// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd * Author: Eric Gao <eric.gao@rock-chips.com> */ #include <common.h> #include <clk.h> #include <display.h> #include <dm.h> #include <fdtdec.h> #include <panel.h> #include <regmap.h> #include "rk_mipi.h" #include <syscon.h> #include <asm/gpio.h> #include <asm/hardware.h> #include <asm/io.h> #include <dm/uclass-internal.h> #include <linux/kernel.h> #include <asm/arch/clock.h> #include <asm/arch/cru_rk3399.h> #include <asm/arch/grf_rk3399.h> #include <asm/arch/rockchip_mipi_dsi.h> DECLARE_GLOBAL_DATA_PTR; int rk_mipi_read_timing(struct udevice *dev, struct display_timing *timing) { int ret; ret = fdtdec_decode_display_timing(gd->fdt_blob, dev_of_offset(dev), 0, timing); if (ret) { debug("%s: Failed to decode display timing (ret=%d)\n", __func__, ret); return -EINVAL; } return 0; } /* * Register write function used only for mipi dsi controller. * Parameter: * @regs: mipi controller address * @reg: combination of regaddr(16bit)|bitswidth(8bit)|offset(8bit) you can * use define in rk_mipi.h directly for this parameter * @val: value that will be write to specified bits of register */ static void rk_mipi_dsi_write(uintptr_t regs, u32 reg, u32 val) { u32 dat; u32 mask; u32 offset = (reg >> OFFSET_SHIFT) & 0xff; u32 bits = (reg >> BITS_SHIFT) & 0xff; uintptr_t addr = (reg >> ADDR_SHIFT) + regs; /* Mask for specifiled bits,the corresponding bits will be clear */ mask = ~((0xffffffff << offset) & (0xffffffff >> (32 - offset - bits))); /* Make sure val in the available range */ val &= ~(0xffffffff << bits); /* Get register's original val */ dat = readl(addr); /* Clear specified bits */ dat &= mask; /* Fill specified bits */ dat |= val << offset; writel(dat, addr); } int rk_mipi_dsi_enable(struct udevice *dev, const struct display_timing *timing) { int node, timing_node; int val; struct rk_mipi_priv *priv = dev_get_priv(dev); uintptr_t regs = priv->regs; u32 txbyte_clk = priv->txbyte_clk; u32 txesc_clk = priv->txesc_clk; txesc_clk = txbyte_clk/(txbyte_clk/txesc_clk + 1); /* Set Display timing parameter */ rk_mipi_dsi_write(regs, VID_HSA_TIME, timing->hsync_len.typ); rk_mipi_dsi_write(regs, VID_HBP_TIME, timing->hback_porch.typ); rk_mipi_dsi_write(regs, VID_HLINE_TIME, (timing->hsync_len.typ + timing->hback_porch.typ + timing->hactive.typ + timing->hfront_porch.typ)); rk_mipi_dsi_write(regs, VID_VSA_LINES, timing->vsync_len.typ); rk_mipi_dsi_write(regs, VID_VBP_LINES, timing->vback_porch.typ); rk_mipi_dsi_write(regs, VID_VFP_LINES, timing->vfront_porch.typ); rk_mipi_dsi_write(regs, VID_ACTIVE_LINES, timing->vactive.typ); /* Set Signal Polarity */ val = (timing->flags & DISPLAY_FLAGS_HSYNC_LOW) ? 1 : 0; rk_mipi_dsi_write(regs, HSYNC_ACTIVE_LOW, val); val = (timing->flags & DISPLAY_FLAGS_VSYNC_LOW) ? 1 : 0; rk_mipi_dsi_write(regs, VSYNC_ACTIVE_LOW, val); val = (timing->flags & DISPLAY_FLAGS_DE_LOW) ? 1 : 0; rk_mipi_dsi_write(regs, DISPLAY_FLAGS_DE_LOW, val); val = (timing->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) ? 