// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2013-2015 Freescale Semiconductor, Inc. * * Freescale Quad Serial Peripheral Interface (QSPI) driver */ #include <common.h> #include <malloc.h> #include <spi.h> #include <asm/io.h> #include <linux/sizes.h> #include <dm.h> #include <errno.h> #include <watchdog.h> #include <wait_bit.h> #include "fsl_qspi.h" DECLARE_GLOBAL_DATA_PTR; #define RX_BUFFER_SIZE 0x80 #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \ defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D) #define TX_BUFFER_SIZE 0x200 #else #define TX_BUFFER_SIZE 0x40 #endif #define OFFSET_BITS_MASK GENMASK(23, 0) #define FLASH_STATUS_WEL 0x02 /* SEQID */ #define SEQID_WREN 1 #define SEQID_FAST_READ 2 #define SEQID_RDSR 3 #define SEQID_SE 4 #define SEQID_CHIP_ERASE 5 #define SEQID_PP 6 #define SEQID_RDID 7 #define SEQID_BE_4K 8 #ifdef CONFIG_SPI_FLASH_BAR #define SEQID_BRRD 9 #define SEQID_BRWR 10 #define SEQID_RDEAR 11 #define SEQID_WREAR 12 #endif #define SEQID_WRAR 13 #define SEQID_RDAR 14 /* QSPI CMD */ #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */ #define QSPI_CMD_RDSR 0x05 /* Read status register */ #define QSPI_CMD_WREN 0x06 /* Write enable */ #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */ #define QSPI_CMD_BE_4K 0x20 /* 4K erase */ #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */ #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */ #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */ /* Used for Micron, winbond and Macronix flashes */ #define QSPI_CMD_WREAR 0xc5 /* EAR register write */ #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */ /* Used for Spansion flashes only. */ #define QSPI_CMD_BRRD 0x16 /* Bank register read */ #define QSPI_CMD_BRWR 0x17 /* Bank register write */ /* Used for Spansion S25FS-S family flash only. */ #define QSPI_CMD_RDAR 0x65 /* Read any device register */ #define QSPI_CMD_WRAR 0x71 /* Write any device register */ /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */ #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */ #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */ #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */ /* fsl_qspi_platdata flags */ #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0) /* default SCK frequency, unit: HZ */ #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000 /* QSPI max chipselect signals number */ #define FSL_QSPI_MAX_CHIPSELECT_NUM 4 #ifdef CONFIG_DM_SPI /** * struct fsl_qspi_platdata - platform data for Freescale QSPI * * @flags: Flags for QSPI QSPI_FLAG_... * @speed_hz: Default SCK frequency * @reg_base: Base address of QSPI registers * @amba_base: Base address of QSPI memory mapping * @amba_total_size: size of QSPI memory mapping * @flash_num: Number of active slave devices * @num_chipselect: Number of QSPI chipselect signals */ struct fsl_qspi_platdata { u32 flags; u32 speed_hz; fdt_addr_t reg_base; fdt_addr_t amba_base; fdt_size_t amba_total_size; u32 flash_num; u32 num_chipselect; }; #endif /** * struct fsl_qspi_priv - private data for Freescale QSPI * * @flags: Flags for QSPI QSPI_FLAG_... * @bus_clk: QSPI input clk frequency * @speed_hz: Default SCK frequency * @cur_seqid: current LUT table sequence id * @sf_addr: flash access offset * @amba_base: Base address of QSPI memory mapping of every CS * @amba_total_size: size of QSPI memory mapping * @cur_amba_base: Base address of QSPI memory mapping of current CS * @flash_num: Number of active slave devices * @num_chipselect: Number of QSPI chipselect signals * @regs: Point to QSPI register structure for I/O access */ struct fsl_qspi_priv { u32 flags; u32 bus_clk; u32 speed_hz; u32 cur_seqid; u32 sf_addr; u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM]; u32 amba_total_size; u32 cur_amba_base; u32 flash_num; u32 num_chipselect; struct