// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. * Copyright (c) 2009-2015 NVIDIA Corporation * Copyright (c) 2013 Lucas Stach */ #include <common.h> #include <dm.h> #include <linux/errno.h> #include <asm/io.h> #include <asm-generic/gpio.h> #include <asm/arch/clock.h> #include <asm/arch-tegra/usb.h> #include <asm/arch-tegra/clk_rst.h> #include <usb.h> #include <usb/ulpi.h> #include <linux/libfdt.h> #include "ehci.h" #define USB1_ADDR_MASK 0xFFFF0000 #define HOSTPC1_DEVLC 0x84 #define HOSTPC1_PSPD(x) (((x) >> 25) & 0x3) #ifdef CONFIG_USB_ULPI #ifndef CONFIG_USB_ULPI_VIEWPORT #error "To use CONFIG_USB_ULPI on Tegra Boards you have to also \ define CONFIG_USB_ULPI_VIEWPORT" #endif #endif /* Parameters we need for USB */ enum { PARAM_DIVN, /* PLL FEEDBACK DIVIDer */ PARAM_DIVM, /* PLL INPUT DIVIDER */ PARAM_DIVP, /* POST DIVIDER (2^N) */ PARAM_CPCON, /* BASE PLLC CHARGE Pump setup ctrl */ PARAM_LFCON, /* BASE PLLC LOOP FILter setup ctrl */ PARAM_ENABLE_DELAY_COUNT, /* PLL-U Enable Delay Count */ PARAM_STABLE_COUNT, /* PLL-U STABLE count */ PARAM_ACTIVE_DELAY_COUNT, /* PLL-U Active delay count */ PARAM_XTAL_FREQ_COUNT, /* PLL-U XTAL frequency count */ PARAM_DEBOUNCE_A_TIME, /* 10MS DELAY for BIAS_DEBOUNCE_A */ PARAM_BIAS_TIME, /* 20US DELAY AFter bias cell op */ PARAM_COUNT }; /* Possible port types (dual role mode) */ enum dr_mode { DR_MODE_NONE = 0, DR_MODE_HOST, /* supports host operation */ DR_MODE_DEVICE, /* supports device operation */ DR_MODE_OTG, /* supports both */ }; enum usb_ctlr_type { USB_CTLR_T20, USB_CTLR_T30, USB_CTLR_T114, USB_CTLR_T210, USB_CTRL_COUNT, }; /* Information about a USB port */ struct fdt_usb { struct ehci_ctrl ehci; struct usb_ctlr *reg; /* address of registers in physical memory */ unsigned utmi:1; /* 1 if port has external tranceiver, else 0 */ unsigned ulpi:1; /* 1 if port has external ULPI transceiver */ unsigned enabled:1; /* 1 to enable, 0 to disable */ unsigned has_legacy_mode:1; /* 1 if this port has legacy mode */ enum usb_ctlr_type type; enum usb_init_type init_type; enum dr_mode dr_mode; /* dual role mode */ enum periph_id periph_id;/* peripheral id */ struct gpio_desc vbus_gpio; /* GPIO for vbus enable */ struct gpio_desc phy_reset_gpio; /* GPIO to reset ULPI phy */ }; /* * This table has USB timing parameters for each Oscillator frequency we * support. There are four sets of values: * * 1. PLLU configuration information (reference clock is osc/clk_m and * PLLU-FOs are fixed at 12MHz/60MHz/480MHz). * * Reference frequency 13.0MHz 19.2MHz 12.0MHz 26.0MHz * ---------------------------------------------------------------------- * DIVN 960 (0x3c0) 200 (0c8) 960 (3c0h) 960 (3c0) * DIVM 13 (0d) 4 (04) 12 (0c) 26 (1a) * Filter frequency (MHz) 1 4.8 6 2 * CPCON 1100b 0011b 1100b 1100b * LFCON0 0 0 0 0 * * 2. PLL CONFIGURATION & PARAMETERS for different clock generators: * * Reference frequency 13.0MHz 19.2MHz 12.0MHz 26.0MHz * --------------------------------------------------------------------------- * PLLU_ENABLE_DLY_COUNT 02 (0x02) 03 (03) 02 (02) 04 (04) * PLLU_STABLE_COUNT 51 (33) 75 (4B) 47 (2F) 102 (66) * PLL_ACTIVE_DLY_COUNT 05 (05) 06 (06) 04 (04) 09 (09) * XTAL_FREQ_COUNT 127 (7F) 187 (BB) 118 (76) 254 (FE) * * 3. Debounce values