeapObjectRequest::kHeapNumber && immediate_.rmode() == RelocInfo::EMBEDDED_OBJECT) || (heap_object_request().kind() == HeapObjectRequest::kCodeStub && immediate_.rmode() == RelocInfo::CODE_TARGET)); return immediate_; } Immediate Operand::immediate() const { DCHECK(IsImmediate()); return immediate_; } int64_t Operand::ImmediateValue() const { DCHECK(IsImmediate()); return immediate_.value(); } RelocInfo::Mode Operand::ImmediateRMode() const { DCHECK(IsImmediate() || IsHeapObjectRequest()); return immediate_.rmode(); } Register Operand::reg() const { DCHECK(IsShiftedRegister() || IsExtendedRegister()); return reg_; } Shift Operand::shift() const { DCHECK(IsShiftedRegister()); return shift_; } Extend Operand::extend() const { DCHECK(IsExtendedRegister()); return extend_; } unsigned Operand::shift_amount() const { DCHECK(IsShiftedRegister() || IsExtendedRegister()); return shift_amount_; } Operand Operand::UntagSmi(Register smi) { DCHECK(smi.Is64Bits()); DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); return Operand(smi, ASR, kSmiShift); } Operand Operand::UntagSmiAndScale(Register smi, int scale) { DCHECK(smi.Is64Bits()); DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize))); DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits()); if (scale > kSmiShift) { return Operand(smi, LSL, scale - kSmiShift); } else if (scale < kSmiShift) { return Operand(smi, ASR, kSmiShift - scale); } return Operand(smi); } MemOperand::MemOperand() : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset), shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) { } MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode), shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) { DCHECK(base.Is64Bits() && !base.IsZero()); } MemOperand::MemOperand(Register base, Register regoffset, Extend extend, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { DCHECK(base.Is64Bits() && !base.IsZero()); DCHECK(!regoffset.IsSP()); DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX)); // SXTX extend mode requires a 64-bit offset register. DCHECK(regoffset.Is64Bits() || (extend != SXTX)); } MemOperand::MemOperand(Register base, Register regoffset, Shift shift, unsigned shift_amount) : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { DCHECK(base.Is64Bits() && !base.IsZero()); DCHECK(regoffset.Is64Bits() && !regoffset.IsSP()); DCHECK(shift == LSL); } MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode) : base_(base), regoffset_(NoReg), addrmode_(addrmode) { DCHECK(base.Is64Bits() && !base.IsZero()); if (offset.IsImmediate()) { offset_ = offset.ImmediateValue(); } else if (offset.IsShiftedRegister()) { DCHECK((addrmode == Offset) || (addrmode == PostIndex)); regoffset_ = offset.reg(); shift_ = offset.shift(); shift_amount_ = offset.shift_amount(); extend_ = NO_EXTEND; offset_ = 0; // These assertions match those in the shifted-register constructor. DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP()); DCHECK(shift_ == LSL); } else { DCHECK(offset.IsExtendedRegister()); DCHECK(addrmode == Offset); regoffset_ = offset.reg(); extend_ = offset.extend(); shift_amount_ = offset.shift_amount(); shift_ = NO_SHIFT; offset_ = 0; // These assertions match those in the extended-register constructor. DCHECK(!regoffset_.IsSP()); DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX)); DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX))); } } bool MemOperand::IsImmediateOffset() const { return (addrmode_ == Offset) && regoffset_.Is(NoReg); } bool MemOperand::IsRegisterOffset() const { return (addrmode_ == Offset) && !regoffset_.Is(NoReg); } bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; } bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; } Operand MemOperand::OffsetAsOperand() const { if (IsImmediateOffset()) { return offset(); } else { DCHECK(IsRegisterOffset()); if (extend() == NO_EXTEND) { return Operand(regoffset(), shift(), shift_amount()); } else { return Operand(regoffset(), extend(), shift_amount()); } } } void Assembler::Unreachable() { #ifdef USE_SIMULATOR debug("UNREACHABLE", __LINE__, BREAK); #else // Crash by branching to 0. lr now points near the fault. Emit(BLR | Rn(xzr)); #endif } Address Assembler::target_pointer_address_at(Address pc) { Instruction* instr = reinterpret_cast<Instruction*>(pc); DCHECK(instr->IsLdrLiteralX()); return reinterpret_cast<Address>(instr->ImmPCOffsetTarget()); } // Read/Modify the code target address in the branch/call instruction at pc. Address Assembler::target_address_at(Address pc, Address constant_pool) { Instruction* instr = reinterpret_cast<Instruction*>(pc); if (instr->IsLdrLiteralX()) { return Memory<Address>(target_pointer_address_at(pc)); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); return