fsl_qspi_regs *regs; }; #ifndef CONFIG_DM_SPI struct fsl_qspi { struct spi_slave slave; struct fsl_qspi_priv priv; }; #endif static u32 qspi_read32(u32 flags, u32 *addr) { return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? in_be32(addr) : in_le32(addr); } static void qspi_write32(u32 flags, u32 *addr, u32 val) { flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? out_be32(addr, val) : out_le32(addr, val); } static inline int is_controller_busy(const struct fsl_qspi_priv *priv) { u32 val; const u32 mask = QSPI_SR_BUSY_MASK | QSPI_SR_AHB_ACC_MASK | QSPI_SR_IP_ACC_MASK; unsigned int retry = 5; do { val = qspi_read32(priv->flags, &priv->regs->sr); if ((~val & mask) == mask) return 0; udelay(1); } while (--retry); return -ETIMEDOUT; } /* QSPI support swapping the flash read/write data * in hardware for LS102xA, but not for VF610 */ static inline u32 qspi_endian_xchg(u32 data) { #ifdef CONFIG_VF610 return swab32(data); #else return data; #endif } static void qspi_set_lut(struct fsl_qspi_priv *priv) { struct fsl_qspi_regs *regs = priv->regs; u32 lut_base; /* Unlock the LUT */ qspi_write32(priv->flags, ®s->lutkey, LUT_KEY_VALUE); qspi_write32(priv->flags, ®s->lckcr, QSPI_LCKCR_UNLOCK); /* Write Enable */ lut_base = SEQID_WREN * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_WREN) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD)); qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* Fast Read */ lut_base = SEQID_FAST_READ * 4; #ifdef CONFIG_SPI_FLASH_BAR qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #else if (FSL_QSPI_FLASH_SIZE <= SZ_16M) qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); else qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ_4B) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #endif qspi_write32(priv->flags, ®s->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) | INSTR1(LUT_READ)); qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* Read Status */ lut_base = SEQID_RDSR * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDSR) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | PAD1(LUT_PAD1) | INSTR1(LUT_READ)); qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* Erase a sector */ lut_base = SEQID_SE * 4; #ifdef CONFIG_SPI_FLASH_BAR qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #else if (FSL_QSPI_FLASH_SIZE <= SZ_16M) qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); else qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #endif qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* Erase the whole chip */ lut_base = SEQID_CHIP_ERASE * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD)); qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* Page Program */ lut_base = SEQID_PP * 4; #ifdef CONFIG_SPI_FLASH_BAR qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #else if (FSL_QSPI_FLASH_SIZE <= SZ_16M) qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); else qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #endif #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \ defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D) /* * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly. * So, Use IDATSZ in IPCR to determine the size and here set 0. */ qspi_write32(priv->flags, ®s->lut[lut_base + 1], OPRND0(0) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE)); #else qspi_write32(priv->flags, ®s->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE)); #endif qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* READ ID */ lut_base = SEQID_RDID * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDID) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) | PAD1(LUT_PAD1) | INSTR1(LUT_READ)); qspi_write32(priv->flags, ®s->lut[lut_base + 1], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 2], 0); qspi_write32(priv->flags, ®s->lut[lut_base + 3], 0); /* SUB SECTOR 4K ERASE */ lut_base = SEQID_BE_4K * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); #ifdef CONFIG_SPI_FLASH_BAR /* * BRRD BRWR RDEAR WREAR are all supported, because it is hard to * dynamically check whether to set BRRD BRWR or RDEAR WREAR during * initialization. */ lut_base = SEQID_BRRD * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_BRRD) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | PAD1(LUT_PAD1) | INSTR1(LUT_READ)); lut_base = SEQID_BRWR * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_BRWR) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | PAD1(LUT_PAD1) | INSTR1(LUT_WRITE)); lut_base = SEQID_RDEAR * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | PAD1(LUT_PAD1) | INSTR1(LUT_READ)); lut_base = SEQID_WREAR * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_WREAR) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) | PAD1(LUT_PAD1) | INSTR1(LUT_WRITE)); #endif /* * Read any device register. * Used for Spansion S25FS-S family flash only. */ lut_base = SEQID_RDAR * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); qspi_write32(priv->flags, ®s->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) | OPRND1(1) | PAD1(LUT_PAD1) | INSTR1(LUT_READ)); /* * Write any device register. * Used for Spansion S25FS-S family flash only. */ lut_base = SEQID_WRAR * 4; qspi_write32(priv->flags, ®s->lut[lut_base], OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) | PAD1(LUT_PAD1) | INSTR1(LUT_ADDR)); qspi_write32(priv->flags, ®s->lut[lut_base + 1], OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE)); /* Lock the LUT */ qspi_write32(priv->flags, ®s->lutkey, LUT_KEY_VALUE); qspi_write32(priv->flags, ®s->lckcr, QSPI_LCKCR_LOCK); } #if defined(CONFIG_SYS_FSL_QSPI_AHB) /* * If we have changed the content of the flash by writing or erasing, * we need to invalidate the AHB buffer. If we do not do so, we may read out * the wrong data. The spec tells us reset the AHB domain and Serial Flash * domain at the same time. */ static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv) { struct fsl_qspi_regs *regs = priv->regs; u32 reg; reg = qspi_read32(priv->flags, ®s->mcr); reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK; qspi_write32(priv->flags, ®s->mcr, reg); /* * The minimum delay : 1 AHB + 2 SFCK clocks. * Delay 1 us is enough. */ udelay(1); reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK); qspi_write32(priv->flags, ®s->mcr, reg); } /* Read out the data from the AHB buffer. */ static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len) { struct fsl_qspi_regs *regs = priv->regs; u32 mcr_reg; void *rx_addr; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr); /* Read out the data directly from the AHB buffer. */ memcpy(rxbuf, rx_addr, len); qspi_write32(priv->flags, ®s->mcr, mcr_reg); } static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv) { u32 reg, reg2; struct fsl_qspi_regs *regs = priv->regs; reg = qspi_read32(priv->flags, ®s->mcr); /* Disable the module */ qspi_write32(priv->flags, ®s->mcr, reg | QSPI_MCR_MDIS_MASK); /* Set the Sampling Register for DDR */ reg2 = qspi_read32(priv->flags, ®s->smpr); reg2 &= ~QSPI_SMPR_DDRSMP_MASK; reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT); qspi_write32(priv->flags, ®s->smpr, reg2); /* Enable the module again (enable the DDR too) */ reg |= QSPI_MCR_DDR_EN_MASK; /* Enable bit 29 for imx6sx */ reg |= BIT(29); qspi_write32(priv->flags, ®s->mcr, reg); } /* * There are two different ways to read out the data from the flash: * the "IP Command Read" and the "AHB Command Read". * * The IC guy suggests we use the "AHB Command Read" which is faster * then the "IP Command Read". (What's more is that there is a bug in * the "IP Command Read" in the Vybrid.) * * After we set up the registers for the "AHB Command Read", we can use * the memcpy to read the data directly. A "missed" access to the buffer * causes the controller to clear the buffer, and use the sequence pointed * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. */ static void qspi_init_ahb_read(struct fsl_qspi_priv *priv) { struct fsl_qspi_regs *regs = priv->regs; /* AHB configuration for access buffer 0/1/2 .