IdDig, Avalid, Bvalid, VbusValid, VbusWakeUp, and * SessEnd. Each of these signals have their own debouncer and for each of * those one out of two debouncing times can be chosen (BIAS_DEBOUNCE_A or * BIAS_DEBOUNCE_B). * * The values of DEBOUNCE_A and DEBOUNCE_B are calculated as follows: * 0xffff -> No debouncing at all * <n> ms = <n> *1000 / (1/19.2MHz) / 4 * * So to program a 1 ms debounce for BIAS_DEBOUNCE_A, we have: * BIAS_DEBOUNCE_A[15:0] = 1000 * 19.2 / 4 = 4800 = 0x12c0 * * We need to use only DebounceA for BOOTROM. We don't need the DebounceB * values, so we can keep those to default. * * 4. The 20 microsecond delay after bias cell operation. */ static const unsigned T20_usb_pll[CLOCK_OSC_FREQ_COUNT][PARAM_COUNT] = { /* DivN, DivM, DivP, CPCON, LFCON, Delays Debounce, Bias */ { 0x3C0, 0x0D, 0x00, 0xC, 0, 0x02, 0x33, 0x05, 0x7F, 0x7EF4, 5 }, { 0x0C8, 0x04, 0x00, 0x3, 0, 0x03, 0x4B, 0x06, 0xBB, 0xBB80, 7 }, { 0x3C0, 0x0C, 0x00, 0xC, 0, 0x02, 0x2F, 0x04, 0x76, 0x7530, 5 }, { 0x3C0, 0x1A, 0x00, 0xC, 0, 0x04, 0x66, 0x09, 0xFE, 0xFDE8, 9 }, { 0x000, 0x00, 0x00, 0x0, 0, 0x00, 0x00, 0x00, 0x00, 0x0000, 0 }, { 0x000, 0x00, 0x00, 0x0, 0, 0x00, 0x00, 0x00, 0x00, 0x0000, 0 } }; static const unsigned T30_usb_pll[CLOCK_OSC_FREQ_COUNT][PARAM_COUNT] = { /* DivN, DivM, DivP, CPCON, LFCON, Delays Debounce, Bias */ { 0x3C0, 0x0D, 0x00, 0xC, 1, 0x02, 0x33, 0x09, 0x7F, 0x7EF4, 5 }, { 0x0C8, 0x04, 0x00, 0x3, 0, 0x03, 0x4B, 0x0C, 0xBB, 0xBB80, 7 }, { 0x3C0, 0x0C, 0x00, 0xC, 1, 0x02, 0x2F, 0x08, 0x76, 0x7530, 5 }, { 0x3C0, 0x1A, 0x00, 0xC, 1, 0x04, 0x66, 0x09, 0xFE, 0xFDE8, 9 }, { 0x000, 0x00, 0x00, 0x0, 0, 0x00, 0x00, 0x00, 0x00, 0x0000, 0 }, { 0x000, 0x00, 0x00, 0x0, 0, 0x00, 0x00, 0x00, 0x00, 0x0000, 0 } }; static const unsigned T114_usb_pll[CLOCK_OSC_FREQ_COUNT][PARAM_COUNT] = { /* DivN, DivM, DivP, CPCON, LFCON, Delays Debounce, Bias */ { 0x3C0, 0x0D, 0x00, 0xC, 2, 0x02, 0x33, 0x09, 0x7F, 0x7EF4, 6 }, { 0x0C8, 0x04, 0x00, 0x3, 2, 0x03, 0x4B, 0x0C, 0xBB, 0xBB80, 8 }, { 0x3C0, 0x0C, 0x00, 0xC, 2, 0x02, 0x2F, 0x08, 0x76, 0x7530, 5 }, { 0x3C0, 0x1A, 0x00, 0xC, 2, 0x04, 0x66, 0x09, 0xFE, 0xFDE8, 11 }, { 0x000, 0x00, 0x00, 0x0, 0, 0x00, 0x00, 0x00, 0x00, 0x0000, 0 }, { 0x000, 0x00, 0x00, 0x0, 0, 0x00, 0x00, 0x00, 0x00, 0x0000, 0 } }; /* NOTE: 13/26MHz settings are N/A for T210, so dupe 12MHz settings for now */ static const unsigned T210_usb_pll[CLOCK_OSC_FREQ_COUNT][PARAM_COUNT] = { /* DivN, DivM, DivP, KCP, KVCO, Delays Debounce, Bias */ { 0x028, 0x01, 0x01, 0x0, 0, 0x02, 0x2F, 0x08, 0x76, 32500, 5 }, { 0x019, 0x01, 0x01, 0x0, 0, 0x03, 0x4B, 0x0C, 0xBB, 48000, 8 }, { 0x028, 0x01, 0x01, 0x0, 0, 0x02, 0x2F, 0x08, 0x76, 30000, 5 }, { 0x028, 0x01, 0x01, 0x0, 0, 0x02, 0x2F, 0x08, 0x76, 65000, 5 }, { 0x019, 0x02, 0x01, 0x0, 0, 0x05, 0x96, 0x18, 0x177, 96000, 15 }, { 0x028, 0x04, 0x01, 0x0, 0, 0x04, 0x66, 0x09, 0xFE, 120000, 20 } }; /* UTMIP Idle Wait Delay */ static const u8 utmip_idle_wait_delay = 17; /* UTMIP Elastic limit */ static const u8 utmip_elastic_limit = 16; /* UTMIP High Speed Sync Start Delay */ static const u8 utmip_hs_sync_start_delay = 9; struct fdt_usb_controller { /* flag to determine whether controller supports hostpc register */ u32 has_hostpc:1; const unsigned *pll_parameter; }; static struct fdt_usb_controller