// SPDX-License-Identifier: GPL-2.0 /* * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH */ #include <common.h> #include <clk.h> #include <dm.h> #include <dt-bindings/memory/rk3368-dmc.h> #include <dt-structs.h> #include <ram.h> #include <regmap.h> #include <syscon.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/cru_rk3368.h> #include <asm/arch/grf_rk3368.h> #include <asm/arch/ddr_rk3368.h> #include <asm/arch/sdram.h> #include <asm/arch/sdram_common.h> struct dram_info { struct ram_info info; struct clk ddr_clk; struct rk3368_cru *cru; struct rk3368_grf *grf; struct rk3368_ddr_pctl *pctl; struct rk3368_ddrphy *phy; struct rk3368_pmu_grf *pmugrf; struct rk3368_msch *msch; }; struct rk3368_sdram_params { #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_rockchip_rk3368_dmc of_plat; #endif struct rk3288_sdram_pctl_timing pctl_timing; u32 trefi_mem_ddr3; struct rk3288_sdram_channel chan; struct regmap *map; u32 ddr_freq; u32 memory_schedule; u32 ddr_speed_bin; u32 tfaw_mult; }; /* PTCL bits */ enum { /* PCTL_DFISTCFG0 */ DFI_INIT_START = BIT(0), DFI_DATA_BYTE_DISABLE_EN = BIT(2), /* PCTL_DFISTCFG1 */ DFI_DRAM_CLK_SR_EN = BIT(0), DFI_DRAM_CLK_DPD_EN = BIT(1), ODT_LEN_BL8_W_SHIFT = 16, /* PCTL_DFISTCFG2 */ DFI_PARITY_INTR_EN = BIT(0), DFI_PARITY_EN = BIT(1), /* PCTL_DFILPCFG0 */ TLP_RESP_TIME_SHIFT = 16, LP_SR_EN = BIT(8), LP_PD_EN = BIT(0), /* PCTL_DFIODTCFG */ RANK0_ODT_WRITE_SEL = BIT(3), RANK1_ODT_WRITE_SEL = BIT(11), /* PCTL_SCFG */ HW_LOW_POWER_EN = BIT(0), /* PCTL_MCMD */ START_CMD = BIT(31), MCMD_RANK0 = BIT(20), MCMD_RANK1 = BIT(21), DESELECT_CMD = 0, PREA_CMD, REF_CMD, MRS_CMD, ZQCS_CMD, ZQCL_CMD, RSTL_CMD, MRR_CMD = 8, DPDE_CMD, /* PCTL_POWCTL */ POWER_UP_START = BIT(0), /* PCTL_POWSTAT */ POWER_UP_DONE = BIT(0), /* PCTL_SCTL */ INIT_STATE = 0, CFG_STATE, GO_STATE, SLEEP_STATE, WAKEUP_STATE, /* PCTL_STAT */ LP_TRIG_SHIFT = 4, LP_TRIG_MASK = 7, PCTL_STAT_MSK = 7, INIT_MEM = 0, CONFIG, CONFIG_REQ, ACCESS, ACCESS_REQ, LOW_POWER, LOW_POWER_ENTRY_REQ, LOW_POWER_EXIT_REQ, /* PCTL_MCFG */ DDR2_DDR3_BL_8 = BIT(0), DDR3_EN = BIT(5), TFAW_TRRD_MULT4 = (0 << 18), TFAW_TRRD_MULT5 = (1 << 18), TFAW_TRRD_MULT6 = (2 << 18), }; #define DDR3_MR0_WR(n) \ ((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9)) #define DDR3_MR0_CL(n) \ ((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2)) #define DDR3_MR0_BL8 \ (0 << 0) #define DDR3_MR0_DLL_RESET \ (1 << 8) #define DDR3_MR1_RTT120OHM \ ((0 << 9) | (1 << 6) | (0 << 2)) #define DDR3_MR2_TWL(n) \ (((n - 5) & 0x7) << 3) #ifdef CONFIG_TPL_BUILD static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable) { if (enable) rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); else rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL); } static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode) { if (ddr3_mode) rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); else rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3); } static void ddrphy_config(struct rk3368_ddrphy *phy, u32 tcl, u32 tal, u32 tcwl) { int i; /* Set to DDR3 mode */ clrsetbits_le32(&phy->reg[1], 0x3, 0x0); /* DDRPHY_REGB: CL, AL */ clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal); /* DDRPHY_REGC: CWL */ clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl); /* Update drive-strength */ writel(0xcc, &phy->reg[0x11]); writel(0xaa, &phy->reg[0x16]); /* * Update NRCOMP/PRCOMP for all 4 channels (for details of all * affected registers refer to the documentation of DDRPHY_REG20 * and DDRPHY_REG21 in the RK3368 TRM. */ for (i = 0; i < 4; ++i) { writel(0xcc, &phy->reg[0x20 + i * 0x10]); writel(0x44, &phy->reg[0x21 + i * 0x10]); } /* Enable write-leveling calibration bypass */ setbits_le32(&phy->reg[2], BIT(3)); } static void copy_to_reg(u32 *dest, const u32 *src, u32 n) { int i; for (i = 0; i < n / sizeof(u32); i++) writel(*src++, dest++); } static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd) { u32 mcmd = START_CMD | cmd | rank; debug("%s: writing %x to MCMD\n", __func__, mcmd); writel(mcmd, &pctl->mcmd); while (readl(&pctl->mcmd) & START_CMD) /* spin */; } static void send_mrs(struct rk3368_ddr_pctl *pctl, u32 rank, u32 mr_num, u32 mr_data) { u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4); debug("%s: writing %x to MCMD\n", __func__, mcmd); writel(mcmd, &pctl->mcmd); while (readl(&pctl->mcmd) & START_CMD) /* spin */; } static int memory_init(struct rk3368_ddr_pctl *pctl, struct rk3368_sdram_params *params) { u32 mr[4]; const ulong timeout_ms = 500; ulong tmp; /* * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register * of PCTL. */ writel(POWER_UP_START, &pctl->powctl); tmp = get_timer(0); do { if (get_timer(tmp) > timeout_ms) { pr_err("%s: POWER_UP_START did not complete in %ld ms\n", __func__, timeout_ms); return -ETIME; } } while (!