// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARM_CONSTANTS_ARM_H_ #define V8_ARM_CONSTANTS_ARM_H_ #include <stdint.h> #include "src/base/logging.h" #include "src/base/macros.h" #include "src/boxed-float.h" #include "src/globals.h" #include "src/utils.h" // ARM EABI is required. #if defined(__arm__) && !defined(__ARM_EABI__) #error ARM EABI support is required. #endif namespace v8 { namespace internal { // Constant pool marker. // Use UDF, the permanently undefined instruction. const int kConstantPoolMarkerMask = 0xfff000f0; const int kConstantPoolMarker = 0xe7f000f0; const int kConstantPoolLengthMaxMask = 0xffff; inline int EncodeConstantPoolLength(int length) { DCHECK((length & kConstantPoolLengthMaxMask) == length); return ((length & 0xfff0) << 4) | (length & 0xf); } inline int DecodeConstantPoolLength(int instr) { DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker); return ((instr >> 4) & 0xfff0) | (instr & 0xf); } // Number of registers in normal ARM mode. const int kNumRegisters = 16; // VFP support. const int kNumVFPSingleRegisters = 32; const int kNumVFPDoubleRegisters = 32; const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters; // PC is register 15. const int kPCRegister = 15; const int kNoRegister = -1; // Used in embedded constant pool builder - max reach in bits for // various load instructions (unsigned) const int kLdrMaxReachBits = 12; const int kVldrMaxReachBits = 10; // Actual value of root register is offset from the root array's start // to take advantage of negative displacement values. Loads allow a uint12 // value with a separate sign bit (range [-4095, +4095]), so the first root // is still addressable with a single load instruction. constexpr int kRootRegisterBias = 4095; // ----------------------------------------------------------------------------- // Conditions. // Defines constants and accessor classes to assemble, disassemble and // simulate ARM instructions. // // Section references in the code refer to the "ARM Architecture Reference // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) // // Constants for specific fields are defined in their respective named enums. // General constants are in an anonymous enum in class Instr. // Values for the condition field as defined in section A3.2 enum Condition { kNoCondition = -1, eq = 0 << 28, // Z set Equal. ne = 1 << 28, // Z clear Not equal. cs = 2 << 28, // C set Unsigned higher or same. cc = 3 << 28, // C clear Unsigned lower. mi = 4 << 28, // N set Negative. pl = 5 << 28, // N clear Positive or zero. vs = 6 << 28, // V set Overflow. vc = 7 << 28, // V clear No overflow. hi = 8 << 28, // C set, Z clear Unsigned higher. ls = 9 << 28, // C clear or Z set Unsigned lower or same. ge = 10 << 28, // N == V Greater or equal. lt = 11 << 28, // N != V Less than. gt = 12 << 28, // Z clear, N == V Greater than. le = 13 << 28, // Z set or N != V Less then or equal al = 14 << 28, // Always. kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1). kNumberOfConditions = 16, // Aliases. hs = cs, // C set Unsigned higher or same. lo = cc // C clear Unsigned lower. }; inline Condition NegateCondition(Condition cond) { DCHECK(cond != al); return static_cast<Condition>(cond ^ ne); } // ----------------------------------------------------------------------------- // Instructions encoding. // Instr is merely used by the Assembler to distinguish 32bit integers // representing instructions from usual 32 bit values. // Instruction objects are pointers to 32bit values, and provide methods to // access the various ISA fields. typedef int32_t Instr; // Opcodes for Data-processing instructions (instructions with a type 0 and 1) // as defined in section A3.4 enum Opcode { AND = 0 << 21, // Logical AND. EOR = 1 << 21, // Logical Exclusive OR. SUB = 2 << 21, // Subtract. RSB = 3 << 21, // Reverse Subtract. ADD = 4 << 21, // Add. ADC = 5 << 21, // Add with Carry. SBC = 6 << 21, // Subtract with Carry. RSC = 7 << 21, // Reverse Subtract with Carry. TST = 8 << 21, // Test. TEQ = 9 << 21, // Test Equivalence. CMP = 10 << 21, // Compare. CMN = 11 << 21, // Compare Negated. ORR = 12 << 21, // Logical (inclusive) OR. MOV = 13 << 21, // Move. BIC = 14 << 21, // Bit Clear. MVN = 15 << 21 // Move Not. }; // The bits for bit 7-4 for some type 0 miscellaneous instructions. enum MiscInstructionsBits74 { // With bits 22-21 01. BX = 1 << 4, BXJ = 2 << 4, BLX = 3 << 4, BKPT = 7 << 4, // With bits 