reinterpret_cast<Address>(instr->ImmPCOffsetTarget()); } } Handle<Code> Assembler::code_target_object_handle_at(Address pc) { Instruction* instr = reinterpret_cast<Instruction*>(pc); if (instr->IsLdrLiteralX()) { return Handle<Code>(reinterpret_cast<Code**>( Assembler::target_address_at(pc, 0 /* unused */))); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); DCHECK_EQ(instr->ImmPCOffset() % kInstrSize, 0); return GetCodeTarget(instr->ImmPCOffset() >> kInstrSizeLog2); } } Address Assembler::runtime_entry_at(Address pc) { Instruction* instr = reinterpret_cast<Instruction*>(pc); if (instr->IsLdrLiteralX()) { return Assembler::target_address_at(pc, 0 /* unused */); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); return instr->ImmPCOffset() + options().code_range_start; } } Address Assembler::target_address_from_return_address(Address pc) { // Returns the address of the call target from the return address that will // be returned to after a call. // Call sequence on ARM64 is: // ldr ip0, #... @ load from literal pool // blr ip0 Address candidate = pc - 2 * kInstrSize; Instruction* instr = reinterpret_cast<Instruction*>(candidate); USE(instr); DCHECK(instr->IsLdrLiteralX()); return candidate; } int Assembler::deserialization_special_target_size(Address location) { Instruction* instr = reinterpret_cast<Instruction*>(location); if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) { return kSpecialTargetSize; } else { DCHECK_EQ(instr->InstructionBits(), 0); return kPointerSize; } } void Assembler::deserialization_set_special_target_at(Address location, Code* code, Address target) { Instruction* instr = reinterpret_cast<Instruction*>(location); if (instr->IsBranchAndLink() || instr->IsUnconditionalBranch()) { if (target == 0) { // We are simply wiping the target out for serialization. Set the offset // to zero instead. target = location; } instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(target)); Assembler::FlushICache(location, kInstrSize); } else { DCHECK_EQ(instr->InstructionBits(), 0); Memory<Address>(location) = target; // Intuitively, we would think it is necessary to always flush the // instruction cache after patching a target address in the code. However, // in this case, only the constant pool contents change. The instruction // accessing the constant pool remains unchanged, so a flush is not // required. } } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { Memory<Address>(pc) = target; } void Assembler::set_target_address_at(Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { Instruction* instr = reinterpret_cast<Instruction*>(pc); if (instr->IsLdrLiteralX()) { Memory<Address>(target_pointer_address_at(pc)) = target; // Intuitively, we would think it is necessary to always flush the // instruction cache after patching a target address in the code. However, // in this case, only the constant pool contents change. The instruction // accessing the constant pool remains unchanged, so a flush is not // required. } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); if (target == 0) { // We are simply wiping the target out for serialization. Set the offset // to zero instead. target = pc; } instr->SetBranchImmTarget(reinterpret_cast<Instruction*>(target)); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, kInstrSize); } } } int RelocInfo::target_address_size() { if (IsCodedSpecially()) { return Assembler::kSpecialTargetSize; } else { DCHECK(reinterpret_cast<Instruction*>(pc_)->IsLdrLiteralX()); return kPointerSize; } } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) || IsOffHeapTarget(rmode_)); Instruction* instr = reinterpret_cast<Instruction*>(pc_); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like B/BL, where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. // For LDR literal instructions, we can skip up to the constant pool entry // address. We make sure that RelocInfo is ordered by the // target_address_address so that we do not skip over any relocatable // instruction sequences. if (instr->IsLdrLiteralX()) { return constant_pool_entry_address(); } else { DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch()); return reinterpret_cast<Address>(pc_); } } Address RelocInfo::constant_pool_entry_address() { DCHECK(IsInConstantPool()); return Assembler::target_pointer_address_at(pc_); } HeapObject* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return HeapObject::cast(reinterpret_cast<Object*>( Assembler::target_address_at(pc_, constant_pool_))); } Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { if (rmode_ == EMBEDDED_OBJECT) { return Handle<HeapObject>(reinterpret_cast<HeapObject**>( Assembler::target_address_at(pc_, constant_pool_))); } else { DCHECK(IsCodeTarget(rmode_)); return