*/ qspi_write32(priv->flags, ®s->buf0cr, QSPI_BUFXCR_INVALID_MSTRID); qspi_write32(priv->flags, ®s->buf1cr, QSPI_BUFXCR_INVALID_MSTRID); qspi_write32(priv->flags, ®s->buf2cr, QSPI_BUFXCR_INVALID_MSTRID); qspi_write32(priv->flags, ®s->buf3cr, QSPI_BUF3CR_ALLMST_MASK | (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT)); /* We only use the buffer3 */ qspi_write32(priv->flags, ®s->buf0ind, 0); qspi_write32(priv->flags, ®s->buf1ind, 0); qspi_write32(priv->flags, ®s->buf2ind, 0); /* * Set the default lut sequence for AHB Read. * Parallel mode is disabled. */ qspi_write32(priv->flags, ®s->bfgencr, SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT); /*Enable DDR Mode*/ qspi_enable_ddr_mode(priv); } #endif #ifdef CONFIG_SPI_FLASH_BAR /* Bank register read/write, EAR register read/write */ static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len) { struct fsl_qspi_regs *regs = priv->regs; u32 reg, mcr_reg, data, seqid; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); qspi_write32(priv->flags, ®s->sfar, priv->cur_amba_base); if (priv->cur_seqid == QSPI_CMD_BRRD) seqid = SEQID_BRRD; else seqid = SEQID_RDEAR; qspi_write32(priv->flags, ®s->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | len); /* Wait previous command complete */ while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; while (1) { WATCHDOG_RESET(); reg = qspi_read32(priv->flags, ®s->rbsr); if (reg & QSPI_RBSR_RDBFL_MASK) { data = qspi_read32(priv->flags, ®s->rbdr[0]); data = qspi_endian_xchg(data); memcpy(rxbuf, &data, len); qspi_write32(priv->flags, ®s->mcr, qspi_read32(priv->flags, ®s->mcr) | QSPI_MCR_CLR_RXF_MASK); break; } } qspi_write32(priv->flags, ®s->mcr, mcr_reg); } #endif static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len) { struct fsl_qspi_regs *regs = priv->regs; u32 mcr_reg, rbsr_reg, data, size; int i; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); qspi_write32(priv->flags, ®s->sfar, priv->cur_amba_base); qspi_write32(priv->flags, ®s->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; i = 0; while ((RX_BUFFER_SIZE >= len) && (len > 0)) { WATCHDOG_RESET(); rbsr_reg = qspi_read32(priv->flags, ®s->rbsr); if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) { data = qspi_read32(priv->flags, ®s->rbdr[i]); data = qspi_endian_xchg(data); size = (len < 4) ? len : 4; memcpy(rxbuf, &data, size); len -= size; rxbuf++; i++; } } qspi_write32(priv->flags, ®s->mcr, mcr_reg); } /* If not use AHB read, read data from ip interface */ static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len) { struct fsl_qspi_regs *regs = priv->regs; u32 mcr_reg, data; int i, size; u32 to_or_from; u32 seqid; if (priv->cur_seqid == QSPI_CMD_RDAR) seqid = SEQID_RDAR; else seqid = SEQID_FAST_READ; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); to_or_from = priv->sf_addr + priv->cur_amba_base; while (len > 0) { WATCHDOG_RESET(); qspi_write32(priv->flags, ®s->sfar, to_or_from); size = (len > RX_BUFFER_SIZE) ? RX_BUFFER_SIZE : len; qspi_write32(priv->flags, ®s->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | size); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; to_or_from += size; len -= size; i = 0; while ((RX_BUFFER_SIZE >= size) && (size > 0)) { data = qspi_read32(priv->flags, ®s->rbdr[i]); data = qspi_endian_xchg(data); if (size < 4) memcpy(rxbuf, &data, size); else memcpy(rxbuf, &data, 4); rxbuf++; size -= 