// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2009-2013 ADVANSEE * Benoît Thébaudeau <benoit.thebaudeau@advansee.com> * * Based on the mpc512x iim code: * Copyright 2008 Silicon Turnkey Express, Inc. * Martha Marx <mmarx@silicontkx.com> */ #include <common.h> #include <fuse.h> #include <linux/errno.h> #include <asm/io.h> #include <asm/arch/imx-regs.h> #if defined(CONFIG_MX51) || defined(CONFIG_MX53) #include <asm/arch/clock.h> #endif /* FSL IIM-specific constants */ #define STAT_BUSY 0x80 #define STAT_PRGD 0x02 #define STAT_SNSD 0x01 #define STATM_PRGD_M 0x02 #define STATM_SNSD_M 0x01 #define ERR_PRGE 0x80 #define ERR_WPE 0x40 #define ERR_OPE 0x20 #define ERR_RPE 0x10 #define ERR_WLRE 0x08 #define ERR_SNSE 0x04 #define ERR_PARITYE 0x02 #define EMASK_PRGE_M 0x80 #define EMASK_WPE_M 0x40 #define EMASK_OPE_M 0x20 #define EMASK_RPE_M 0x10 #define EMASK_WLRE_M 0x08 #define EMASK_SNSE_M 0x04 #define EMASK_PARITYE_M 0x02 #define FCTL_DPC 0x80 #define FCTL_PRG_LENGTH_MASK 0x70 #define FCTL_ESNS_N 0x08 #define FCTL_ESNS_0 0x04 #define FCTL_ESNS_1 0x02 #define FCTL_PRG 0x01 #define UA_A_BANK_MASK 0x38 #define UA_A_ROWH_MASK 0x07 #define LA_A_ROWL_MASK 0xf8 #define LA_A_BIT_MASK 0x07 #define PREV_PROD_REV_MASK 0xf8 #define PREV_PROD_VT_MASK 0x07 /* Select the correct accessors depending on endianness */ #if __BYTE_ORDER == __LITTLE_ENDIAN #define iim_read32 in_le32 #define iim_write32 out_le32 #define iim_clrsetbits32 clrsetbits_le32 #define iim_clrbits32 clrbits_le32 #define iim_setbits32 setbits_le32 #elif __BYTE_ORDER == __BIG_ENDIAN #define iim_read32 in_be32 #define iim_write32 out_be32 #define iim_clrsetbits32 clrsetbits_be32 #define iim_clrbits32 clrbits_be32 #define iim_setbits32 setbits_be32 #else #error Endianess is not defined: please fix to continue #endif /* IIM control registers */ struct fsl_iim { u32 stat; u32 statm; u32 err; u32 emask; u32 fctl; u32 ua; u32 la; u32 sdat; u32 prev; u32 srev; u32 prg_p; u32 scs[0x1f5]; struct { u32 word[0x100]; } bank[8]; }; #if !defined(CONFIG_MX51) && !defined(CONFIG_MX53) #define enable_efuse_prog_supply(enable) #endif static int prepare_access(struct fsl_iim **regs, u32 bank, u32 word, int assert, const char *caller) { *regs = (struct fsl_iim *)IIM_BASE_ADDR; if (bank >= ARRAY_SIZE((*regs)->bank) || word >= ARRAY_SIZE((*regs)->bank[0].word) || !assert) { printf("fsl_iim %s(): Invalid argument\n", caller); return -EINVAL; } return 0; } static void clear_status(struct fsl_iim *regs) { iim_setbits32(®s->stat, 0); iim_setbits32(®s->err, 0); } static void finish_access(struct fsl_iim *regs, u32 *stat, u32 *err) { *stat = iim_read32(®s->stat); *err = iim_read32(®s->err); clear_status(regs); } static int prepare_read(struct fsl_iim **regs, u32 bank, u32 word, u32 *val, const char *caller) { int ret; ret = prepare_access(regs, bank, word, val != NULL, caller); if (ret) return ret; clear_status(*regs); return 0; } int fuse_read(u32 bank, u32 word, u32 *val) { struct fsl_iim *regs; u32 stat, err; int ret; ret = prepare_read(®s, bank, word, val, __func__); if (ret) return ret; *val = iim_read32(®s->bank[bank].word[word]); finish_access(regs, &stat, &err); if (err & ERR_RPE) { puts("fsl_iim fuse_read(): Read protect error\n"); return -EIO; } return 0; } static void direct_access(struct fsl_iim *regs, u32 bank, u32 word, u32 bit, u32 fctl, u32 *stat, u32 *err) { iim_write32(®s->ua, bank << 3 | word >> 5); iim_write32(®s->la, (word << 3 | bit) & 0xff); if (fctl == FCTL_PRG) iim_write32(®s->prg_p, 0xaa); iim_setbits32(®s->fctl, fctl); while (iim_read32(®s->stat) & STAT_BUSY) udelay(20); finish_access(regs, stat, err); } int fuse_sense(u32 bank, u32 word, u32 *val) { struct fsl_iim *regs; u32 stat, err; int ret; ret = prepare_read(®s, bank, word, val, __func__); if (ret) return ret; direct_access(regs, bank, word, 0, FCTL_ESNS_N, &stat, &err); if (err & ERR_SNSE) { puts("fsl_iim fuse_sense(): Explicit sense cycle error\n"); return -EIO; } if (!(stat & STAT_SNSD)) { puts("fsl_iim fuse_sense(): Explicit sense cycle did not complete\n"); return -EIO; } *val = iim_read32(®s->sdat); return 0; } static int prog_bit(struct fsl_iim *regs, u32 bank, u32 word, u32 bit) { u32 stat, err; clear_status(regs); direct_access(regs, bank, word, bit, FCTL_PRG, &stat, &err); iim_write32(®s->prg_p, 0x00); if (err & ERR_PRGE) { puts("fsl_iim fuse_prog(): Program error\n"); return -EIO; } if (err & ERR_WPE) { puts("fsl_iim fuse_prog(): Write protect error\n"); return -EIO; } if (!(stat & STAT_PRGD)) { puts("fsl_iim fuse_prog(): Program did not complete\n"); return -EIO; } return 0; } static int prepare_write(struct fsl_iim **regs, u32 bank, u32 word, u32 val, const char *caller) { return prepare_access(regs, bank, word, !(val & ~0xff), caller); } int fuse_prog(u32 bank, u32 word, u32 val) { struct fsl_iim *regs; u32 bit; int ret; ret = prepare_write(®s, bank, word, val, __func__); if (ret) return ret; enable_efuse_prog_supply(1); for (bit = 0; val; bit++, val >>= 1) if (val & 0x01) { ret = prog_bit(regs, bank, word, bit); if (ret) { enable_efuse_prog_supply(0); return ret; } } enable_efuse_prog_supply(0); return 0; } int fuse_override(u32 bank, u32 word, u32 val) { struct fsl_iim *regs; u32 stat, err; int ret; ret = prepare_write(®s, bank, word, val, __func__); if (ret) return ret; clear_status(regs); iim_write32(®s->bank[bank].word[word], val); finish_access(regs, &stat, &err); if (err & ERR_OPE) { puts("fsl_iim fuse_override(): Override protect error\n"); return -EIO; } return 0; }