origin->code_target_object_handle_at(pc_); } } void RelocInfo::set_target_object(Heap* heap, HeapObject* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(pc_, constant_pool_, reinterpret_cast<Address>(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) { WriteBarrierForCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); Assembler::set_target_address_at(pc_, constant_pool_, target, icache_flush_mode); } Address RelocInfo::target_internal_reference() { DCHECK(rmode_ == INTERNAL_REFERENCE); return Memory<Address>(pc_); } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE); return pc_; } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return origin->runtime_entry_at(pc_); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) { set_target_address(target, write_barrier_mode, icache_flush_mode); } } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)); if (IsInternalReference(rmode_)) { Memory<Address>(pc_) = kNullAddress; } else { Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); } } template <typename ObjectVisitor> void RelocInfo::Visit(ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(host(), this); } else if (RelocInfo::IsCodeTargetMode(mode)) { visitor->VisitCodeTarget(host(), this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(host(), this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { visitor->VisitInternalReference(host(), this); } else if (RelocInfo::IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(host(), this); } else if (RelocInfo::IsOffHeapTarget(mode)) { visitor->VisitOffHeapTarget(host(), this); } } LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) { DCHECK(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? LDR_x : LDR_w; } else { DCHECK(rt.IsVRegister()); switch (rt.SizeInBits()) { case kBRegSizeInBits: return LDR_b; case kHRegSizeInBits: return LDR_h; case kSRegSizeInBits: return LDR_s; case kDRegSizeInBits: return LDR_d; default: DCHECK(rt.IsQ()); return LDR_q; } } } LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) { DCHECK(rt.IsValid()); if (rt.IsRegister()) { return rt.Is64Bits() ? STR_x : STR_w; } else { DCHECK(rt.IsVRegister()); switch (rt.SizeInBits()) { case kBRegSizeInBits: return STR_b; case kHRegSizeInBits: return STR_h; case kSRegSizeInBits: return STR_s; case kDRegSizeInBits: return STR_d; default: DCHECK(rt.IsQ()); return STR_q; } } } LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt, const CPURegister& rt2) { DCHECK_EQ(STP_w | LoadStorePairLBit, LDP_w); return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) | LoadStorePairLBit); } LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt, const CPURegister& rt2) { DCHECK(AreSameSizeAndType(rt, rt2)); USE(rt2); if (rt.IsRegister()) { return rt.Is64Bits() ? STP_x : STP_w; } else { DCHECK(rt.IsVRegister()); switch (rt.SizeInBits()) { case kSRegSizeInBits: return STP_s; case kDRegSizeInBits: return STP_d; default: DCHECK(rt.IsQ()); return STP_q; } } } LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) { if (rt.IsRegister()) { return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit; } else { DCHECK(rt.IsVRegister()); return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit; } } int Assembler::LinkAndGetInstructionOffsetTo(Label* label) { DCHECK_EQ(kStartOfLabelLinkChain, 0); int offset = LinkAndGetByteOffsetTo(label); DCHECK(IsAligned(offset, kInstrSize)); return offset >> kInstrSizeLog2; } Instr Assembler::Flags(FlagsUpdate S) { if (S == SetFlags) { return 1 << FlagsUpdate_offset; } else if (S == LeaveFlags) { return 0 << FlagsUpdate_offset; } UNREACHABLE(); } Instr Assembler::Cond(Condition cond) { return cond << Condition_offset; } Instr Assembler::ImmPCRelAddress(int imm21) { CHECK(is_int21(imm21)); Instr imm = static_cast<Instr>(truncate_to_int21(imm21)); Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset; Instr immlo = imm << ImmPCRelLo_offset; return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask); } Instr Assembler::ImmUncondBranch(int imm26) { CHECK(is_int26(imm26)); return truncate_to_int26(imm26) << ImmUncondBranch_offset; } Instr Assembler::ImmCondBranch(int imm19) { CHECK(is_int19(imm19)); return truncate_to_int19(imm19) << ImmCondBranch_offset; } Instr Assembler::ImmCmpBranch(int imm19) { CHECK(is_int19(imm19)); return truncate_to_int19(imm19) << ImmCmpBranch_offset; } Instr Assembler::ImmTestBranch(int imm14) { CHECK(is_int14(imm14)); return truncate_to_int14(imm14) << ImmTestBranch_offset; } Instr Assembler::ImmTestBranchBit(unsigned bit_pos) { DCHECK(is_uint6(bit_pos)); // Subtract five from the shift offset, as we need bit 5 from bit_pos. unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5); unsigned b40 = bit_pos << ImmTestBranchBit40_offset; b5 &= ImmTestBranchBit5_mask; b40 &= ImmTestBranchBit40_mask; return