22-21 11. CLZ = 1 << 4 }; // Instruction encoding bits and masks. enum { H = 1 << 5, // Halfword (or byte). S6 = 1 << 6, // Signed (or unsigned). L = 1 << 20, // Load (or store). S = 1 << 20, // Set condition code (or leave unchanged). W = 1 << 21, // Writeback base register (or leave unchanged). A = 1 << 21, // Accumulate in multiply instruction (or not). B = 1 << 22, // Unsigned byte (or word). N = 1 << 22, // Long (or short). U = 1 << 23, // Positive (or negative) offset/index. P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing). I = 1 << 25, // Immediate shifter operand (or not). B0 = 1 << 0, B4 = 1 << 4, B5 = 1 << 5, B6 = 1 << 6, B7 = 1 << 7, B8 = 1 << 8, B9 = 1 << 9, B10 = 1 << 10, B12 = 1 << 12, B16 = 1 << 16, B17 = 1 << 17, B18 = 1 << 18, B19 = 1 << 19, B20 = 1 << 20, B21 = 1 << 21, B22 = 1 << 22, B23 = 1 << 23, B24 = 1 << 24, B25 = 1 << 25, B26 = 1 << 26, B27 = 1 << 27, B28 = 1 << 28, // Instruction bit masks. kCondMask = 15 << 28, kALUMask = 0x6f << 21, kRdMask = 15 << 12, // In str instruction. kCoprocessorMask = 15 << 8, kOpCodeMask = 15 << 21, // In data-processing instructions. kImm24Mask = (1 << 24) - 1, kImm16Mask = (1 << 16) - 1, kImm8Mask = (1 << 8) - 1, kOff12Mask = (1 << 12) - 1, kOff8Mask = (1 << 8) - 1 }; enum BarrierOption { OSHLD = 0x1, OSHST = 0x2, OSH = 0x3, NSHLD = 0x5, NSHST = 0x6, NSH = 0x7, ISHLD = 0x9, ISHST = 0xa, ISH = 0xb, LD = 0xd, ST = 0xe, SY = 0xf, }; // ----------------------------------------------------------------------------- // Addressing modes and instruction variants. // Condition code updating mode. enum SBit { SetCC = 1 << 20, // Set condition code. LeaveCC = 0 << 20 // Leave condition code unchanged. }; // Status register selection. enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 }; // Shifter types for Data-processing operands as defined in section A5.1.2. enum ShiftOp { LSL = 0 << 5, // Logical shift left. LSR = 1 << 5, // Logical shift right. ASR = 2 << 5, // Arithmetic shift right. ROR = 3 << 5, // Rotate right. // RRX is encoded as ROR with shift_imm == 0. // Use a special code to make the distinction. The RRX ShiftOp is only used // as an argument, and will never actually be encoded. The Assembler will // detect it and emit the correct ROR shift operand with shift_imm == 0. RRX = -1, kNumberOfShifts = 4 }; // Status register fields. enum SRegisterField { CPSR_c = CPSR | 1 << 16, CPSR_x = CPSR | 1 << 17, CPSR_s = CPSR | 1 << 18, CPSR_f = CPSR | 1 << 19, SPSR_c = SPSR | 1 << 16, SPSR_x = SPSR | 1 << 17, SPSR_s = SPSR | 1 << 18, SPSR_f = SPSR | 1 << 19 }; // Status register field mask (or'ed SRegisterField enum values). typedef uint32_t SRegisterFieldMask; // Memory operand addressing mode. enum AddrMode { // Bit encoding P U W. Offset = (8|4|0) << 21, // Offset (without writeback to base). PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback. PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback. NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base). NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback. NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback. }; // Load/store multiple addressing mode. enum BlockAddrMode { // Bit encoding P U W . da = (0|0|0) << 21, // Decrement after. ia = (0|4|0) << 21, // Increment after. db = (8|0|0) << 21, // Decrement before. ib = (8|4|0) << 21, // Increment before. da_w = (0|0|1) << 21, // Decrement after with writeback to base. ia_w = (0|4|1) << 21, // Increment after with writeback to base. db_w = (8|0|1) << 21, // Decrement before with writeback to base. ib_w = (8|4|1) << 21, // Increment before with writeback to base. // Alias modes for comparison when writeback does not matter. da_x = (0|0|0) << 21, // Decrement after. ia_x = (0|4|0) << 21, // Increment after. db_x = (8|0|0) << 21, // Decrement before. ib_x = (8|4|0) << 21, // Increment before. kBlockAddrModeMask = (8|4|1) << 21 }; // Coprocessor load/store operand size. enum LFlag { Long = 1 << 22, // Long load/store coprocessor. Short = 0 << 22 // Short load/store coprocessor. }; // Neon sizes. enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 }; // NEON data type enum NeonDataType { NeonS8 = 0, NeonS16 = 1, NeonS32 = 2, // Gap to make it easier to extract U and size. NeonU8 = 4, NeonU16 = 5, NeonU32 = 6 }; inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; } inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; } // Convert sizes to data types (U bit is