// SPDX-License-Identifier: GPL-2.0+ /* * Freescale i.MX28 SPI driver * * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> * on behalf of DENX Software Engineering GmbH * * NOTE: This driver only supports the SPI-controller chipselects, * GPIO driven chipselects are not supported. */ #include <common.h> #include <malloc.h> #include <memalign.h> #include <spi.h> #include <linux/errno.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/imx-regs.h> #include <asm/arch/sys_proto.h> #include <asm/mach-imx/dma.h> #define MXS_SPI_MAX_TIMEOUT 1000000 #define MXS_SPI_PORT_OFFSET 0x2000 #define MXS_SSP_CHIPSELECT_MASK 0x00300000 #define MXS_SSP_CHIPSELECT_SHIFT 20 #define MXSSSP_SMALL_TRANSFER 512 struct mxs_spi_slave { struct spi_slave slave; uint32_t max_khz; uint32_t mode; struct mxs_ssp_regs *regs; }; static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave) { return container_of(slave, struct mxs_spi_slave, slave); } void spi_init(void) { } int spi_cs_is_valid(unsigned int bus, unsigned int cs) { /* MXS SPI: 4 ports and 3 chip selects maximum */ if (!mxs_ssp_bus_id_valid(bus) || cs > 2) return 0; else return 1; } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct mxs_spi_slave *mxs_slave; if (!spi_cs_is_valid(bus, cs)) { printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs); return NULL; } mxs_slave = spi_alloc_slave(struct mxs_spi_slave, bus, cs); if (!mxs_slave) return NULL; if (mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + bus)) goto err_init; mxs_slave->max_khz = max_hz / 1000; mxs_slave->mode = mode; mxs_slave->regs = mxs_ssp_regs_by_bus(bus); return &mxs_slave->slave; err_init: free(mxs_slave); return NULL; } void spi_free_slave(struct spi_slave *slave) { struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave); free(mxs_slave); } int spi_claim_bus(struct spi_slave *slave) { struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave); struct mxs_ssp_regs *ssp_regs = mxs_slave->regs; uint32_t reg = 0; mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg); writel((slave->cs << MXS_SSP_CHIPSELECT_SHIFT) | SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0); reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS; reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0; reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0; writel(reg, &ssp_regs->hw_ssp_ctrl1); writel(0, &ssp_regs->hw_ssp_cmd0); mxs_set_ssp_busclock(slave->bus, mxs_slave->max_khz); return 0; } void spi_release_bus(struct spi_slave *slave) { } static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs) { writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set); writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr); } static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs) { writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr); writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set); } static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave, char *data, int length, int write, unsigned long flags) { struct mxs_ssp_regs *ssp_regs = slave->regs; if (flags & SPI_XFER_BEGIN) mxs_spi_start_xfer(ssp_regs); while (length--) { /* We transfer 1 byte */ #if defined(CONFIG_MX23) writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr); writel(1, &ssp_regs->hw_ssp_ctrl0_set); #elif defined(CONFIG_MX28) writel(1, &ssp_regs->hw_ssp_xfer_size); #endif if ((flags & SPI_XFER_END) && !length) mxs_spi_end_xfer(ssp_regs); if (write) writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr); else writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set); writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set); if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg, SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) { printf("MXS SPI: Timeout waiting for start\n"); return -ETIMEDOUT; } if (write) writel(*data++, &ssp_regs->hw_ssp_data); writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set); if (!write) { if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg, SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) { printf("MXS SPI: Timeout waiting for data\n"); return -ETIMEDOUT; } *data = readl(&ssp_regs->hw_ssp_data); data++; } if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg, SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) { printf("MXS SPI: Timeout waiting for finish\n"); return -ETIMEDOUT; } } return 0; } static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave, char *data, int length, int write, unsigned long flags) { const int xfer_max_sz = 0xff00; const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1; struct mxs_ssp_regs *ssp_regs = slave->regs; struct mxs_dma_desc *dp; uint32_t ctrl0; uint32_t cache_data_count; const uint32_t dstart = (uint32_t)data; int dmach; int tl; int ret = 0; #if defined(CONFIG_MX23) const int mxs_spi_pio_words = 1; #elif defined(CONFIG_MX28) const int mxs_spi_pio_words = 4; #endif ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count); memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count); ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0); ctrl0 |= SSP_CTRL0_DATA_XFER; if (flags & SPI_XFER_BEGIN) ctrl0 |= SSP_CTRL0_LOCK_CS; if (!write) ctrl0 |= SSP_CTRL0_READ; if (length % ARCH_DMA_MINALIGN) cache_data_count = roundup(length, ARCH_DMA_MINALIGN); else cache_data_count = length; /* Flush data to DRAM so DMA can pick them up */ if (write) flush_dcache_range(dstart, dstart + cache_data_count); /* Invalidate the area, so no writeback into the RAM races with DMA */ invalidate_dcache_range(dstart, dstart + cache_data_count); dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus; dp = desc; while (length) { dp->address = (dma_addr_t)dp; dp->cmd.address = (dma_addr_t)data; /* * This is correct, even though it does indeed look insane. * I hereby have to, wholeheartedly, thank Freescale Inc., * for always inventing insane hardware and keeping me busy * and employed ;-) */ if (write) dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ; else dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE; /* * The DMA controller can transfer large chunks (64kB) at * time by setting the transfer length to 0. Setting tl to * 0x10000 will overflow below and make .data contain 0. * Otherwise, 0xff00 is the transfer maximum. */ if (length >= 0x10000) tl = 0x10000; else tl = min(length, xfer_max_sz); dp->cmd.data |= ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) | (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) | MXS_DMA_DESC_HALT_ON_TERMINATE | MXS_DMA_DESC_TERMINATE_FLUSH; data += tl; length -= tl; if (!length) { dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM; if (flags & SPI_XFER_END) { ctrl0 &= ~SSP_CTRL0_LOCK_CS; ctrl0 |= SSP_CTRL0_IGNORE_CRC; } } /* * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in * case of MX28, write only CTRL0 in case of MX23 due * to the difference in register layout. It is utterly * essential that the XFER_SIZE register is written on * a per-descriptor basis with the same size as is the * descriptor! */ dp->cmd.pio_words[0] = ctrl0; #ifdef CONFIG_MX28 dp->cmd.pio_words[1] = 0; dp->cmd.pio_words[2] = 0; dp->cmd.pio_words[3] = tl; #endif mxs_dma_desc_append(dmach, dp); dp++; } if (mxs_dma_go(dmach)) ret = -EINVAL; /* The data arrived into DRAM, invalidate cache over them */ if (!write) invalidate_dcache_range(dstart, dstart + cache_data_count); return ret; } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave); struct mxs_ssp_regs *ssp_regs = mxs_slave->regs; int len = bitlen / 8; char dummy; int write = 0; char *data = NULL; int dma = 1; if (bitlen == 0) { if (flags & SPI_XFER_END) { din = (void *)&dummy; len = 1; } else return 0; } /* Half-duplex only */ if (din && dout) return -EINVAL; /* No data */ if (!din && !dout) return 0; if (dout) { data = (char *)dout; write = 1; } else if (din) { data = (char *)din; write = 0; } /* * Check for alignment, if the buffer is aligned, do DMA transfer, * PIO otherwise. This is a temporary workaround until proper bounce * buffer is in place. */ if (dma) { if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1)) dma = 0; if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1)) dma = 0; } if (!dma || (len < MXSSSP_SMALL_TRANSFER)) { writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr); return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags); } else { writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set); return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags); } }