fdt_usb_controllers[USB_CTRL_COUNT] = { { .has_hostpc = 0, .pll_parameter = (const unsigned *)T20_usb_pll, }, { .has_hostpc = 1, .pll_parameter = (const unsigned *)T30_usb_pll, }, { .has_hostpc = 1, .pll_parameter = (const unsigned *)T114_usb_pll, }, { .has_hostpc = 1, .pll_parameter = (const unsigned *)T210_usb_pll, }, }; /* * A known hardware issue where Connect Status Change bit of PORTSC register * of USB1 controller will be set after Port Reset. * We have to clear it in order for later device enumeration to proceed. */ static void tegra_ehci_powerup_fixup(struct ehci_ctrl *ctrl, uint32_t *status_reg, uint32_t *reg) { struct fdt_usb *config = ctrl->priv; struct fdt_usb_controller *controller; controller = &fdt_usb_controllers[config->type]; mdelay(50); /* This is to avoid PORT_ENABLE bit to be cleared in "ehci-hcd.c". */ if (controller->has_hostpc) *reg |= EHCI_PS_PE; if (!config->has_legacy_mode) return; /* For EHCI_PS_CSC to be cleared in ehci_hcd.c */ if (ehci_readl(status_reg) & EHCI_PS_CSC) *reg |= EHCI_PS_CSC; } static void tegra_ehci_set_usbmode(struct ehci_ctrl *ctrl) { struct fdt_usb *config = ctrl->priv; struct usb_ctlr *usbctlr; uint32_t tmp; usbctlr = config->reg; tmp = ehci_readl(&usbctlr->usb_mode); tmp |= USBMODE_CM_HC; ehci_writel(&usbctlr->usb_mode, tmp); } static int tegra_ehci_get_port_speed(struct ehci_ctrl *ctrl, uint32_t reg) { struct fdt_usb *config = ctrl->priv; struct fdt_usb_controller *controller; uint32_t tmp; uint32_t *reg_ptr; controller = &fdt_usb_controllers[config->type]; if (controller->has_hostpc) { reg_ptr = (uint32_t *)((u8 *)&ctrl->hcor->or_usbcmd + HOSTPC1_DEVLC); tmp = ehci_readl(reg_ptr); return HOSTPC1_PSPD(tmp); } else return PORTSC_PSPD(reg); } /* Set up VBUS for host/device mode */ static void set_up_vbus(struct fdt_usb *config, enum usb_init_type init) { /* * If we are an OTG port initializing in host mode, * check if remote host is driving VBus and bail out in this case. */ if (init == USB_INIT_HOST && config->dr_mode == DR_MODE_OTG && (readl(&config->reg->phy_vbus_sensors) & VBUS_VLD_STS)) { printf("tegrausb: VBUS input active; not enabling as host\n"); return; } if (dm_gpio_is_valid(&config->vbus_gpio)) { int vbus_value; vbus_value = (init == USB_INIT_HOST); dm_gpio_set_value(&config->vbus_gpio, vbus_value); debug("set_up_vbus: GPIO %d %d\n", gpio_get_number(&config->vbus_gpio), vbus_value); } } static void usbf_reset_controller(struct fdt_usb *config, struct usb_ctlr *usbctlr) { /* Reset the USB controller with 2us delay */ reset_periph(config->periph_id, 2); /* * Set USB1_NO_LEGACY_MODE to 1, Registers are accessible under * base address */ if (config->has_legacy_mode) setbits_le32(&usbctlr->usb1_legacy_ctrl, USB1_NO_LEGACY_MODE); /* Put UTMIP1/3 in reset */ setbits_le32(&usbctlr->susp_ctrl, UTMIP_RESET); /* Enable the UTMIP PHY */ if (config->utmi) setbits_le32(&usbctlr->susp_ctrl, UTMIP_PHY_ENB); } static const unsigned *get_pll_timing(struct fdt_usb_controller *controller) { const unsigned *timing; timing = controller->pll_parameter + clock_get_osc_freq() * PARAM_COUNT; return timing; } /* select the PHY to use with a USB controller */ static void init_phy_mux(struct fdt_usb *config, uint pts, enum usb_init_type init) { struct usb_ctlr *usbctlr = config->reg; #if defined(CONFIG_TEGRA20) if (config->periph_id == PERIPH_ID_USBD) { clrsetbits_le32(&usbctlr->port_sc1, PTS1_MASK, pts << PTS1_SHIFT); clrbits_le32(&usbctlr->port_sc1, STS1); } else { clrsetbits_le32(&usbctlr->port_sc1, PTS_MASK, pts << PTS_SHIFT); clrbits_le32(&usbctlr->port_sc1, STS); } #else /* Set to Host mode (if applicable) after Controller Reset was done */ clrsetbits_le32(&usbctlr->usb_mode, USBMODE_CM_HC, (init == USB_INIT_HOST) ? USBMODE_CM_HC : 0); /* * Select PHY interface after setting host mode. * For device mode, the ordering requirement is not an issue, since * only the first USB controller supports device mode, and that USB * controller can only talk to a UTMI PHY, so the PHY selection is * already made at reset time, so this write is a no-op. */ clrsetbits_le32(&usbctlr->hostpc1_devlc, PTS_MASK, pts << PTS_SHIFT); clrbits_le32(&usbctlr->hostpc1_devlc, STS); #endif } /* set up the UTMI USB controller with the parameters provided */ static int init_utmi_usb_controller(struct fdt_usb *config, enum usb_init_type init) { struct fdt_usb_controller *controller; u32 b_sess_valid_mask, val; int loop_count; const unsigned *timing; struct usb_ctlr *usbctlr = config->reg; struct clk_rst_ctlr *clkrst; struct usb_ctlr *usb1ctlr; clock_enable(config->periph_id); /* Reset the usb controller */ usbf_reset_controller(config, usbctlr); /* Stop crystal clock by setting UTMIP_PHY_XTAL_CLOCKEN low */ clrbits_le32(&usbctlr->utmip_misc_cfg1, UTMIP_PHY_XTAL_CLOCKEN); /* Follow the crystal clock disable by >100ns delay */ udelay(1); b_sess_valid_mask = (VBUS_B_SESS_VLD_SW_VALUE | VBUS_B_SESS_VLD_SW_EN); clrsetbits_le32(&usbctlr->phy_vbus_sensors, b_sess_valid_mask, (init == USB_INIT_DEVICE) ? b_sess_valid_mask : 0); /* * To Use the A Session Valid for cable detection logic, VBUS_WAKEUP * mux must be switched to actually use a_sess_vld threshold. */ if (config->dr_mode == DR_MODE_OTG && dm_gpio_is_valid(&config->vbus_gpio)) clrsetbits_le32(&usbctlr->usb1_legacy_ctrl, VBUS_SENSE_CTL_MASK, VBUS_SENSE_CTL_A_SESS_VLD << VBUS_SENSE_CTL_SHIFT); controller = &fdt_usb_controllers[config->type]; debug("controller=%p, type=%d\n", controller, config->type); /* * PLL Delay CONFIGURATION settings. The following parameters control * the bring up of the plls. */ timing = get_pll_timing(controller); if (!controller->has_hostpc) { val = readl(&usbctlr->utmip_misc_cfg1); clrsetbits_le32(&val, UTMIP_PLLU_STABLE_COUNT_MASK, timing[PARAM_STABLE_COUNT] << UTMIP_PLLU_STABLE_COUNT_SHIFT); clrsetbits_le32(&val, UTMIP_PLL_ACTIVE_DLY_COUNT_MASK, timing[PARAM_ACTIVE_DELAY_COUNT] << UTMIP_PLL_ACTIVE_DLY_COUNT_SHIFT); writel(val, &usbctlr->utmip_misc_cfg1); /* Set PLL enable delay count and crystal frequency count */ val = readl(&usbctlr->utmip_pll_cfg1); clrsetbits_le32(&val, UTMIP_PLLU_ENABLE_DLY_COUNT_MASK, timing[PARAM_ENABLE_DELAY_COUNT] << UTMIP_PLLU_ENABLE_DLY_COUNT_SHIFT); clrsetbits_le32(&val, UTMIP_XTAL_FREQ_COUNT_MASK, timing[PARAM_XTAL_FREQ_COUNT] << UTMIP_XTAL_FREQ_COUNT_SHIFT); writel(val, &usbctlr->utmip_pll_cfg1); } else { clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; val = readl(&clkrst->crc_utmip_pll_cfg2); clrsetbits_le32(&val, UTMIP_PLLU_STABLE_COUNT_MASK, timing[PARAM_STABLE_COUNT] << UTMIP_PLLU_STABLE_COUNT_SHIFT); clrsetbits_le32(&val, UTMIP_PLL_ACTIVE_DLY_COUNT_MASK, timing[PARAM_ACTIVE_DELAY_COUNT] << UTMIP_PLL_ACTIVE_DLY_COUNT_SHIFT); writel(val, &clkrst->crc_utmip_pll_cfg2); /* Set PLL enable delay count and crystal frequency count */ val = readl(&clkrst->crc_utmip_pll_cfg1); clrsetbits_le32(&val, UTMIP_PLLU_ENABLE_DLY_COUNT_MASK, timing[PARAM_ENABLE_DELAY_COUNT] << UTMIP_PLLU_ENABLE_DLY_COUNT_SHIFT); clrsetbits_le32(&val, UTMIP_XTAL_FREQ_COUNT_MASK, timing[PARAM_XTAL_FREQ_COUNT] << UTMIP_XTAL_FREQ_COUNT_SHIFT); writel(val, &clkrst->crc_utmip_pll_cfg1); /* Disable Power Down state for PLL */ clrbits_le32(&clkrst->crc_utmip_pll_cfg1, PLLU_POWERDOWN | PLL_ENABLE_POWERDOWN | PLL_ACTIVE_POWERDOWN); /* Recommended PHY settings for EYE diagram */ val = readl(&usbctlr->utmip_xcvr_cfg0); clrsetbits_le32(&val, UTMIP_XCVR_SETUP_MASK, 0x4 << UTMIP_XCVR_SETUP_SHIFT); clrsetbits_le32(&val, UTMIP_XCVR_SETUP_MSB_MASK, 0x3 << UTMIP_XCVR_SETUP_MSB_SHIFT); clrsetbits_le32(&val, UTMIP_XCVR_HSSLEW_MSB_MASK, 0x8 << UTMIP_XCVR_HSSLEW_MSB_SHIFT); writel(val, &usbctlr->utmip_xcvr_cfg0); clrsetbits_le32(&usbctlr->utmip_xcvr_cfg1, UTMIP_XCVR_TERM_RANGE_ADJ_MASK, 0x7 << UTMIP_XCVR_TERM_RANGE_ADJ_SHIFT); /* Some registers can be controlled from USB1 only. */ if (config->periph_id != PERIPH_ID_USBD) { clock_enable(PERIPH_ID_USBD); /* Disable Reset if in Reset state */ reset_set_enable(PERIPH_ID_USBD, 0); } usb1ctlr = (struct usb_ctlr *) ((unsigned long)config->reg & USB1_ADDR_MASK); val = readl(&usb1ctlr->utmip_bias_cfg0); setbits_le32(&val, UTMIP_HSDISCON_LEVEL_MSB); clrsetbits_le32(&val, UTMIP_HSDISCON_LEVEL_MASK, 0x1 << UTMIP_HSDISCON_LEVEL_SHIFT); clrsetbits_le32(&val, UTMIP_HSSQUELCH_LEVEL_MASK, 0x2 << UTMIP_HSSQUELCH_LEVEL_SHIFT); writel(val, &usb1ctlr->utmip_bias_cfg0); /* Miscellaneous setting mentioned in Programming Guide */ clrbits_le32(&usbctlr->utmip_misc_cfg0, UTMIP_SUSPEND_EXIT_ON_EDGE); } /* Setting the tracking length time */ clrsetbits_le32(&usbctlr->utmip_bias_cfg1, UTMIP_BIAS_PDTRK_COUNT_MASK, timing[PARAM_BIAS_TIME] << UTMIP_BIAS_PDTRK_COUNT_SHIFT); /* Program debounce time for VBUS to become valid */ clrsetbits_le32(&usbctlr->utmip_debounce_cfg0, UTMIP_DEBOUNCE_CFG0_MASK, timing[PARAM_DEBOUNCE_A_TIME] << UTMIP_DEBOUNCE_CFG0_SHIFT); if (timing[PARAM_DEBOUNCE_A_TIME] > 0xFFFF) { clrsetbits_le32(&usbctlr->utmip_debounce_cfg0, UTMIP_DEBOUNCE_CFG0_MASK, (timing[PARAM_DEBOUNCE_A_TIME] >> 1) << UTMIP_DEBOUNCE_CFG0_SHIFT); clrsetbits_le32(&usbctlr->utmip_bias_cfg1, UTMIP_BIAS_DEBOUNCE_TIMESCALE_MASK, 1 << UTMIP_BIAS_DEBOUNCE_TIMESCALE_SHIFT); } setbits_le32(&usbctlr->utmip_tx_cfg0, UTMIP_FS_PREAMBLE_J); /* Disable battery charge enabling bit */ setbits_le32(&usbctlr->utmip_bat_chrg_cfg0, UTMIP_PD_CHRG); clrbits_le32(&usbctlr->utmip_xcvr_cfg0, UTMIP_XCVR_LSBIAS_SE); setbits_le32(&usbctlr->utmip_spare_cfg0, FUSE_SETUP_SEL); /* * Configure the UTMIP_IDLE_WAIT and UTMIP_ELASTIC_LIMIT * Setting these fields, together with default values of the * other fields, results in programming the registers below as * follows: * UTMIP_HSRX_CFG0 = 0x9168c000 * UTMIP_HSRX_CFG1 = 0x13 */ /* Set PLL enable delay count and Crystal frequency count */ val = readl(&usbctlr->utmip_hsrx_cfg0); clrsetbits_le32(&val, UTMIP_IDLE_WAIT_MASK, utmip_idle_wait_delay << UTMIP_IDLE_WAIT_SHIFT); clrsetbits_le32(&val, UTMIP_ELASTIC_LIMIT_MASK, utmip_elastic_limit << UTMIP_ELASTIC_LIMIT_SHIFT); writel(val, &usbctlr->utmip_hsrx_cfg0); /* Configure the UTMIP_HS_SYNC_START_DLY */ clrsetbits_le32(&usbctlr->utmip_hsrx_cfg1, UTMIP_HS_SYNC_START_DLY_MASK, utmip_hs_sync_start_delay << UTMIP_HS_SYNC_START_DLY_SHIFT); /* Preceed the crystal clock disable by >100ns delay. */ udelay(1); /* Resuscitate crystal clock by setting UTMIP_PHY_XTAL_CLOCKEN */ setbits_le32(&usbctlr->utmip_misc_cfg1, UTMIP_PHY_XTAL_CLOCKEN); if (controller->has_hostpc) { if (config->periph_id == PERIPH_ID_USBD) clrbits_le32(&clkrst->crc_utmip_pll_cfg2, UTMIP_FORCE_PD_SAMP_A_POWERDOWN); if (config->periph_id == PERIPH_ID_USB2) clrbits_le32(&clkrst->crc_utmip_pll_cfg2, UTMIP_FORCE_PD_SAMP_B_POWERDOWN); if (config->periph_id == PERIPH_ID_USB3) clrbits_le32(&clkrst->crc_utmip_pll_cfg2, UTMIP_FORCE_PD_SAMP_C_POWERDOWN); } /* Finished the per-controller init. */ /* De-assert UTMIP_RESET to bring out of reset. */ clrbits_le32(&usbctlr->susp_ctrl, UTMIP_RESET); /* Wait for the phy clock to become valid in 100 ms */ for (loop_count = 100000; loop_count != 0; loop_count--) { if (readl(&usbctlr->susp_ctrl) & USB_PHY_CLK_VALID) break; udelay(1); } if (!loop_count) return -ETIMEDOUT; /* Disable ICUSB FS/LS transceiver */ clrbits_le32(&usbctlr->icusb_ctrl, IC_ENB1); /* Select UTMI parallel interface */ init_phy_mux(config, PTS_UTMI, init); /* Deassert power down state */ clrbits_le32(&usbctlr->utmip_xcvr_cfg0, UTMIP_FORCE_PD_POWERDOWN | UTMIP_FORCE_PD2_POWERDOWN | UTMIP_FORCE_PDZI_POWERDOWN); clrbits_le32(&usbctlr->utmip_xcvr_cfg1, UTMIP_FORCE_PDDISC_POWERDOWN | UTMIP_FORCE_PDCHRP_POWERDOWN | UTMIP_FORCE_PDDR_POWERDOWN); if (controller->has_hostpc) { /* * BIAS Pad Power Down is common among all 3 USB * controllers and can be controlled from USB1 only. */ usb1ctlr = (struct usb_ctlr *) ((unsigned long)config->reg & USB1_ADDR_MASK); clrbits_le32(&usb1ctlr->utmip_bias_cfg0, UTMIP_BIASPD); udelay(25); clrbits_le32(&usb1ctlr->utmip_bias_cfg1, UTMIP_FORCE_PDTRK_POWERDOWN); } return 0; } #ifdef CONFIG_USB_ULPI /* if board file does not set a ULPI reference frequency we default to 24MHz */ #ifndef CONFIG_ULPI_REF_CLK #define CONFIG_ULPI_REF_CLK 24000000 #endif /* set up the ULPI USB controller with the parameters provided */ static int init_ulpi_usb_controller(struct fdt_usb *config, enum usb_init_type init) { u32 val; int loop_count; struct ulpi_viewport ulpi_vp; struct usb_ctlr *usbctlr = config->reg; int ret; /* set up ULPI reference clock on pllp_out4 */ clock_enable(PERIPH_ID_DEV2_OUT); clock_set_pllout(CLOCK_ID_PERIPH, PLL_OUT4, CONFIG_ULPI_REF_CLK); /* reset ULPI phy */ if (dm_gpio_is_valid(&config->phy_reset_gpio)) { /* * This GPIO is typically active-low, and marked as such in * device tree. dm_gpio_set_value() takes this into account * and inverts the value we pass here if required. In other * words, this first call logically asserts the reset signal, * which typically results in driving the physical GPIO low, * and the second call logically de-asserts the reset signal, * which typically results in driver the GPIO high. */ dm_gpio_set_value(&config->phy_reset_gpio, 