4; i++; } qspi_write32(priv->flags, ®s->mcr, qspi_read32(priv->flags, ®s->mcr) | QSPI_MCR_CLR_RXF_MASK); } qspi_write32(priv->flags, ®s->mcr, mcr_reg); } static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len) { struct fsl_qspi_regs *regs = priv->regs; u32 mcr_reg, data, reg, status_reg, seqid; int i, size, tx_size; u32 to_or_from = 0; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); status_reg = 0; while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) { WATCHDOG_RESET(); qspi_write32(priv->flags, ®s->ipcr, (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; qspi_write32(priv->flags, ®s->ipcr, (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; reg = qspi_read32(priv->flags, ®s->rbsr); if (reg & QSPI_RBSR_RDBFL_MASK) { status_reg = qspi_read32(priv->flags, ®s->rbdr[0]); status_reg = qspi_endian_xchg(status_reg); } qspi_write32(priv->flags, ®s->mcr, qspi_read32(priv->flags, ®s->mcr) | QSPI_MCR_CLR_RXF_MASK); } /* Default is page programming */ seqid = SEQID_PP; if (priv->cur_seqid == QSPI_CMD_WRAR) seqid = SEQID_WRAR; #ifdef CONFIG_SPI_FLASH_BAR if (priv->cur_seqid == QSPI_CMD_BRWR) seqid = SEQID_BRWR; else if (priv->cur_seqid == QSPI_CMD_WREAR) seqid = SEQID_WREAR; #endif to_or_from = priv->sf_addr + priv->cur_amba_base; qspi_write32(priv->flags, ®s->sfar, to_or_from); tx_size = (len > TX_BUFFER_SIZE) ? TX_BUFFER_SIZE : len; size = tx_size / 16; /* * There must be atleast 128bit data * available in TX FIFO for any pop operation */ if (tx_size % 16) size++; for (i = 0; i < size * 4; i++) { memcpy(&data, txbuf, 4); data = qspi_endian_xchg(data); qspi_write32(priv->flags, ®s->tbdr, data); txbuf += 4; } qspi_write32(priv->flags, ®s->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; qspi_write32(priv->flags, ®s->mcr, mcr_reg); } static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len) { struct fsl_qspi_regs *regs = priv->regs; u32 mcr_reg, reg, data; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); qspi_write32(priv->flags, ®s->sfar, priv->cur_amba_base); qspi_write32(priv->flags, ®s->ipcr, (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; while (1) { WATCHDOG_RESET(); reg = qspi_read32(priv->flags, ®s->rbsr); if (reg & QSPI_RBSR_RDBFL_MASK) { data = qspi_read32(priv->flags, ®s->rbdr[0]); data = qspi_endian_xchg(data); memcpy(rxbuf, &data, len); qspi_write32(priv->flags, ®s->mcr, qspi_read32(priv->flags, ®s->mcr) | QSPI_MCR_CLR_RXF_MASK); break; } } qspi_write32(priv->flags, ®s->mcr, mcr_reg); } static void qspi_op_erase(struct fsl_qspi_priv *priv) { struct fsl_qspi_regs *regs = priv->regs; u32 mcr_reg; u32 to_or_from = 0; mcr_reg = qspi_read32(priv->flags, ®s->mcr); qspi_write32(priv->flags, ®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK | QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE); qspi_write32(priv->flags, ®s->rbct, QSPI_RBCT_RXBRD_USEIPS); to_or_from = priv->sf_addr + priv->cur_amba_base; qspi_write32(priv->flags, ®s->sfar, to_or_from); qspi_write32(priv->flags, ®s->ipcr, (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0); while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; if (priv->cur_seqid == QSPI_CMD_SE) { qspi_write32(priv->flags, ®s->ipcr, (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0); } else if (priv->cur_seqid == QSPI_CMD_BE_4K) { qspi_write32(priv->flags, ®s->ipcr, (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0); } while (qspi_read32(priv->flags, ®s->sr) & QSPI_SR_BUSY_MASK) ; qspi_write32(priv->flags, ®s->mcr, mcr_reg); } int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { u32 bytes = DIV_ROUND_UP(bitlen, 8); static u32 wr_sfaddr; u32 txbuf; WATCHDOG_RESET(); if (dout) { if (flags & SPI_XFER_BEGIN) { priv->cur_seqid = *(u8 *)dout; memcpy(&txbuf, dout, 4); } if (flags == SPI_XFER_END) { priv->sf_addr = wr_sfaddr; qspi_op_write(priv, (u8 *)dout, bytes); return 