(readl(&pctl->powstat) & POWER_UP_DONE)); /* Configure MR0 through MR3 */ mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) | DDR3_MR0_CL(params->pctl_timing.tcl) | DDR3_MR0_DLL_RESET; mr[1] = DDR3_MR1_RTT120OHM; mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl); mr[3] = 0; /* * Also see RK3368 Technical Reference Manual: * "16.6.2 Initialization (DDR3 Initialization Sequence)" */ send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD); udelay(1); send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]); send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]); send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]); send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]); send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD); return 0; } static void move_to_config_state(struct rk3368_ddr_pctl *pctl) { /* * Also see RK3368 Technical Reference Manual: * "16.6.1 State transition of PCTL (Moving to Config State)" */ u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; switch (state) { case LOW_POWER: writel(WAKEUP_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) /* spin */; /* fall-through */ case ACCESS: case INIT_MEM: writel(CFG_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) /* spin */; break; case CONFIG: return; default: break; } } static void move_to_access_state(struct rk3368_ddr_pctl *pctl) { /* * Also see RK3368 Technical Reference Manual: * "16.6.1 State transition of PCTL (Moving to Access State)" */ u32 state = readl(&pctl->stat) & PCTL_STAT_MSK; switch (state) { case LOW_POWER: if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) & LP_TRIG_MASK) == 1) return; writel(WAKEUP_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) /* spin */; /* fall-through */ case INIT_MEM: writel(CFG_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) /* spin */; /* fall-through */ case CONFIG: writel(GO_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG) /* spin */; break; case ACCESS: return; default: break; } } static void ddrctl_reset(struct rk3368_cru *cru) { const u32 ctl_reset = BIT(3) | BIT(2); const u32 phy_reset = BIT(1) | BIT(0); /* * The PHY reset should be released before the PCTL reset. * * Note that the following sequence (including the number of * us to delay between releasing the PHY and PCTL reset) has * been adapted per feedback received from Rockchips, so do * not try to optimise. */ rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset); udelay(1); rk_clrreg(&cru->softrst_con[10], phy_reset); udelay(5); rk_clrreg(&cru->softrst_con[10], ctl_reset); } static void ddrphy_reset(struct rk3368_ddrphy *ddrphy) { /* * The analog part of the PHY should be release at least 1000 * DRAM cycles before the digital part of the PHY (waiting for * 5us will ensure this for a DRAM clock as low as 200MHz). */ clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2)); udelay(1); setbits_le32(&ddrphy->reg[0], BIT(2)); udelay(5); setbits_le32(&ddrphy->reg[0], BIT(3)); } static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq) { u32 dqs_dll_delay; setbits_le32(&ddrphy->reg[0x13], BIT(4)); clrbits_le32(&ddrphy->reg[0x14], BIT(3)); setbits_le32(&ddrphy->reg[0x26], BIT(4)); clrbits_le32(&ddrphy->reg[0x27], BIT(3)); setbits_le32(&ddrphy->reg[0x36], BIT(4)); clrbits_le32(&ddrphy->reg[0x37], BIT(3)); setbits_le32(&ddrphy->reg[0x46], BIT(4)); clrbits_le32(&ddrphy->reg[0x47], BIT(3)); setbits_le32(&ddrphy->reg[0x56], BIT(4)); clrbits_le32(&ddrphy->reg[0x57], BIT(3)); if (freq <= 400000000) setbits_le32(&ddrphy->reg[0xa4], 0x1f); else clrbits_le32(&ddrphy->reg[0xa4], 0x1f); if (freq < 681000000) dqs_dll_delay = 3; /* 67.5 degree delay */ else dqs_dll_delay = 2; /* 45 degree delay */ writel(dqs_dll_delay, &ddrphy->reg[0x28]); writel(dqs_dll_delay, &ddrphy->reg[0x38]); writel(dqs_dll_delay, &ddrphy->reg[0x48]); writel(dqs_dll_delay, &ddrphy->reg[0x58]); } static int dfi_cfg(struct rk3368_ddr_pctl *pctl) { const ulong timeout_ms = 200; ulong tmp; writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0); writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN, &pctl->dfistcfg1); writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2); writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN, &pctl->dfilpcfg0); writel(1, &pctl->dfitphyupdtype0); writel(0x1f, &pctl->dfitphyrdlat); writel(0, &pctl->dfitphywrdata); writel(0, &pctl->dfiupdcfg); /* phyupd and ctrlupd disabled */ setbits_le32(&pctl->dfistcfg0, DFI_INIT_START); tmp = get_timer(0); do { if (get_timer(tmp) > timeout_ms) { pr_err("%s: DFI init did not complete within %ld ms\n", __func__, timeout_ms); return -ETIME; } } while ((readl(&pctl->dfiststat0) & 1) == 0); return 0; } static inline u32 ps_to_tCK(const u32 ps, const ulong freq) { const ulong MHz = 1000000; return DIV_ROUND_UP(ps * freq, 1000000 * MHz); } static inline u32 ns_to_tCK(const u32 ns, const ulong freq) { return ps_to_tCK(ns * 1000, freq); } static inline u32 tCK_to_ps(const ulong tCK, const ulong freq) { const ulong MHz = 1000000; return DIV_ROUND_UP(tCK * 1000000 * MHz, freq); } static int pctl_calc_timings(struct rk3368_sdram_params *params, ulong freq) { struct rk3288_sdram_pctl_timing *pctl_timing = ¶ms->pctl_timing; const ulong MHz = 1000000; u32 tccd; u32 tfaw_as_ps; if (params->ddr_speed_bin != DDR3_1600K) { pr_err("%s: unimplemented DDR3 speed bin %d\n", __func__, params->ddr_speed_bin); return -1; } /* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */ pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz); pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz); pctl_timing->tinit = 200; /* 200 usec */ pctl_timing->trsth = 500; /* 500 usec */ pctl_timing->trefi = 78; /* 7.8usec = 78 * 100ns */ params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq); if (freq <= (400 * MHz)) { pctl_timing->tcl = 6; pctl_timing->tcwl = 10; } else if (freq <= (533 * MHz)) { pctl_timing->tcl = 8; pctl_timing->tcwl = 6; } else if (freq <= (666 * MHz)) { pctl_timing->tcl = 10; pctl_timing->tcwl = 7; } else { pctl_timing->tcl = 11; pctl_timing->tcwl = 8; } pctl_timing->tmrd = 4; /* 4 tCK (all speed bins) */ pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */ pctl_timing->trp = max(4u, ps_to_tCK(13750, freq)); /* * JESD-79: * READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL */ tccd = 4; pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl; pctl_timing->tal = 0; pctl_timing->tras = ps_to_tCK(35000, freq); pctl_timing->trc = ps_to_tCK(48750, freq); pctl_timing->trcd = ps_to_tCK(13750, freq); pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq)); pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq)); pctl_timing->twr = ps_to_tCK(15000, freq); /* The DDR3 mode-register does only support even values for tWR > 8. */ if (pctl_timing->twr > 8) pctl_timing->twr = (pctl_timing->twr + 1) & ~1; pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq)); pctl_timing->texsr = 512; /* tEXSR(max) is tDLLLK */ pctl_timing->txp = max(3u, ps_to_tCK(6000, freq)); pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq)); pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq)); pctl_timing->tzqcsi = 10000; /* as used by Rockchip */ pctl_timing->tdqs = 1; /* fixed for DDR3 */ pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq)); pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq)); pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq)); pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq)); pctl_timing->trstl = ns_to_tCK(100, freq); pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq)); /* tZQoper */ pctl_timing->tmrr = 0; pctl_timing->tckesr = pctl_timing->tcke + 1; /* JESD-79: tCKE + 1tCK */ pctl_timing->tdpd = 0; /* RK3368 TRM: "allowed values for DDR3: 0" */ /* * The controller can represent tFAW as 4x, 5x or 6x tRRD only. * We want to use the smallest multiplier that satisfies the tFAW * requirements of the given speed-bin. If necessary, we stretch out * tRRD to allow us to operate on a 6x multiplier for tFAW. */ tfaw_as_ps = 40000; /* 40ns: tFAW for DDR3-1600K, 2KB page-size */ if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) { /* If tFAW is > 6 x tRRD, we need to stretch tRRD */ pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq); params->tfaw_mult = TFAW_TRRD_MULT6; } else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) { params->tfaw_mult = TFAW_TRRD_MULT6; } else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) { params->tfaw_mult = TFAW_TRRD_MULT5; } else { params->tfaw_mult = TFAW_TRRD_MULT4; } return 0; } static void pctl_cfg(struct rk3368_ddr_pctl *pctl, struct rk3368_sdram_params *params, struct rk3368_grf *grf) { /* Configure PCTL timing registers */ params->pctl_timing.trefi |= BIT(31); /* see PCTL_TREFI */ copy_to_reg(&pctl->togcnt1u, ¶ms->pctl_timing.togcnt1u, sizeof(params->pctl_timing)); writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3); /* Set up ODT write selector and ODT write length */ writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg); writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1); /* Set up the CL/CWL-dependent timings of DFI */ writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen); writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat); /* DDR3 */ writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg); writel(0x001c0004, &grf->ddrc0_con0); setbits_le32(&pctl->scfg, HW_LOW_POWER_EN); } static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl, struct rk3368_ddrphy *ddrphy) { const u32 trefi = readl(&pctl->trefi); const ulong timeout_ms = 500; ulong tmp; /* disable auto-refresh */ writel(0 | BIT(31), &pctl->trefi); clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21); tmp = get_timer(0); do { if (get_timer(tmp) > timeout_ms) { pr_err("%s: did not complete within %ld ms\n", __func__, timeout_ms); return -ETIME; } } while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf); send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD); clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20); /* resume auto-refresh */ writel(trefi | BIT(31), &pctl->trefi); return 0; } static int sdram_col_row_detect(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct rk3368_sdram_params *params = dev_get_platdata(dev); struct rk3368_ddr_pctl *pctl = priv->pctl; struct rk3368_msch *msch = priv->msch; const u32 test_pattern = 0x5aa5f00f; int row, col; uintptr_t addr; move_to_config_state(pctl); writel(6, &msch->ddrconf); move_to_access_state(pctl); /* Detect col */ for (col = 11; col >= 9; col--) { writel(0, CONFIG_SYS_SDRAM_BASE); addr = CONFIG_SYS_SDRAM_BASE + (1 << (col + params->chan.bw - 1)); writel(test_pattern, addr); if ((readl(addr) == test_pattern) && (readl(CONFIG_SYS_SDRAM_BASE) == 0)) break; } if (col == 8) { pr_err("%s: col detect error\n", __func__); return -EINVAL; } move_to_config_state(pctl); writel(15, &msch->ddrconf); move_to_access_state(pctl); /* Detect row*/ for (row = 16; row >= 12; row--) { writel(0, CONFIG_SYS_SDRAM_BASE); addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1)); writel(test_pattern, addr); if ((readl(addr) == test_pattern) && (readl(CONFIG_SYS_SDRAM_BASE) == 0)) break; } if (row == 11) { pr_err("%s: row detect error\n", __func__); return -EINVAL; } /* Record results */ debug("%s: col %d, row %d\n", __func__, col, row); params->chan.col = col; params->chan.cs0_row = row; params->chan.cs1_row = row; params->chan.row_3_4 = 0; return 0; } static int msch_niu_config(struct rk3368_msch *msch, struct rk3368_sdram_params *params) { int i; const u8 cols = params->chan.col - ((params->chan.bw == 2) ? 0 : 1); const u8 rows = params->chan.cs0_row; /* * The DDR address-translation table always assumes a 32bit * bus and the comparison below takes care of adjusting for * a 16bit bus (i.e. one column-address is consumed). */ const struct { u8 rows; u8 columns; u8 type; } ddrconf_table[] = { /* * C-B-R-D patterns are first. For these we require an * exact match for the columns and rows (as there's * one entry per possible configuration). */ [0] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD }, [1] = { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD }, [2] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD }, [3] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD }, [4] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD }, [5] = { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD }, [6] = { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD }, [7] = { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD }, [8] = { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD }, [9] = { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD }, [10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD }, /* * 11 through 13 are C-R-B-D patterns. These are * matched for an exact number of columns and to * ensure that the hardware uses at least as many rows * as the pattern requires (i.e. we make sure that * there's no gaps up until we hit the device/chip-select; * however, these patterns can accept up to 16 rows, * as the row-address continues right after the CS * switching) */ [11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD }, [12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD }, [13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD }, /* * 14 and 15 are catch-all variants using a C-B-D-R * scheme (i.e. alternating the chip-select every time * C-B overflows) and stuffing the remaining C-bits * into the top. Matching needs to make sure that the * number of columns is either an exact match (i.e. we * can use less the the maximum number of rows) -or- * that the columns exceed what is given in this table * and the rows are an exact match (in which case the * remaining C-bits will be stuffed onto the top after * the device/chip-select switches). */ [14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR }, [15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR }, }; /* * For C-B-R-D, we need an exact match (i.e. both for the number of * columns and rows), while for C-B-D-R, only the the number of * columns needs to match. */ for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) { bool match = false; /* If this entry if for a different matcher, then skip it */ if (ddrconf_table[i].type != params->memory_schedule) continue; /* * Match according to the rules (exact/inexact/at-least) * documented in the ddrconf_table above. */ switch (params->memory_schedule) { case DMC_MSCH_CBRD: match = (ddrconf_table[i].columns == cols) && (ddrconf_table[i].rows == rows); break; case DMC_MSCH_CRBD: match = (ddrconf_table[i].columns == cols) && (ddrconf_table[i].rows <= rows); break; case DMC_MSCH_CBDR: match = (ddrconf_table[i].columns == cols) || ((ddrconf_table[i].columns <= cols) && (ddrconf_table[i].rows == rows)); break; default: break; } if (match) { debug("%s: setting ddrconf 0x%x\n", __func__, i); writel(i, &msch->ddrconf); return 0; } } pr_err("%s: ddrconf (NIU config) not found\n", __func__); return -EINVAL; } static void dram_all_config(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct rk3368_pmu_grf *pmugrf = priv->pmugrf; struct rk3368_sdram_params *params = dev_get_platdata(dev); const struct rk3288_sdram_channel *info = ¶ms->chan; u32 sys_reg = 0; const int chan = 0; sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT; sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT; sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan); sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan); sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan); sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan); sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan); sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan); sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan); sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan); sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan); writel(sys_reg, &pmugrf->os_reg[2]); } static int setup_sdram(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct rk3368_sdram_params *params = dev_get_platdata(dev); struct rk3368_ddr_pctl *pctl = priv->pctl; struct rk3368_ddrphy *ddrphy = priv->phy; struct rk3368_cru *cru = priv->cru; struct rk3368_grf *grf = priv->grf; struct rk3368_msch *msch = priv->msch; int ret; /* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */ ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq); if (ret < 0) { debug("%s: could not set DDR clock: %d\n", __func__, ret); return ret; } /* Update the read-latency for the RK3368 */ writel(0x32, &msch->readlatency); /* Initialise the DDR PCTL and DDR PHY */ ddrctl_reset(cru); ddrphy_reset(ddrphy); ddrphy_config_delays(ddrphy, params->ddr_freq); dfi_cfg(pctl); /* Configure relative system information of grf_ddrc0_con0 register */ ddr_set_ddr3_mode(grf, true); ddr_set_noc_spr_err_stall(grf, true); /* Calculate timings */ pctl_calc_timings(params, params->ddr_freq); /* Initialise the device timings in protocol controller */ pctl_cfg(pctl, params, grf); /* Configure AL, CL ... information of PHY registers */ ddrphy_config(ddrphy, params->pctl_timing.tcl, params->pctl_timing.tal, params->pctl_timing.tcwl); /* Initialize DRAM and configure with mode-register values */ ret = memory_init(pctl, params); if (ret) goto error; move_to_config_state(pctl); /* Perform data-training */ ddrphy_data_training(pctl, ddrphy); move_to_access_state(pctl); /* TODO(prt): could detect rank in training... */ params->chan.rank = 2; /* TODO(prt): bus width is not auto-detected (yet)... */ params->chan.bw = 2; /* 32bit wide bus */ params->chan.dbw = params->chan.dbw; /* 32bit wide bus */ /* DDR3 is always 8 bank */ params->chan.bk = 3; /* Detect col and row number */ ret = sdram_col_row_detect(dev); if (ret) goto error; /* Configure NIU DDR configuration */ ret = msch_niu_config(msch, params); if (ret) goto error; /* set up OS_REG to communicate w/ next stage and OS */ dram_all_config(dev); return 0; error: printf("DRAM init failed!\n"); hang(); } #endif static int rk3368_dmc_ofdata_to_platdata(struct udevice *dev) { int ret = 0; #if !CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3368_sdram_params *plat = dev_get_platdata(dev); ret = regmap_init_mem(dev_ofnode(dev), &plat->map); if (ret) return ret; #endif return ret; } #if CONFIG_IS_ENABLED(OF_PLATDATA) static int conv_of_platdata(struct udevice *dev) { struct rk3368_sdram_params *plat = dev_get_platdata(dev); struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat; plat->ddr_freq = of_plat->rockchip_ddr_frequency; plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin; plat->memory_schedule = of_plat->rockchip_memory_schedule; return 0; } #endif static int rk3368_dmc_probe(struct udevice *dev) { #ifdef CONFIG_TPL_BUILD struct rk3368_sdram_params *plat = dev_get_platdata(dev); struct rk3368_ddr_pctl *pctl; struct rk3368_ddrphy *ddrphy; struct rk3368_cru *cru; struct rk3368_grf *grf; struct rk3368_msch *msch; int ret; struct udevice *dev_clk; #endif struct dram_info *priv = dev_get_priv(dev); #if CONFIG_IS_ENABLED(OF_PLATDATA) ret = conv_of_platdata(dev); if (ret) return ret; #endif priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF); debug("%s: pmugrf=%p\n", __func__, priv->pmugrf); #ifdef CONFIG_TPL_BUILD pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0]; ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2]; msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH); grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); priv->pctl = pctl; priv->phy = ddrphy; priv->msch = msch; priv->grf = grf; ret = rockchip_get_clk(&dev_clk); if (ret) return ret; priv->ddr_clk.id = CLK_DDR; ret = clk_request(dev_clk, &priv->ddr_clk); if (ret) return ret; cru = rockchip_get_cru(); priv->cru = cru; if (IS_ERR(priv->cru)) return PTR_ERR(priv->cru); ret = setup_sdram(dev); if (ret) return ret; #endif priv->info.base = 0; priv->info.size = rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]); /* * we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff * is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is * inaccessible for some IP controller. */ priv->info.size = min(priv->info.size, (size_t)0xfe000000); return 0; } static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info) { struct dram_info *priv = dev_get_priv(dev); *info = priv->info; return 0; } static struct ram_ops rk3368_dmc_ops = { .get_info = rk3368_dmc_get_info, }; static const struct udevice_id rk3368_dmc_ids[] = { { .compatible = "rockchip,rk3368-dmc" }, { } }; U_BOOT_DRIVER(dmc_rk3368) = { .name = "rockchip_rk3368_dmc", .id = UCLASS_RAM, .of_match = rk3368_dmc_ids, .ops = &rk3368_dmc_ops, .probe = rk3368_dmc_probe, .priv_auto_alloc_size = sizeof(struct dram_info), .ofdata_to_platdata = rk3368_dmc_ofdata_to_platdata, .probe = rk3368_dmc_probe, .priv_auto_alloc_size = sizeof(struct dram_info), .platdata_auto_alloc_size = sizeof(struct rk3368_sdram_params), };