1); mdelay(5); dm_gpio_set_value(&config->phy_reset_gpio, 0); } /* Reset the usb controller */ clock_enable(config->periph_id); usbf_reset_controller(config, usbctlr); /* enable pinmux bypass */ setbits_le32(&usbctlr->ulpi_timing_ctrl_0, ULPI_CLKOUT_PINMUX_BYP | ULPI_OUTPUT_PINMUX_BYP); /* Select ULPI parallel interface */ init_phy_mux(config, PTS_ULPI, init); /* enable ULPI transceiver */ setbits_le32(&usbctlr->susp_ctrl, ULPI_PHY_ENB); /* configure ULPI transceiver timings */ val = 0; writel(val, &usbctlr->ulpi_timing_ctrl_1); val |= ULPI_DATA_TRIMMER_SEL(4); val |= ULPI_STPDIRNXT_TRIMMER_SEL(4); val |= ULPI_DIR_TRIMMER_SEL(4); writel(val, &usbctlr->ulpi_timing_ctrl_1); udelay(10); val |= ULPI_DATA_TRIMMER_LOAD; val |= ULPI_STPDIRNXT_TRIMMER_LOAD; val |= ULPI_DIR_TRIMMER_LOAD; writel(val, &usbctlr->ulpi_timing_ctrl_1); /* set up phy for host operation with external vbus supply */ ulpi_vp.port_num = 0; ulpi_vp.viewport_addr = (u32)&usbctlr->ulpi_viewport; ret = ulpi_init(&ulpi_vp); if (ret) { printf("Tegra ULPI viewport init failed\n"); return ret; } ulpi_set_vbus(&ulpi_vp, 1, 1); ulpi_set_vbus_indicator(&ulpi_vp, 1, 1, 0); /* enable wakeup events */ setbits_le32(&usbctlr->port_sc1, WKCN | WKDS | WKOC); /* Enable and wait for the phy clock to become valid in 100 ms */ setbits_le32(&usbctlr->susp_ctrl, USB_SUSP_CLR); for (loop_count = 100000; loop_count != 0; loop_count--) { if (readl(&usbctlr->susp_ctrl) & USB_PHY_CLK_VALID) break; udelay(1); } if (!loop_count) return -ETIMEDOUT; clrbits_le32(&usbctlr->susp_ctrl, USB_SUSP_CLR); return 0; } #else static int init_ulpi_usb_controller(struct fdt_usb *config, enum usb_init_type init) { printf("No code to set up ULPI controller, please enable" "CONFIG_USB_ULPI and CONFIG_USB_ULPI_VIEWPORT"); return -ENOSYS; } #endif static void config_clock(const u32 timing[]) { debug("%s: DIVM = %d, DIVN = %d, DIVP = %d, cpcon/lfcon = %d/%d\n", __func__, timing[PARAM_DIVM], timing[PARAM_DIVN], timing[PARAM_DIVP], timing[PARAM_CPCON], timing[PARAM_LFCON]); clock_start_pll(CLOCK_ID_USB, timing[PARAM_DIVM], timing[PARAM_DIVN], timing[PARAM_DIVP], timing[PARAM_CPCON], timing[PARAM_LFCON]); } static int fdt_decode_usb(struct udevice *dev, struct fdt_usb *config) { const char *phy, *mode; config->reg = (struct usb_ctlr *)dev_read_addr(dev); debug("reg=%p\n", config->reg); mode = dev_read_string(dev, "dr_mode"); if (mode) { if (0 == strcmp(mode, "host")) config->dr_mode = DR_MODE_HOST; else if (0 == strcmp(mode, "peripheral")) config->dr_mode = DR_MODE_DEVICE; else if (0 == strcmp(mode, "otg")) config->dr_mode = DR_MODE_OTG; else { debug("%s: Cannot decode dr_mode '%s'\n", __func__, mode); return -EINVAL; } } else { config->dr_mode = DR_MODE_HOST; } phy = dev_read_string(dev, "phy_type"); config->utmi = phy && 0 == strcmp("utmi", phy); config->ulpi = phy && 0 == strcmp("ulpi", phy); config->has_legacy_mode = dev_read_bool(dev, "nvidia,has-legacy-mode"); config->periph_id = clock_decode_periph_id(dev); if (config->periph_id == PERIPH_ID_NONE) { debug("%s: Missing/invalid peripheral ID\n", __func__); return -EINVAL; } gpio_request_by_name(dev, "nvidia,vbus-gpio", 0, &config->vbus_gpio, GPIOD_IS_OUT); gpio_request_by_name(dev, "nvidia,phy-reset-gpio", 