1 : 0; rk_mipi_dsi_write(regs, COLORM_ACTIVE_LOW, val); /* Set video mode */ rk_mipi_dsi_write(regs, CMD_VIDEO_MODE, VIDEO_MODE); /* Set video mode transmission type as burst mode */ rk_mipi_dsi_write(regs, VID_MODE_TYPE, BURST_MODE); /* Set pix num in a video package */ rk_mipi_dsi_write(regs, VID_PKT_SIZE, 0x4b0); /* Set dpi color coding depth 24 bit */ timing_node = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev), "display-timings"); node = fdt_first_subnode(gd->fdt_blob, timing_node); val = fdtdec_get_int(gd->fdt_blob, node, "bits-per-pixel", -1); switch (val) { case 16: rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_16BIT_CFG_1); break; case 24: rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT); break; case 30: rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_30BIT); break; default: rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT); } /* Enable low power mode */ rk_mipi_dsi_write(regs, LP_CMD_EN, 1); rk_mipi_dsi_write(regs, LP_HFP_EN, 1); rk_mipi_dsi_write(regs, LP_VACT_EN, 1); rk_mipi_dsi_write(regs, LP_VFP_EN, 1); rk_mipi_dsi_write(regs, LP_VBP_EN, 1); rk_mipi_dsi_write(regs, LP_VSA_EN, 1); /* Division for timeout counter clk */ rk_mipi_dsi_write(regs, TO_CLK_DIVISION, 0x0a); /* Tx esc clk division from txbyte clk */ rk_mipi_dsi_write(regs, TX_ESC_CLK_DIVISION, txbyte_clk/txesc_clk); /* Timeout count for hs<->lp transation between Line period */ rk_mipi_dsi_write(regs, HSTX_TO_CNT, 0x3e8); /* Phy State transfer timing */ rk_mipi_dsi_write(regs, PHY_STOP_WAIT_TIME, 32); rk_mipi_dsi_write(regs, PHY_TXREQUESTCLKHS, 1); rk_mipi_dsi_write(regs, PHY_HS2LP_TIME, 0x14); rk_mipi_dsi_write(regs, PHY_LP2HS_TIME, 0x10); rk_mipi_dsi_write(regs, MAX_RD_TIME, 0x2710); /* Power on */ rk_mipi_dsi_write(regs, SHUTDOWNZ, 1); return 0; } /* rk mipi dphy write function. It is used to write test data to dphy */ static void rk_mipi_phy_write(uintptr_t regs, unsigned char test_code, unsigned char *test_data, unsigned char size) { int i = 0; /* Write Test code */ rk_mipi_dsi_write(regs, PHY_TESTCLK, 1); rk_mipi_dsi_write(regs, PHY_TESTDIN, test_code); rk_mipi_dsi_write(regs, PHY_TESTEN, 1); rk_mipi_dsi_write(regs, PHY_TESTCLK, 0); rk_mipi_dsi_write(regs, PHY_TESTEN, 0); /* Write Test data */ for (i = 0; i < size; i++) { rk_mipi_dsi_write(regs, PHY_TESTCLK, 0); rk_mipi_dsi_write(regs, PHY_TESTDIN, test_data[i]); rk_mipi_dsi_write(regs, PHY_TESTCLK, 1); } } /* * Mipi dphy config function. Calculate the suitable prediv, feedback div, * fsfreqrang value ,cap ,lpf and so on according to the given pix clk rate, * and then enable phy. */ int rk_mipi_phy_enable(struct udevice *dev) { int i; struct rk_mipi_priv *priv = dev_get_priv(dev); uintptr_t regs = priv->regs; u64 fbdiv; u64 prediv = 1; u32 max_fbdiv = 512; u32 max_prediv, min_prediv; u64 ddr_clk = priv->phy_clk; u32 refclk = priv->ref_clk; u32 remain = refclk; unsigned char test_data[2] = {0}; int freq_rang[][2] = { {90, 0x01}, {100, 0x10}, {110, 0x20}, {130, 0x01}, {140, 0x11}, {150, 0x21}, {170, 0x02}, {180, 0x12}, {200, 0x22}, {220, 0x03}, {240, 0x13}, {250, 0x23}, {270, 0x04}, {300, 0x14}, {330, 0x05}, {360, 0x15}, {400, 0x25}, {450, 0x06}, {500, 0x16}, {550, 0x07}, {600, 0x17}, {650, 0x08}, {700, 0x18}, {750, 0x09}, {800, 0x19}, {850, 0x29}, {900, 0x39}, {950, 0x0a}, {1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b}, {1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c}, {1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c} }; /* Shutdown