0; } if (priv->cur_seqid == QSPI_CMD_FAST_READ || priv->cur_seqid == QSPI_CMD_RDAR) { priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK; } else if ((priv->cur_seqid == QSPI_CMD_SE) || (priv->cur_seqid == QSPI_CMD_BE_4K)) { priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK; qspi_op_erase(priv); } else if (priv->cur_seqid == QSPI_CMD_PP || priv->cur_seqid == QSPI_CMD_WRAR) { wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK; } else if ((priv->cur_seqid == QSPI_CMD_BRWR) || (priv->cur_seqid == QSPI_CMD_WREAR)) { #ifdef CONFIG_SPI_FLASH_BAR wr_sfaddr = 0; #endif } } if (din) { if (priv->cur_seqid == QSPI_CMD_FAST_READ) { #ifdef CONFIG_SYS_FSL_QSPI_AHB qspi_ahb_read(priv, din, bytes); #else qspi_op_read(priv, din, bytes); #endif } else if (priv->cur_seqid == QSPI_CMD_RDAR) { qspi_op_read(priv, din, bytes); } else if (priv->cur_seqid == QSPI_CMD_RDID) qspi_op_rdid(priv, din, bytes); else if (priv->cur_seqid == QSPI_CMD_RDSR) qspi_op_rdsr(priv, din, bytes); #ifdef CONFIG_SPI_FLASH_BAR else if ((priv->cur_seqid == QSPI_CMD_BRRD) || (priv->cur_seqid == QSPI_CMD_RDEAR)) { priv->sf_addr = 0; qspi_op_rdbank(priv, din, bytes); } #endif } #ifdef CONFIG_SYS_FSL_QSPI_AHB if ((priv->cur_seqid == QSPI_CMD_SE) || (priv->cur_seqid == QSPI_CMD_PP) || (priv->cur_seqid == QSPI_CMD_BE_4K) || (priv->cur_seqid == QSPI_CMD_WREAR) || (priv->cur_seqid == QSPI_CMD_BRWR)) qspi_ahb_invalid(priv); #endif return 0; } void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable) { u32 mcr_val; mcr_val = qspi_read32(priv->flags, &priv->regs->mcr); if (disable) mcr_val |= QSPI_MCR_MDIS_MASK; else mcr_val &= ~QSPI_MCR_MDIS_MASK; qspi_write32(priv->flags, &priv->regs->mcr, mcr_val); } void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits) { u32 smpr_val; smpr_val = qspi_read32(priv->flags, &priv->regs->smpr); smpr_val &= ~clear_bits; smpr_val |= set_bits; qspi_write32(priv->flags, &priv->regs->smpr, smpr_val); } #ifndef CONFIG_DM_SPI static unsigned long spi_bases[] = { QSPI0_BASE_ADDR, #ifdef CONFIG_MX6SX QSPI1_BASE_ADDR, #endif }; static unsigned long amba_bases[] = { QSPI0_AMBA_BASE, #ifdef CONFIG_MX6SX QSPI1_AMBA_BASE, #endif }; static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave) { return container_of(slave, struct fsl_qspi, slave); } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { u32 mcr_val; struct fsl_qspi *qspi; struct fsl_qspi_regs *regs; u32 total_size; if (bus >= ARRAY_SIZE(spi_bases)) return NULL; if (cs >= FSL_QSPI_FLASH_NUM) return NULL; qspi = spi_alloc_slave(struct fsl_qspi, bus, cs); if (!qspi) return NULL; #ifdef CONFIG_SYS_FSL_QSPI_BE qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG; #endif regs = (struct fsl_qspi_regs *)spi_bases[bus]; qspi->priv.regs = regs; /* * According cs, use different amba_base to choose the * corresponding flash devices. * * If not, only one flash device is used even if passing * different cs using `sf probe` */ qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE; qspi->slave.max_write_size = TX_BUFFER_SIZE; mcr_val = qspi_read32(qspi->priv.flags, ®s->mcr); /* Set endianness to LE for i.mx */ if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7)) mcr_val = QSPI_MCR_END_CFD_LE; qspi_write32(qspi->priv.flags, ®s->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK | (mcr_val & QSPI_MCR_END_CFD_MASK)); qspi_cfg_smpr(&qspi->priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK | QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0); total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM; /* * Any read access to non-implemented addresses will provide * undefined results. * * In case single die flash devices, TOP_ADDR_MEMA2 and * TOP_ADDR_MEMB2 should be initialized/programmed to * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect, * setting the size of