// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2011 * eInfochips Ltd. <www.einfochips.com> * Written-by: Ajay Bhargav <contact@8051projects.net> * * (C) Copyright 2010 * Marvell Semiconductor <www.marvell.com> * Contributor: Mahavir Jain <mjain@marvell.com> */ #include <common.h> #include <net.h> #include <malloc.h> #include <miiphy.h> #include <netdev.h> #include <asm/types.h> #include <asm/byteorder.h> #include <linux/err.h> #include <linux/mii.h> #include <asm/io.h> #include <asm/arch/armada100.h> #include "armada100_fec.h" #define PHY_ADR_REQ 0xFF /* Magic number to read/write PHY address */ #ifdef DEBUG static int eth_dump_regs(struct eth_device *dev) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; unsigned int i = 0; printf("\noffset: phy_adr, value: 0x%x\n", readl(®s->phyadr)); printf("offset: smi, value: 0x%x\n", readl(®s->smi)); for (i = 0x400; i <= 0x4e4; i += 4) printf("offset: 0x%x, value: 0x%x\n", i, readl(ARMD1_FEC_BASE + i)); return 0; } #endif static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond) { u32 timeout = PHY_WAIT_ITERATIONS; u32 reg_val; while (--timeout) { reg_val = readl(reg); if (cond && (reg_val & flag)) break; else if (!cond && !(reg_val & flag)) break; udelay(PHY_WAIT_MICRO_SECONDS); } return !timeout; } static int smi_reg_read(struct mii_dev *bus, int phy_addr, int devad, int phy_reg) { u16 value = 0; struct eth_device *dev = eth_get_dev_by_name(bus->name); struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; u32 val; if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { val = readl(®s->phyadr); value = val & 0x1f; return value; } /* check parameters */ if (phy_addr > PHY_MASK) { printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n", __func__, phy_addr); return -EINVAL; } if (phy_reg > PHY_MASK) { printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n", __func__, phy_reg); return -EINVAL; } /* wait for the SMI register to become available */ if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); return -1; } writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, ®s->smi); /* now wait for the data to be valid */ if (armdfec_phy_timeout(®s->smi, SMI_R_VALID, true)) { val = readl(®s->smi); printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n", __func__, val); return -1; } val = readl(®s->smi); value = val & 0xffff; return value; } static int smi_reg_write(struct mii_dev *bus, int phy_addr, int devad, int phy_reg, u16 value) { struct eth_device *dev = eth_get_dev_by_name(bus->name); struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) { clrsetbits_le32(®s->phyadr, 0x1f, value & 0x1f); return 0; } /* check parameters */ if (phy_addr > PHY_MASK) { printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__); return -EINVAL; } if (phy_reg > PHY_MASK) { printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__); return -EINVAL; } /* wait for the SMI register to become available */ if (armdfec_phy_timeout(®s->smi, SMI_BUSY, false)) { printf("ARMD100 FEC: (%s) PHY busy timeout\n", __func__); return -1; } writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff), ®s->smi); return 0; } /* * Abort any transmit and receive operations and put DMA * in idle state. AT and AR bits are cleared upon entering * in IDLE state. So poll those bits to verify operation. */ static void abortdma(struct eth_device *dev) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; int delay; int maxretries = 40; u32 tmp; while (--maxretries) { writel(SDMA_CMD_AR | SDMA_CMD_AT, ®s->sdma_cmd); udelay(100); delay = 10; while (--delay) { tmp = readl(®s->sdma_cmd); if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT))) break; udelay(10); } if (delay) break; } if (!maxretries) printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__); } static inline u32 nibble_swapping_32_bit(u32 x) { return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); } static inline u32 nibble_swapping_16_bit(u32 x) { return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4); } static inline u32 flip_4_bits(u32 x) { return ((x & 0x01) << 3) | ((x & 0x002) << 1) | ((x & 0x04) >> 1) | ((x & 0x008) >> 3); } /* * This function will calculate the hash function of the address. * depends on the hash mode and hash size. * Inputs * mach - the 2 most significant bytes of the MAC address. * macl - the 4 least significant bytes of the