clear). inline NeonDataType NeonSizeToDataType(NeonSize size) { DCHECK_NE(Neon64, size); return static_cast<NeonDataType>(size); } inline NeonSize NeonDataTypeToSize(NeonDataType dt) { return static_cast<NeonSize>(NeonSz(dt)); } enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; // ----------------------------------------------------------------------------- // Supervisor Call (svc) specific support. // Special Software Interrupt codes when used in the presence of the ARM // simulator. // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. enum SoftwareInterruptCodes { // transition to C code kCallRtRedirected = 0x10, // break point kBreakpoint = 0x20, // stop kStopCode = 1 << 23 }; const uint32_t kStopCodeMask = kStopCode - 1; const uint32_t kMaxStopCode = kStopCode - 1; const int32_t kDefaultStopCode = -1; // Type of VFP register. Determines register encoding. enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1, kSimd128Precision = 2 }; // VFP FPSCR constants. enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 }; // This mask does not include the "inexact" or "input denormal" cumulative // exceptions flags, because we usually don't want to check for it. const uint32_t kVFPExceptionMask = 0xf; const uint32_t kVFPInvalidOpExceptionBit = 1 << 0; const uint32_t kVFPOverflowExceptionBit = 1 << 2; const uint32_t kVFPUnderflowExceptionBit = 1 << 3; const uint32_t kVFPInexactExceptionBit = 1 << 4; const uint32_t kVFPFlushToZeroMask = 1 << 24; const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; const uint32_t kVFPNConditionFlagBit = 1 << 31; const uint32_t kVFPZConditionFlagBit = 1 << 30; const uint32_t kVFPCConditionFlagBit = 1 << 29; const uint32_t kVFPVConditionFlagBit = 1 << 28; // VFP rounding modes. See ARM DDI 0406B Page A2-29. enum VFPRoundingMode { RN = 0 << 22, // Round to Nearest. RP = 1 << 22, // Round towards Plus Infinity. RM = 2 << 22, // Round towards Minus Infinity. RZ = 3 << 22, // Round towards zero. // Aliases. kRoundToNearest = RN, kRoundToPlusInf = RP, kRoundToMinusInf = RM, kRoundToZero = RZ }; const uint32_t kVFPRoundingModeMask = 3 << 22; enum CheckForInexactConversion { kCheckForInexactConversion, kDontCheckForInexactConversion }; // ----------------------------------------------------------------------------- // Hints. // Branch hints are not used on the ARM. They are defined so that they can // appear in shared function signatures, but will be ignored in ARM // implementations. enum Hint { no_hint }; // Hints are not used on the arm. Negating is trivial. inline Hint NegateHint(Hint ignored) { return no_hint; } // ----------------------------------------------------------------------------- // Instruction abstraction. // The class Instruction enables access to individual fields defined in the ARM // architecture instruction set encoding as described in figure A3-1. // Note that the Assembler uses typedef int32_t Instr. // // Example: Test whether the instruction at ptr does set the condition code // bits. // // bool InstructionSetsConditionCodes(byte* ptr) { // Instruction* instr = Instruction::At(ptr); // int type = instr->TypeValue(); // return ((type == 0) || (type == 1)) && instr->HasS(); // } // constexpr uint8_t kInstrSize = 4; constexpr uint8_t kInstrSizeLog2 = 2; class Instruction { public: // Difference between address of current opcode and value read from pc // register. static constexpr int kPcLoadDelta = 8; // Helper macro to define static accessors. // We use the cast to char* trick to bypass the strict anti-aliasing rules. #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ static inline return_type Name(Instr instr) { \ char* temp = reinterpret_cast<char*>(&instr); \ return reinterpret_cast<Instruction*>(temp)->Name(); \ } #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) // Get the raw instruction bits. inline Instr InstructionBits() const { return *reinterpret_cast<const Instr*>(this); } // Set the raw instruction bits to value. inline void SetInstructionBits(Instr value) { *reinterpret_cast<Instr*>(this) = value; } // Extract a single bit from the instruction bits and return it as bit 0 in // the result. inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } // Extract a bit field <hi:lo> from the instruction bits and return it in the // least-significant bits of the result. inline int Bits(int hi, int lo) const { return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); } // Read