0, &config->phy_reset_gpio, GPIOD_IS_OUT); debug("legacy_mode=%d, utmi=%d, ulpi=%d, periph_id=%d, vbus=%d, phy_reset=%d, dr_mode=%d, reg=%p\n", config->has_legacy_mode, config->utmi, config->ulpi, config->periph_id, gpio_get_number(&config->vbus_gpio), gpio_get_number(&config->phy_reset_gpio), config->dr_mode, config->reg); return 0; } int usb_common_init(struct fdt_usb *config, enum usb_init_type init) { int ret = 0; switch (init) { case USB_INIT_HOST: switch (config->dr_mode) { case DR_MODE_HOST: case DR_MODE_OTG: break; default: printf("tegrausb: Invalid dr_mode %d for host mode\n", config->dr_mode); return -1; } break; case USB_INIT_DEVICE: if (config->periph_id != PERIPH_ID_USBD) { printf("tegrausb: Device mode only supported on first USB controller\n"); return -1; } if (!config->utmi) { printf("tegrausb: Device mode only supported with UTMI PHY\n"); return -1; } switch (config->dr_mode) { case DR_MODE_DEVICE: case DR_MODE_OTG: break; default: printf("tegrausb: Invalid dr_mode %d for device mode\n", config->dr_mode); return -1; } break; default: printf("tegrausb: Unknown USB_INIT_* %d\n", init); return -1; } debug("%d, %d\n", config->utmi, config->ulpi); if (config->utmi) ret = init_utmi_usb_controller(config, init); else if (config->ulpi) ret = init_ulpi_usb_controller(config, init); if (ret) return ret; set_up_vbus(config, init); config->init_type = init; return 0; } void usb_common_uninit(struct fdt_usb *priv) { struct usb_ctlr *usbctlr; usbctlr = priv->reg; /* Stop controller */ writel(0, &usbctlr->usb_cmd); udelay(1000); /* Initiate controller reset */ writel(2, &usbctlr->usb_cmd); udelay(1000); } static const struct ehci_ops tegra_ehci_ops = { .set_usb_mode = tegra_ehci_set_usbmode, .get_port_speed = tegra_ehci_get_port_speed, .powerup_fixup = tegra_ehci_powerup_fixup, }; static int ehci_usb_ofdata_to_platdata(struct udevice *dev) { struct fdt_usb *priv = dev_get_priv(dev); int ret; ret = fdt_decode_usb(dev, priv); if (ret) return ret; priv->type = dev_get_driver_data(dev); return 0; } static int ehci_usb_probe(struct udevice *dev) { struct usb_platdata *plat = dev_get_platdata(dev); struct fdt_usb *priv = dev_get_priv(dev); struct ehci_hccr *hccr; struct ehci_hcor *hcor; static bool clk_done; int ret; ret = usb_common_init(priv, plat->init_type); if (ret) return ret; hccr = (struct ehci_hccr *)&priv->reg->cap_length; hcor = (struct ehci_hcor *)&priv->reg->usb_cmd; if (!clk_done) { config_clock(get_pll_timing(&fdt_usb_controllers[priv->type])); clk_done = true; } return ehci_register(dev, hccr, hcor, &tegra_ehci_ops, 0, plat->init_type); } static const struct udevice_id ehci_usb_ids[] = { { .compatible = "nvidia,tegra20-ehci", .data = USB_CTLR_T20 }, { .compatible = "nvidia,tegra30-ehci", .data = USB_CTLR_T30 }, { .compatible = "nvidia,tegra114-ehci", .data = USB_CTLR_T114 }, { .compatible = "nvidia,tegra210-ehci", .data = USB_CTLR_T210 }, { } }; U_BOOT_DRIVER(usb_ehci) = { .name = "ehci_tegra", .id = UCLASS_USB, .of_match = ehci_usb_ids, .ofdata_to_platdata = ehci_usb_ofdata_to_platdata, .probe = ehci_usb_probe, .remove = ehci_deregister, .ops = &ehci_usb_ops, .platdata_auto_alloc_size = sizeof(struct usb_platdata), .priv_auto_alloc_size = sizeof(struct fdt_usb), .flags = DM_FLAG_ALLOC_PRIV_DMA, };