// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_ARM_ASSEMBLER_ARM_INL_H_ #define V8_ARM_ASSEMBLER_ARM_INL_H_ #include "src/arm/assembler-arm.h" #include "src/assembler.h" #include "src/debug/debug.h" #include "src/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return true; } bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(NEON); } int DoubleRegister::NumRegisters() { return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16; } void RelocInfo::apply(intptr_t delta) { if (RelocInfo::IsInternalReference(rmode_)) { // absolute code pointer inside code object moves with the code object. int32_t* p = reinterpret_cast<int32_t*>(pc_); *p += delta; // relocate entry } else if (RelocInfo::IsRelativeCodeTarget(rmode_)) { Instruction* branch = Instruction::At(pc_); int32_t branch_offset = branch->GetBranchOffset() + delta; branch->SetBranchOffset(branch_offset); } } Address RelocInfo::target_address() { DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) || IsOffHeapTarget(rmode_)); if (Assembler::IsMovW(Memory<int32_t>(pc_))) { return pc_; } else { DCHECK(Assembler::IsLdrPcImmediateOffset(Memory<int32_t>(pc_))); return constant_pool_entry_address(); } } Address RelocInfo::constant_pool_entry_address() { DCHECK(IsInConstantPool()); return Assembler::constant_pool_entry_address(pc_, constant_pool_); } int RelocInfo::target_address_size() { return kPointerSize; } HeapObject* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return HeapObject::cast(reinterpret_cast<Object*>( Assembler::target_address_at(pc_, constant_pool_))); } Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { if (IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT) { return Handle<HeapObject>(reinterpret_cast<HeapObject**>( Assembler::target_address_at(pc_, constant_pool_))); } DCHECK(IsRelativeCodeTarget(rmode_)); return origin->relative_code_target_object_handle_at(pc_); } void RelocInfo::set_target_object(Heap* heap, HeapObject* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(pc_, constant_pool_, reinterpret_cast<Address>(target), icache_flush_mode); if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) { WriteBarrierForCode(host(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); Assembler::set_target_address_at(pc_, constant_pool_, target, icache_flush_mode); } Address RelocInfo::target_internal_reference() { DCHECK(rmode_ == INTERNAL_REFERENCE); return Memory<Address>(pc_); } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE); return pc_; } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return target_address(); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) set_target_address(target, write_barrier_mode, icache_flush_mode); } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::WipeOut() { DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)); if (IsInternalReference(rmode_)) { Memory<Address>(pc_) = kNullAddress; } else { Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); } } Handle<Code> Assembler::relative_code_target_object_handle_at( Address pc) const { Instruction* branch = Instruction::At(pc); int code_target_index = branch->GetBranchOffset() / kInstrSize; return GetCodeTarget(code_target_index); } template <typename ObjectVisitor> void RelocInfo::Visit(ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(host(), this); } else if (RelocInfo::IsCodeTargetMode(mode)) { visitor->VisitCodeTarget(host(), this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(host(), this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { visitor->VisitInternalReference(host(), this); } else if (RelocInfo::IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(host(), this); } else if (RelocInfo::IsOffHeapTarget(mode)) { visitor->VisitOffHeapTarget(host(), this); } } Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) : rmode_(rmode) { value_.immediate = immediate; } Operand Operand::Zero() { return Operand(static_cast<int32_t>(0)); } Operand::Operand(const ExternalReference& f) : rmode_(RelocInfo::EXTERNAL_REFERENCE) { value_.immediate = static_cast<int32_t>(f.address()); } Operand::Operand(Smi* value) : rmode_(RelocInfo::NONE) { value_.immediate = reinterpret_cast<intptr_t>(value); } Operand::Operand(Register rm) : rm_(rm), shift_op_(LSL), shift_imm_(0) {} void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } MaybeCheckConstPool(); } void Assembler::emit(Instr x) { CheckBuffer(); *reinterpret_cast<Instr*>(pc_) = x; pc_ += kInstrSize; } Address Assembler::target_address_from_return_address(Address pc) { // Returns the address of the call target from the return address that will // be returned to after a call. // Call sequence on V7 or later is: // movw ip, #... @ call address low 16 // movt ip, #... @ call address high 16 // blx ip // @ return address // For V6 when the constant pool is unavailable, it is: // mov ip, #... @ call address low 8 // orr ip, ip, #... @ call address 2nd 8 // orr ip, ip, #... @ call address 3rd 8 // orr ip, ip, #... @ call address high 8 // blx ip // @ return address // In cases that need frequent patching, the address is in the // constant pool. It could be a small constant pool load: // ldr ip, [pc, #...] @ call address // blx ip // @ return address Address candidate = pc - 2 * kInstrSize; Instr candidate_instr(Memory<int32_t>(candidate)); if (IsLdrPcImmediateOffset(candidate_instr)) { return candidate; } else { if (CpuFeatures::IsSupported(ARMv7)) { candidate -= 1 * kInstrSize; DCHECK(IsMovW(Memory<int32_t>(candidate)) && IsMovT(Memory<int32_t>(candidate + kInstrSize))); } else { candidate -= 3 * kInstrSize; DCHECK(IsMovImmed(Memory<int32_t>(candidate)) && IsOrrImmed(Memory<int32_t>(candidate + kInstrSize)) && IsOrrImmed(Memory<int32_t>(candidate + 2 * kInstrSize)) && IsOrrImmed(Memory<int32_t>(candidate + 3 * kInstrSize))); } return candidate; } } Address Assembler::return_address_from_call_start(Address pc) { if (IsLdrPcImmediateOffset(Memory<int32_t>(pc))) { // Load from constant pool, small section. return pc + kInstrSize * 2; } else { if (CpuFeatures::IsSupported(ARMv7)) { DCHECK(IsMovW(Memory<int32_t>(pc))); DCHECK(IsMovT(Memory<int32_t>(pc + kInstrSize))); // A movw / movt load immediate. return pc + kInstrSize * 3; } else { DCHECK(IsMovImmed(Memory<int32_t>(pc))); DCHECK(IsOrrImmed(Memory<int32_t>(pc + kInstrSize))); DCHECK(IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize))); DCHECK(IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); // A mov / orr load immediate. return pc + kInstrSize * 5; } } } void Assembler::deserialization_set_special_target_at( Address constant_pool_entry, Code* code, Address target) { Memory<Address>(constant_pool_entry) = target; } int Assembler::deserialization_special_target_size(Address location) { return kSpecialTargetSize; } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { Memory<Address>(pc) = target; } bool Assembler::is_constant_pool_load(Address pc) { return IsLdrPcImmediateOffset(Memory<int32_t>(pc)); } Address Assembler::constant_pool_entry_address(Address pc, Address constant_pool) { DCHECK(Assembler::IsLdrPcImmediateOffset(Memory<int32_t>(pc))); Instr instr = Memory<int32_t>(pc); return pc + GetLdrRegisterImmediateOffset(instr) + Instruction::kPcLoadDelta; } Address Assembler::target_address_at(Address pc, Address constant_pool) { if (is_constant_pool_load(pc)) { // This is a constant pool lookup. Return the value in the constant pool. return Memory<Address>(constant_pool_entry_address(pc, constant_pool)); } else if (CpuFeatures::IsSupported(ARMv7) && IsMovW(Memory<int32_t>(pc))) { // This is an movw / movt immediate load. Return the immediate. DCHECK(IsMovW(Memory<int32_t>(pc)) && IsMovT(Memory<int32_t>(pc + kInstrSize))); Instruction* movw_instr = Instruction::At(pc); Instruction* movt_instr = Instruction::At(pc + kInstrSize); return static_cast<Address>((movt_instr->ImmedMovwMovtValue() << 16) | movw_instr->ImmedMovwMovtValue()); } else if (IsMovImmed(Memory<int32_t>(pc))) { // This is an mov / orr immediate load. Return the immediate. DCHECK(IsMovImmed(Memory<int32_t>(pc)) && IsOrrImmed(Memory<int32_t>(pc + kInstrSize)) && IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize)) && IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); Instr mov_instr = instr_at(pc); Instr orr_instr_1 = instr_at(pc + kInstrSize); Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize); Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize); Address ret = static_cast<Address>( DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) | DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3)); return ret; } else { Instruction* branch = Instruction::At(pc); int32_t delta = branch->GetBranchOffset(); return pc + delta + Instruction::kPcLoadDelta; } } void Assembler::set_target_address_at(Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { if (is_constant_pool_load(pc)) { // This is a constant pool lookup. Update the entry in the constant pool. Memory<Address>(constant_pool_entry_address(pc, constant_pool)) = target; // Intuitively, we would think it is necessary to always flush the // instruction cache after patching a target address in the code as follows: // Assembler::FlushICache(pc, sizeof(target)); // However, on ARM, no instruction is actually patched in the case // of embedded constants of the form: // ldr ip, [pp, #...] // since the instruction accessing this address in the constant pool remains // unchanged. } else if (CpuFeatures::IsSupported(ARMv7) && IsMovW(Memory<int32_t>(pc))) { // This is an movw / movt immediate load. Patch the immediate embedded in // the instructions. DCHECK(IsMovW(Memory<int32_t>(pc))); DCHECK(IsMovT(Memory<int32_t>(pc + kInstrSize))); uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc); uint32_t immediate = static_cast<uint32_t>(target); instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF); instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16); DCHECK(IsMovW(Memory<int32_t>(pc))); DCHECK(IsMovT(Memory<int32_t>(pc + kInstrSize))); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, 2 * kInstrSize); } } else if (IsMovImmed(Memory<int32_t>(pc))) { // This is an mov / orr immediate load. Patch the immediate embedded in // the instructions. DCHECK(IsMovImmed(Memory<int32_t>(pc)) && IsOrrImmed(Memory<int32_t>(pc + kInstrSize)) && IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize)) && IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc); uint32_t immediate = static_cast<uint32_t>(target); instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask); instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8)); instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16)); instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24)); DCHECK(IsMovImmed(Memory<int32_t>(pc)) && IsOrrImmed(Memory<int32_t>(pc + kInstrSize)) && IsOrrImmed(Memory<int32_t>(pc + 2 * kInstrSize)) && IsOrrImmed(Memory<int32_t>(pc + 3 * kInstrSize))); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, 4 * kInstrSize); } } else { intptr_t branch_offset = target - pc - Instruction::kPcLoadDelta; Instruction* branch = Instruction::At(pc); branch->SetBranchOffset(branch_offset); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(pc, kInstrSize); } } } EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } template <typename T> bool UseScratchRegisterScope::CanAcquireVfp() const { VfpRegList* available = assembler_->GetScratchVfpRegisterList(); DCHECK_NOT_NULL(available); for (int index = 0; index < T::kNumRegisters; index++) { T reg = T::from_code(index); uint64_t mask = reg.ToVfpRegList(); if ((*available & mask) == mask) { return true; } } return false; } template <typename T> T UseScratchRegisterScope::AcquireVfp() { VfpRegList* available = assembler_->GetScratchVfpRegisterList(); DCHECK_NOT_NULL(available); for (int index = 0; index < T::kNumRegisters; index++) { T reg = T::from_code(index); uint64_t mask = reg.ToVfpRegList(); if ((*available & mask) == mask) { *available &= ~mask; return reg; } } UNREACHABLE(); } } // namespace internal } // namespace v8 #endif // V8_ARM_ASSEMBLER_ARM_INL_H_