b5 | b40; } Instr Assembler::SF(Register rd) { return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits; } Instr Assembler::ImmAddSub(int imm) { DCHECK(IsImmAddSub(imm)); if (is_uint12(imm)) { // No shift required. imm <<= ImmAddSub_offset; } else { imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset); } return imm; } Instr Assembler::ImmS(unsigned imms, unsigned reg_size) { DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) || ((reg_size == kWRegSizeInBits) && is_uint5(imms))); USE(reg_size); return imms << ImmS_offset; } Instr Assembler::ImmR(unsigned immr, unsigned reg_size) { DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) || ((reg_size == kWRegSizeInBits) && is_uint5(immr))); USE(reg_size); DCHECK(is_uint6(immr)); return immr << ImmR_offset; } Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) { DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)); DCHECK(is_uint6(imms)); DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3)); USE(reg_size); return imms << ImmSetBits_offset; } Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) { DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)); DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) || ((reg_size == kWRegSizeInBits) && is_uint5(immr))); USE(reg_size); return immr << ImmRotate_offset; } Instr Assembler::ImmLLiteral(int imm19) { CHECK(is_int19(imm19)); return truncate_to_int19(imm19) << ImmLLiteral_offset; } Instr Assembler::BitN(unsigned bitn, unsigned reg_size) { DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)); DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0)); USE(reg_size); return bitn << BitN_offset; } Instr Assembler::ShiftDP(Shift shift) { DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR); return shift << ShiftDP_offset; } Instr Assembler::ImmDPShift(unsigned amount) { DCHECK(is_uint6(amount)); return amount << ImmDPShift_offset; } Instr Assembler::ExtendMode(Extend extend) { return extend << ExtendMode_offset; } Instr Assembler::ImmExtendShift(unsigned left_shift) { DCHECK_LE(left_shift, 4); return left_shift << ImmExtendShift_offset; } Instr Assembler::ImmCondCmp(unsigned imm) { DCHECK(is_uint5(imm)); return imm << ImmCondCmp_offset; } Instr Assembler::Nzcv(StatusFlags nzcv) { return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset; } Instr Assembler::ImmLSUnsigned(int imm12) { DCHECK(is_uint12(imm12)); return imm12 << ImmLSUnsigned_offset; } Instr Assembler::ImmLS(int imm9) { DCHECK(is_int9(imm9)); return truncate_to_int9(imm9) << ImmLS_offset; } Instr Assembler::ImmLSPair(int imm7, unsigned size) { DCHECK_EQ((imm7 >> size) << size, imm7); int scaled_imm7 = imm7 >> size; DCHECK(is_int7(scaled_imm7)); return truncate_to_int7(scaled_imm7) << ImmLSPair_offset; } Instr Assembler::ImmShiftLS(unsigned shift_amount) { DCHECK(is_uint1(shift_amount)); return shift_amount << ImmShiftLS_offset; } Instr Assembler::ImmException(int imm16) { DCHECK(is_uint16(imm16)); return imm16 << ImmException_offset; } Instr Assembler::ImmSystemRegister(int imm15) { DCHECK(is_uint15(imm15)); return imm15 << ImmSystemRegister_offset; } Instr Assembler::ImmHint(int imm7) { DCHECK(is_uint7(imm7)); return imm7 << ImmHint_offset; } Instr Assembler::ImmBarrierDomain(int imm2) { DCHECK(is_uint2(imm2)); return imm2 << ImmBarrierDomain_offset; } Instr Assembler::ImmBarrierType(int imm2) { DCHECK(is_uint2(imm2)); return imm2 << ImmBarrierType_offset; } unsigned Assembler::CalcLSDataSize(LoadStoreOp op) { DCHECK((LSSize_offset + LSSize_width) == (kInstrSize * 8)); unsigned size = static_cast<Instr>(op >> LSSize_offset); if ((op & LSVector_mask) != 0) { // Vector register memory operations encode the access size in the "size" // and "opc" fields. if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) { size = kQRegSizeLog2; } } return size; } Instr Assembler::ImmMoveWide(int imm) { DCHECK(is_uint16(imm)); return imm << ImmMoveWide_offset; } Instr Assembler::ShiftMoveWide(int shift) { DCHECK(is_uint2(shift)); return shift << ShiftMoveWide_offset; } Instr Assembler::FPType(VRegister fd) { return fd.Is64Bits() ? FP64 : FP32; } Instr Assembler::FPScale(unsigned scale) { DCHECK(is_uint6(scale)); return scale << FPScale_offset; } const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const { return reg.Is64Bits() ? xzr : wzr; } inline void Assembler::CheckBufferSpace() { DCHECK(pc_ < (buffer_ + buffer_size_)); if (buffer_space() < kGap) { GrowBuffer(); } } inline void Assembler::CheckBuffer() { CheckBufferSpace(); if (pc_offset() >= next_veneer_pool_check_) { CheckVeneerPool(false, true); } if (pc_offset() >= next_constant_pool_check_) { CheckConstPool(false, true); } } } // namespace internal } // namespace v8 #endif // V8_ARM64_ASSEMBLER_ARM64_INL_H_