mode */ rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 0); rk_mipi_dsi_write(regs, PHY_RSTZ, 0); rk_mipi_dsi_write(regs, PHY_TESTCLR, 1); /* Pll locking */ rk_mipi_dsi_write(regs, PHY_TESTCLR, 0); /* config cp and lfp */ test_data[0] = 0x80 | (ddr_clk / (200 * MHz)) << 3 | 0x3; rk_mipi_phy_write(regs, CODE_PLL_VCORANGE_VCOCAP, test_data, 1); test_data[0] = 0x8; rk_mipi_phy_write(regs, CODE_PLL_CPCTRL, test_data, 1); test_data[0] = 0x80 | 0x40; rk_mipi_phy_write(regs, CODE_PLL_LPF_CP, test_data, 1); /* select the suitable value for fsfreqrang reg */ for (i = 0; i < ARRAY_SIZE(freq_rang); i++) { if (ddr_clk / (MHz) >= freq_rang[i][0]) break; } if (i == ARRAY_SIZE(freq_rang)) { debug("%s: Dphy freq out of range!\n", __func__); return -EINVAL; } test_data[0] = freq_rang[i][1] << 1; rk_mipi_phy_write(regs, CODE_HS_RX_LANE0, test_data, 1); /* * Calculate the best ddrclk and it's corresponding div value. If the * given pixelclock is great than 250M, ddrclk will be fix 1500M. * Otherwise, * it's equal to ddr_clk= pixclk * 6. 40MHz >= refclk / prediv >= 5MHz * according to spec. */ max_prediv = (refclk / (5 * MHz)); min_prediv = ((refclk / (40 * MHz)) ? (refclk / (40 * MHz) + 1) : 1); debug("%s: DEBUG: max_prediv=%u, min_prediv=%u\n", __func__, max_prediv, min_prediv); if (max_prediv < min_prediv) { debug("%s: Invalid refclk value\n", __func__); return -EINVAL; } /* Calculate the best refclk and feedback division value for dphy pll */ for (i = min_prediv; i < max_prediv; i++) { if ((ddr_clk * i % refclk < remain) && (ddr_clk * i / refclk) < max_fbdiv) { prediv = i; remain = ddr_clk * i % refclk; } } fbdiv = ddr_clk * prediv / refclk; ddr_clk = refclk * fbdiv / prediv; priv->phy_clk = ddr_clk; debug("%s: DEBUG: refclk=%u, refclk=%llu, fbdiv=%llu, phyclk=%llu\n", __func__, refclk, prediv, fbdiv, ddr_clk); /* config prediv and feedback reg */ test_data[0] = prediv - 1; rk_mipi_phy_write(regs, CODE_PLL_INPUT_DIV_RAT, test_data, 1); test_data[0] = (fbdiv - 1) & 0x1f; rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1); test_data[0] = (fbdiv - 1) >> 5 | 0x80; rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1); test_data[0] = 0x30; rk_mipi_phy_write(regs, CODE_PLL_INPUT_LOOP_DIV_RAT, test_data, 1); /* rest config */ test_data[0] = 0x4d; rk_mipi_phy_write(regs, CODE_BANDGAP_BIAS_CTRL, test_data, 1); test_data[0] = 0x3d; rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1); test_data[0] = 0xdf; rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1); test_data[0] = 0x7; rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1); test_data[0] = 0x80 | 0x7; rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1); test_data[0] = 0x80 | 15; rk_mipi_phy_write(regs, CODE_HSTXDATALANEREQUSETSTATETIME, test_data, 1); test_data[0] = 0x80 | 85; rk_mipi_phy_write(regs, CODE_HSTXDATALANEPREPARESTATETIME, test_data, 1); test_data[0] = 0x40 | 10; rk_mipi_phy_write(regs, CODE_HSTXDATALANEHSZEROSTATETIME, test_data, 1); /* enter into stop mode */ rk_mipi_dsi_write(regs, N_LANES, 0x03); rk_mipi_dsi_write(regs, PHY_ENABLECLK, 1); rk_mipi_dsi_write(regs, PHY_FORCEPLL, 1); rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 1); rk_mipi_dsi_write(regs, PHY_RSTZ, 1); return 0; }