MAC address. * Outputs * return the calculated entry. */ static u32 hash_function(u32 mach, u32 macl) { u32 hashresult; u32 addrh; u32 addrl; u32 addr0; u32 addr1; u32 addr2; u32 addr3; u32 addrhswapped; u32 addrlswapped; addrh = nibble_swapping_16_bit(mach); addrl = nibble_swapping_32_bit(macl); addrhswapped = flip_4_bits(addrh & 0xf) + ((flip_4_bits((addrh >> 4) & 0xf)) << 4) + ((flip_4_bits((addrh >> 8) & 0xf)) << 8) + ((flip_4_bits((addrh >> 12) & 0xf)) << 12); addrlswapped = flip_4_bits(addrl & 0xf) + ((flip_4_bits((addrl >> 4) & 0xf)) << 4) + ((flip_4_bits((addrl >> 8) & 0xf)) << 8) + ((flip_4_bits((addrl >> 12) & 0xf)) << 12) + ((flip_4_bits((addrl >> 16) & 0xf)) << 16) + ((flip_4_bits((addrl >> 20) & 0xf)) << 20) + ((flip_4_bits((addrl >> 24) & 0xf)) << 24) + ((flip_4_bits((addrl >> 28) & 0xf)) << 28); addrh = addrhswapped; addrl = addrlswapped; addr0 = (addrl >> 2) & 0x03f; addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2); addr2 = (addrl >> 15) & 0x1ff; addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8); hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); hashresult = hashresult & 0x07ff; return hashresult; } /* * This function will add an entry to the address table. * depends on the hash mode and hash size that was initialized. * Inputs * mach - the 2 most significant bytes of the MAC address. * macl - the 4 least significant bytes of the MAC address. * skip - if 1, skip this address. * rd - the RD field in the address table. * Outputs * address table entry is added. * 0 if success. * -ENOSPC if table full */ static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach, u32 macl, u32 rd, u32 skip, int del) { struct addr_table_entry_t *entry, *start; u32 newhi; u32 newlo; u32 i; newlo = (((mach >> 4) & 0xf) << 15) | (((mach >> 0) & 0xf) << 11) | (((mach >> 12) & 0xf) << 7) | (((mach >> 8) & 0xf) << 3) | (((macl >> 20) & 0x1) << 31) | (((macl >> 16) & 0xf) << 27) | (((macl >> 28) & 0xf) << 23) | (((macl >> 24) & 0xf) << 19) | (skip << HTESKIP) | (rd << HTERDBIT) | HTEVALID; newhi = (((macl >> 4) & 0xf) << 15) | (((macl >> 0) & 0xf) << 11) | (((macl >> 12) & 0xf) << 7) | (((macl >> 8) & 0xf) << 3) | (((macl >> 21) & 0x7) << 0); /* * Pick the appropriate table, start scanning for free/reusable * entries at the index obtained by hashing the specified MAC address */ start = (struct addr_table_entry_t *)(darmdfec->htpr); entry = start + hash_function(mach, macl); for (i = 0; i < HOP_NUMBER; i++) { if (!(entry->lo & HTEVALID)) { break; } else { /* if same address put in same position */ if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8)) && (entry->hi == newhi)) break; } if (entry == start + 0x7ff) entry = start; else entry++; } if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) && (entry->hi != newhi) && del) return 0; if (i == HOP_NUMBER) { if (!del) { printf("ARMD100 FEC: (%s) table section is full\n", __func__); return -ENOSPC; } else { return 0; } } /* * Update the selected entry */ if (del) { entry->hi = 0; entry->lo = 0; } else { entry->hi = newhi; entry->lo = newlo; } return 0; } /* * Create an addressTable entry from MAC address info * found in the specifed net_device struct * * Input : pointer to ethernet interface network device structure * Output : N/A */ static void update_hash_table_mac_address(struct armdfec_device *darmdfec, u8 *oaddr, u8 *addr) { u32 mach; u32 macl; /* Delete old entry */ if (oaddr) { mach = (oaddr[0] << 8) | oaddr[1]; macl = (oaddr[2] << 24) | (oaddr[3] << 16) | (oaddr[4] << 8) | oaddr[5]; add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE); } /* Add new entry */ mach = (addr[0] << 8) | addr[1]; macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD); } /* Address Table Initialization */ static void init_hashtable(struct eth_device *dev) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE); writel((u32)darmdfec->htpr, ®s->htpr); } /* * This detects PHY chip from address 0-31 by reading PHY status * registers. PHY chip can be connected at any of this address. */ static int ethernet_phy_detect(struct eth_device *dev) { u32 val; u16 tmp, mii_status; u8 addr; for (addr = 0; addr < 32; addr++) { if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status) != 0) /* try next phy */ continue; /* invalid MII status. More validation required here... */ if (mii_status == 0 || mii_status == 0xffff) /* try