a bit field <hi:lo>, leaving its position unchanged in the result. inline int BitField(int hi, int lo) const { return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); } // Static support. // Extract a single bit from the instruction bits and return it as bit 0 in // the result. static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; } // Extract a bit field <hi:lo> from the instruction bits and return it in the // least-significant bits of the result. static inline int Bits(Instr instr, int hi, int lo) { return (instr >> lo) & ((2 << (hi - lo)) - 1); } // Read a bit field <hi:lo>, leaving its position unchanged in the result. static inline int BitField(Instr instr, int hi, int lo) { return instr & (((2 << (hi - lo)) - 1) << lo); } // Accessors for the different named fields used in the ARM encoding. // The naming of these accessor corresponds to figure A3-1. // // Two kind of accessors are declared: // - <Name>Field() will return the raw field, i.e. the field's bits at their // original place in the instruction encoding. // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as // 0xC0810002 ConditionField(instr) will return 0xC0000000. // - <Name>Value() will return the field value, shifted back to bit 0. // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as // 0xC0810002 ConditionField(instr) will return 0xC. // Generally applicable fields inline int ConditionValue() const { return Bits(31, 28); } inline Condition ConditionField() const { return static_cast<Condition>(BitField(31, 28)); } DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue); DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField); inline int TypeValue() const { return Bits(27, 25); } inline int SpecialValue() const { return Bits(27, 23); } inline int RnValue() const { return Bits(19, 16); } DECLARE_STATIC_ACCESSOR(RnValue); inline int RdValue() const { return Bits(15, 12); } DECLARE_STATIC_ACCESSOR(RdValue); inline int CoprocessorValue() const { return Bits(11, 8); } // Support for VFP. // Vn(19-16) | Vd(15-12) | Vm(3-0) inline int VnValue() const { return Bits(19, 16); } inline int VmValue() const { return Bits(3, 0); } inline int VdValue() const { return Bits(15, 12); } inline int NValue() const { return Bit(7); } inline int MValue() const { return Bit(5); } inline int DValue() const { return Bit(22); } inline int RtValue() const { return Bits(15, 12); } inline int PValue() const { return Bit(24); } inline int UValue() const { return Bit(23); } inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } inline int Opc2Value() const { return Bits(19, 16); } inline int Opc3Value() const { return Bits(7, 6); } inline int SzValue() const { return Bit(8); } inline int VLValue() const { return Bit(20); } inline int VCValue() const { return Bit(8); } inline int VAValue() const { return Bits(23, 21); } inline int VBValue() const { return Bits(6, 5); } inline int VFPNRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 16, 7); } inline int VFPMRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 0, 5); } inline int VFPDRegValue(VFPRegPrecision pre) { return VFPGlueRegValue(pre, 12, 22); } // Fields used in Data processing instructions inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } inline Opcode OpcodeField() const { return static_cast<Opcode>(BitField(24, 21)); } inline int SValue() const { return Bit(20); } // with register inline int RmValue() const { return Bits(3, 0); } DECLARE_STATIC_ACCESSOR(RmValue); inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } inline ShiftOp ShiftField() const { return static_cast<ShiftOp>(BitField(6, 5)); } inline int RegShiftValue() const { return Bit(4); } inline int RsValue() const { return Bits(11, 8); } inline int ShiftAmountValue() const { return Bits(11, 7); } // with immediate inline int RotateValue() const { return Bits(11, 8); } DECLARE_STATIC_ACCESSOR(RotateValue); inline int Immed8Value() const { return Bits(7, 0); } DECLARE_STATIC_ACCESSOR(Immed8Value); inline int Immed4Value() const { return Bits(19, 16); } inline int ImmedMovwMovtValue() const { return Immed4Value() << 12 | Offset12Value(); } DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue); // Fields used in Load/Store instructions inline int PUValue() const { return Bits(24, 23); } inline int PUField() const { return BitField(24, 23); } inline int BValue() const { return Bit(22); } inline int WValue() const { return Bit(21); } inline int LValue() const { return Bit(20); } // with register uses same fields as Data processing instructions above // with immediate inline int Offset12Value() const { return Bits(11, 0); } // multiple inline int RlistValue() const { return Bits(15, 0); } // extra loads and stores inline int SignValue() const { return Bit(6); } inline int HValue() const { return Bit(5); } inline int ImmedHValue() const { return Bits(11, 8); } inline int ImmedLValue() const { return Bits(3, 0); } // Fields used in Branch instructions inline int LinkValue() const { return Bit(24); } inline int SImmed24Value() const { return signed_bitextract_32(23, 0, InstructionBits()); } bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; } int GetBranchOffset() { DCHECK(IsBranch()); return SImmed24Value() * kInstrSize; } void SetBranchOffset(int32_t branch_offset) { DCHECK(IsBranch()); DCHECK_EQ(branch_offset % kInstrSize, 0); int32_t new_imm24 = branch_offset / kInstrSize; CHECK(is_int24(new_imm24)); SetInstructionBits((InstructionBits() & ~(kImm24Mask)) | (new_imm24 & kImm24Mask)); } // Fields used in Software interrupt instructions inline SoftwareInterruptCodes SvcValue() const { return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); } // Test for special encodings of type 0 instructions (extra loads and stores, // as well as multiplications). inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } // Test for miscellaneous instructions encodings of type 0 instructions. inline bool IsMiscType0() const { return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && ((Bit(7) == 0)); } // Test for nop-like instructions which fall under type 1. inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; } // Test for a stop instruction. inline bool IsStop() const { return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); } // Special accessors that test for existence of a value. inline bool HasS() const { return SValue() == 1; } inline bool HasB() const { return BValue() == 1; } inline bool HasW() const { return WValue() == 1; } inline bool HasL() const { return LValue() == 1; } inline bool HasU() const { return UValue() == 1; } inline bool HasSign() const { return SignValue() == 1; } inline bool HasH() const { return HValue() == 1; } inline bool HasLink() const { return LinkValue() == 1; } // Decode the double immediate from a vmov instruction. Float64 DoubleImmedVmov() const; // Instructions are read of out a code stream. The only way to get a // reference to an instruction is to convert a pointer. There is no way // to allocate or create instances of class Instruction. // Use the At(pc) function to create references to Instruction. static Instruction* At(Address pc) { return reinterpret_cast<Instruction*>(pc); } private: // Join split register codes, depending on register precision. // four_bit is the position of the least-significant bit of the four // bit specifier. one_bit is the position of the additional single bit // specifier. inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { if (pre == kSinglePrecision) { return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); } else { int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); if (pre == kDoublePrecision) { return reg_num; } DCHECK_EQ(kSimd128Precision, pre); DCHECK_EQ(reg_num & 1, 0); return reg_num / 2; } } // We need to prevent the creation of instances of class Instruction. DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); }; // Helper functions for converting between register numbers and names. class Registers { public: // Return the name of the register. static const char* Name(int reg); // Lookup the register number for the name provided. static int Number(const char* name); struct RegisterAlias { int reg; const char* name; }; private: static const char* names_[kNumRegisters]; static const RegisterAlias aliases_[]; }; // Helper functions for converting between VFP register numbers and names. class VFPRegisters { public: // Return the name of the register. static const char* Name(int reg, bool is_double); // Lookup the register number for the name provided. // Set flag pointed by is_double to true if register // is double-precision. static int Number(const char* name, bool* is_double); private: static const char* names_[kNumVFPRegisters]; }; // Relative jumps on ARM can address ±32 MB. constexpr size_t kMaxPCRelativeCodeRangeInMB = 32; } // namespace internal } // namespace v8 #endif // V8_ARM_CONSTANTS_ARM_H_