these devices to 0. This would ensure * that the complete memory map is assigned to only one flash device. */ qspi_write32(qspi->priv.flags, ®s->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]); qspi_write32(qspi->priv.flags, ®s->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]); qspi_write32(qspi->priv.flags, ®s->sfb1ad, total_size | amba_bases[bus]); qspi_write32(qspi->priv.flags, ®s->sfb2ad, total_size | amba_bases[bus]); qspi_set_lut(&qspi->priv); #ifdef CONFIG_SYS_FSL_QSPI_AHB qspi_init_ahb_read(&qspi->priv); #endif qspi_module_disable(&qspi->priv, 0); return &qspi->slave; } void spi_free_slave(struct spi_slave *slave) { struct fsl_qspi *qspi = to_qspi_spi(slave); free(qspi); } int spi_claim_bus(struct spi_slave *slave) { return 0; } void spi_release_bus(struct spi_slave *slave) { /* Nothing to do */ } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct fsl_qspi *qspi = to_qspi_spi(slave); return qspi_xfer(&qspi->priv, bitlen, dout, din, flags); } void spi_init(void) { /* Nothing to do */ } #else static int fsl_qspi_child_pre_probe(struct udevice *dev) { struct spi_slave *slave = dev_get_parent_priv(dev); slave->max_write_size = TX_BUFFER_SIZE; return 0; } static int fsl_qspi_probe(struct udevice *bus) { u32 mcr_val; u32 amba_size_per_chip; struct fsl_qspi_platdata *plat = dev_get_platdata(bus); struct fsl_qspi_priv *priv = dev_get_priv(bus); struct dm_spi_bus *dm_spi_bus; int i, ret; dm_spi_bus = bus->uclass_priv; dm_spi_bus->max_hz = plat->speed_hz; priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base; priv->flags = plat->flags; priv->speed_hz = plat->speed_hz; /* * QSPI SFADR width is 32bits, the max dest addr is 4GB-1. * AMBA memory zone should be located on the 0~4GB space * even on a 64bits cpu. */ priv->amba_base[0] = (u32)plat->amba_base; priv->amba_total_size = (u32)plat->amba_total_size; priv->flash_num = plat->flash_num; priv->num_chipselect = plat->num_chipselect; /* make sure controller is not busy anywhere */ ret = is_controller_busy(priv); if (ret) { debug("ERROR : The controller is busy\n"); return ret; } mcr_val = qspi_read32(priv->flags, &priv->regs->mcr); /* Set endianness to LE for i.mx */ if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7)) mcr_val = QSPI_MCR_END_CFD_LE; qspi_write32(priv->flags, &priv->regs->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK | (mcr_val & QSPI_MCR_END_CFD_MASK)); qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK | QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0); /* * Assign AMBA memory zone for every chipselect * QuadSPI has two channels, every channel has two chipselects. * If the property 'num-cs' in dts is 2, the AMBA memory will be divided * into two parts and assign to every channel. This indicate that every * channel only has one valid chipselect. * If the property 'num-cs' in dts is 4, the AMBA memory will be divided * into four parts and assign to every chipselect. * Every channel will has two valid chipselects. */ amba_size_per_chip = priv->amba_total_size >> (priv->num_chipselect >> 1); for (i = 1 ; i < priv->num_chipselect ; i++) priv->amba_base[i] = amba_size_per_chip + priv->amba_base[i - 1]; /* * Any read access to non-implemented addresses will provide * undefined results. * * In case single die flash devices, TOP_ADDR_MEMA2 and * TOP_ADDR_MEMB2 should be initialized/programmed to * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect, * setting the size of these devices to 0. This would ensure * that the complete memory map is assigned to only one flash device. */ qspi_write32(priv->flags, &priv->regs->sfa1ad, priv->amba_base[0] + amba_size_per_chip); switch (priv->num_chipselect) { case 1: break; case 2: qspi_write32(priv->flags, &priv->regs->sfa2ad, priv->amba_base[1]); qspi_write32(priv->flags, &priv->regs->sfb1ad, priv->amba_base[1] + amba_size_per_chip); qspi_write32(priv->flags, &priv->regs->sfb2ad, priv->amba_base[1] + amba_size_per_chip); break; case 4: qspi_write32(priv->flags, &priv->regs->sfa2ad, priv->amba_base[2]); qspi_write32(priv->flags, &priv->regs->sfb1ad, priv->amba_base[3]); qspi_write32(priv->flags, &priv->regs->sfb2ad, priv->amba_base[3] + amba_size_per_chip); break; default: debug("Error: Unsupported chipselect number %u!