next phy */ continue; if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0) /* try next phy */ continue; val = tmp << 16; if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0) /* try next phy */ continue; val |= tmp; if ((val & 0xfffffff0) != 0) return addr; } return -1; } static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec) { struct rx_desc *p_rx_desc; int i; /* initialize the Rx descriptors ring */ p_rx_desc = darmdfec->p_rxdesc; for (i = 0; i < RINGSZ; i++) { p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; p_rx_desc->buf_size = PKTSIZE_ALIGN; p_rx_desc->byte_cnt = 0; p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN; if (i == (RINGSZ - 1)) { p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc; } else { p_rx_desc->nxtdesc_p = (struct rx_desc *) ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE); p_rx_desc = p_rx_desc->nxtdesc_p; } } darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc; } static int armdfec_init(struct eth_device *dev, bd_t *bd) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; int phy_adr; u32 temp; armdfec_init_rx_desc_ring(darmdfec); /* Disable interrupts */ writel(0, ®s->im); writel(0, ®s->ic); /* Write to ICR to clear interrupts. */ writel(0, ®s->iwc); /* * Abort any transmit and receive operations and put DMA * in idle state. */ abortdma(dev); /* Initialize address hash table */ init_hashtable(dev); /* SDMA configuration */ writel(SDCR_BSZ8 | /* Burst size = 32 bytes */ SDCR_RIFB | /* Rx interrupt on frame */ SDCR_BLMT | /* Little endian transmit */ SDCR_BLMR | /* Little endian receive */ SDCR_RC_MAX_RETRANS, /* Max retransmit count */ ®s->sdma_conf); /* Port Configuration */ writel(PCR_HS, ®s->pconf); /* Hash size is 1/2kb */ /* Set extended port configuration */ writel(PCXR_2BSM | /* Two byte suffix aligns IP hdr */ PCXR_DSCP_EN | /* Enable DSCP in IP */ PCXR_MFL_1536 | /* Set MTU = 1536 */ PCXR_FLP | /* do not force link pass */ PCXR_TX_HIGH_PRI, /* Transmit - high priority queue */ ®s->pconf_ext); update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr); /* Update TX and RX queue descriptor register */ temp = (u32)®s->txcdp[TXQ]; writel((u32)darmdfec->p_txdesc, temp); temp = (u32)®s->rxfdp[RXQ]; writel((u32)darmdfec->p_rxdesc, temp); temp = (u32)®s->rxcdp[RXQ]; writel((u32)darmdfec->p_rxdesc_curr, temp); /* Enable Interrupts */ writel(ALL_INTS, ®s->im); /* Enable Ethernet Port */ setbits_le32(®s->pconf, PCR_EN); /* Enable RX DMA engine */ setbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); #ifdef DEBUG eth_dump_regs(dev); #endif #if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII)) #if defined(CONFIG_PHY_BASE_ADR) miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR); #else /* Search phy address from range 0-31 */ phy_adr = ethernet_phy_detect(dev); if (phy_adr < 0) { printf("ARMD100 FEC: PHY not detected at address range 0-31\n"); return -1; } else { debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr); miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr); } #endif #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) /* Wait up to 5s for the link status */ for (i = 0; i < 5; i++) { u16 phy_adr; miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr); /* Return if we get link up */ if (miiphy_link(dev->name, phy_adr)) return 0; udelay(1000000); } printf("ARMD100 FEC: No link on %s\n", dev->name); return -1; #endif #endif return 0; } static void armdfec_halt(struct eth_device *dev) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; /* Stop RX DMA */ clrbits_le32(®s->sdma_cmd, SDMA_CMD_ERD); /* * Abort any transmit and receive operations and put DMA * in idle state. */ abortdma(dev); /* Disable interrupts */ writel(0, ®s->im); writel(0, ®s->ic); writel(0, ®s->iwc); /* Disable Port */ clrbits_le32(®s->pconf, PCR_EN); } static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct armdfec_reg *regs = darmdfec->regs; struct tx_desc *p_txdesc = darmdfec->p_txdesc; void *p = (void *)dataptr; int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS; u32 cmd_sts, temp; /* Copy buffer if it's misaligned */ if ((u32)dataptr & 0x07) { if (datasize > PKTSIZE_ALIGN) { printf("ARMD100 FEC: Non-aligned data too large (%d)\n", datasize); return -1; } memcpy(darmdfec->p_aligned_txbuf, p, datasize); p = darmdfec->p_aligned_txbuf; } p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC; p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC; p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA; p_txdesc->cmd_sts |= TX_EN_INT; p_txdesc->buf_ptr = p; p_txdesc->byte_cnt = datasize; /* Apply send command using high priority TX queue */ temp = (u32)®s->txcdp[TXQ]; writel((u32)p_txdesc, temp); writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, ®s->sdma_cmd); /* * wait for packet xmit completion */ cmd_sts = readl(&p_txdesc->cmd_sts); while (cmd_sts & BUF_OWNED_BY_DMA) { /* return fail if error is detected */ if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) == (TX_ERROR | TX_LAST_DESC)) { printf("ARMD100 FEC: (%s) in xmit packet\n", __func__); return -1; } cmd_sts = readl(&p_txdesc->cmd_sts); if (!(retry--)) { printf("ARMD100 FEC: (%s) xmit packet timeout!\n", __func__); return -1; } } return 0; } static int armdfec_recv(struct eth_device *dev) { struct armdfec_device *darmdfec = to_darmdfec(dev); struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr; u32 cmd_sts; u32 timeout = 0; u32 temp; /* wait untill rx packet available or timeout */ do { if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) { timeout++; } else { debug("ARMD100 FEC: %s time out...\n", __func__); return -1; } } while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA); if (p_rxdesc_curr->byte_cnt != 0) { debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x" "(cmd_sts= %08x)\n", __func__, (u32)p_rxdesc_curr->byte_cnt, (u32)p_rxdesc_curr->buf_ptr, (u32)p_rxdesc_curr->cmd_sts); } /* * In case received a packet without first/last bits on * OR the error summary bit is on, * the packets needs to be dropeed. */ cmd_sts = readl(&p_rxdesc_curr->cmd_sts); if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != (RX_FIRST_DESC | RX_LAST_DESC)) { printf("ARMD100 FEC: (%s) Dropping packet spread on" " multiple descriptors\n", __func__); } else if (cmd_sts & RX_ERROR) { printf("ARMD100 FEC: (%s) Dropping packet with errors\n", __func__); } else { /* !!! call higher layer processing */ debug("ARMD100 FEC: (%s) Sending Received packet to" " upper layer (net_process_received_packet)\n", __func__); /* * let the upper layer handle the packet, subtract offset * as two dummy bytes are added in received buffer see * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit. */ net_process_received_packet( p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET, (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET)); } /* * free these descriptors and point next in the ring */ p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; p_rxdesc_curr->byte_cnt = 0; temp = (u32)&darmdfec->p_rxdesc_curr; writel((u32)p_rxdesc_curr->nxtdesc_p, temp); return 0; } int armada100_fec_register(unsigned long base_addr) { struct armdfec_device *darmdfec; struct eth_device *dev; darmdfec = malloc(sizeof(struct armdfec_device)); if (!darmdfec) goto error; memset(darmdfec, 0, sizeof(struct armdfec_device)); darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE); if (!darmdfec->htpr) goto error1; darmdfec->p_rxdesc = memalign(PKTALIGN, ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1); if (!darmdfec->p_rxdesc) goto error1; darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1); if (!darmdfec->p_rxbuf) goto error1; darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN); if (!darmdfec->p_aligned_txbuf) goto error1; darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1); if (!darmdfec->p_txdesc) goto error1; dev = &darmdfec->dev; /* Assign ARMADA100 Fast Ethernet Controller Base Address */ darmdfec->regs = (void *)base_addr; /* must be less than sizeof(dev->name) */ strcpy(dev->name, "armd-fec0"); dev->init = armdfec_init; dev->halt = armdfec_halt; dev->send = armdfec_send; dev->recv = armdfec_recv; eth_register(dev); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) int retval; struct mii_dev *mdiodev = mdio_alloc(); if (!mdiodev) return -ENOMEM; strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN); mdiodev->read = smi_reg_read; mdiodev->write = smi_reg_write; retval = mdio_register(mdiodev); if (retval < 0) return retval; #endif return 0; error1: free(darmdfec->p_aligned_txbuf); free(darmdfec->p_rxbuf); free(darmdfec->p_rxdesc); free(darmdfec->htpr); error: free(darmdfec); printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__); return -1; }