\n", priv->num_chipselect); qspi_module_disable(priv, 1); return -EINVAL; } qspi_set_lut(priv); #ifdef CONFIG_SYS_FSL_QSPI_AHB qspi_init_ahb_read(priv); #endif qspi_module_disable(priv, 0); return 0; } static int fsl_qspi_ofdata_to_platdata(struct udevice *bus) { struct fdt_resource res_regs, res_mem; struct fsl_qspi_platdata *plat = bus->platdata; const void *blob = gd->fdt_blob; int node = dev_of_offset(bus); int ret, flash_num = 0, subnode; if (fdtdec_get_bool(blob, node, "big-endian")) plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG; ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI", &res_regs); if (ret) { debug("Error: can't get regs base addresses(ret = %d)!\n", ret); return -ENOMEM; } ret = fdt_get_named_resource(blob, node, "reg", "reg-names", "QuadSPI-memory", &res_mem); if (ret) { debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret); return -ENOMEM; } /* Count flash numbers */ fdt_for_each_subnode(subnode, blob, node) ++flash_num; if (flash_num == 0) { debug("Error: Missing flashes!\n"); return -ENODEV; } plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency", FSL_QSPI_DEFAULT_SCK_FREQ); plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs", FSL_QSPI_MAX_CHIPSELECT_NUM); plat->reg_base = res_regs.start; plat->amba_base = res_mem.start; plat->amba_total_size = res_mem.end - res_mem.start + 1; plat->flash_num = flash_num; debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n", __func__, (u64)plat->reg_base, (u64)plat->amba_base, (u64)plat->amba_total_size, plat->speed_hz, plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le" ); return 0; } static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct fsl_qspi_priv *priv; struct udevice *bus; bus = dev->parent; priv = dev_get_priv(bus); return qspi_xfer(priv, bitlen, dout, din, flags); } static int fsl_qspi_claim_bus(struct udevice *dev) { struct fsl_qspi_priv *priv; struct udevice *bus; struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); int ret; bus = dev->parent; priv = dev_get_priv(bus); /* make sure controller is not busy anywhere */ ret = is_controller_busy(priv); if (ret) { debug("ERROR : The controller is busy\n"); return ret; } priv->cur_amba_base = priv->amba_base[slave_plat->cs]; qspi_module_disable(priv, 0); return 0; } static int fsl_qspi_release_bus(struct udevice *dev) { struct fsl_qspi_priv *priv; struct udevice *bus; bus = dev->parent; priv = dev_get_priv(bus); qspi_module_disable(priv, 1); return 0; } static int fsl_qspi_set_speed(struct udevice *bus, uint speed) { /* Nothing to do */ return 0; } static int fsl_qspi_set_mode(struct udevice *bus, uint mode) { /* Nothing to do */ return 0; } static const struct dm_spi_ops fsl_qspi_ops = { .claim_bus = fsl_qspi_claim_bus, .release_bus = fsl_qspi_release_bus, .xfer = fsl_qspi_xfer, .set_speed = fsl_qspi_set_speed, .set_mode = fsl_qspi_set_mode, }; static const struct udevice_id fsl_qspi_ids[] = { { .compatible = "fsl,vf610-qspi" }, { .compatible = "fsl,imx6sx-qspi" }, { .compatible = "fsl,imx6ul-qspi" }, { .compatible = "fsl,imx7d-qspi" }, { } }; U_BOOT_DRIVER(fsl_qspi) = { .name = "fsl_qspi", .id = UCLASS_SPI, .of_match = fsl_qspi_ids, .ops = &fsl_qspi_ops, .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata), .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv), .probe = fsl_qspi_probe, .child_pre_probe = fsl_qspi_child_pre_probe, }; #endif