// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) Marvell International Ltd. and its affiliates */ #include <common.h> #include <i2c.h> #include <spl.h> #include <asm/io.h> #include <asm/arch/cpu.h> #include <asm/arch/soc.h> #include "ddr3_init.h" #if defined(MV88F78X60) #include "ddr3_axp_vars.h" #elif defined(MV88F67XX) #include "ddr3_a370_vars.h" #elif defined(MV88F672X) #include "ddr3_a375_vars.h" #endif #ifdef STATIC_TRAINING static void ddr3_static_training_init(void); #endif #ifdef DUNIT_STATIC static void ddr3_static_mc_init(void); #endif #if defined(DUNIT_STATIC) || defined(STATIC_TRAINING) MV_DRAM_MODES *ddr3_get_static_ddr_mode(void); #endif #if defined(MV88F672X) void get_target_freq(u32 freq_mode, u32 *ddr_freq, u32 *hclk_ps); #endif u32 mv_board_id_get(void); extern void ddr3_set_sw_wl_rl_debug(u32); extern void ddr3_set_pbs(u32); extern void ddr3_set_log_level(u32 val); static u32 log_level = DDR3_LOG_LEVEL; static u32 ddr3_init_main(void); /* * Name: ddr3_set_log_level * Desc: This routine initialize the log_level acording to nLogLevel * which getting from user * Args: nLogLevel * Notes: * Returns: None. */ void ddr3_set_log_level(u32 val) { log_level = val; } /* * Name: ddr3_get_log_level * Desc: This routine returns the log level * Args: none * Notes: * Returns: log level. */ u32 ddr3_get_log_level(void) { return log_level; } static void debug_print_reg(u32 reg) { printf("0x%08x = 0x%08x\n", reg, reg_read(reg)); } static void print_dunit_setup(void) { puts("\n########### LOG LEVEL 1 (D-UNIT SETUP)###########\n"); #ifdef DUNIT_STATIC puts("\nStatic D-UNIT Setup:\n"); #endif #ifdef DUNIT_SPD puts("\nDynamic(using SPD) D-UNIT Setup:\n"); #endif debug_print_reg(REG_SDRAM_CONFIG_ADDR); debug_print_reg(REG_DUNIT_CTRL_LOW_ADDR); debug_print_reg(REG_SDRAM_TIMING_LOW_ADDR); debug_print_reg(REG_SDRAM_TIMING_HIGH_ADDR); debug_print_reg(REG_SDRAM_ADDRESS_CTRL_ADDR); debug_print_reg(REG_SDRAM_OPEN_PAGES_ADDR); debug_print_reg(REG_SDRAM_OPERATION_ADDR); debug_print_reg(REG_SDRAM_MODE_ADDR); debug_print_reg(REG_SDRAM_EXT_MODE_ADDR); debug_print_reg(REG_DDR_CONT_HIGH_ADDR); debug_print_reg(REG_ODT_TIME_LOW_ADDR); debug_print_reg(REG_SDRAM_ERROR_ADDR); debug_print_reg(REG_SDRAM_AUTO_PWR_SAVE_ADDR); debug_print_reg(REG_OUDDR3_TIMING_ADDR); debug_print_reg(REG_ODT_TIME_HIGH_ADDR); debug_print_reg(REG_SDRAM_ODT_CTRL_LOW_ADDR); debug_print_reg(REG_SDRAM_ODT_CTRL_HIGH_ADDR); debug_print_reg(REG_DUNIT_ODT_CTRL_ADDR); #ifndef MV88F67XX debug_print_reg(REG_DRAM_FIFO_CTRL_ADDR); debug_print_reg(REG_DRAM_AXI_CTRL_ADDR); debug_print_reg(REG_DRAM_ADDR_CTRL_DRIVE_STRENGTH_ADDR); debug_print_reg(REG_DRAM_DATA_DQS_DRIVE_STRENGTH_ADDR); debug_print_reg(REG_DRAM_VER_CAL_MACHINE_CTRL_ADDR); debug_print_reg(REG_DRAM_MAIN_PADS_CAL_ADDR); debug_print_reg(REG_DRAM_HOR_CAL_MACHINE_CTRL_ADDR); debug_print_reg(REG_CS_SIZE_SCRATCH_ADDR); debug_print_reg(REG_DYNAMIC_POWER_SAVE_ADDR); debug_print_reg(REG_READ_DATA_SAMPLE_DELAYS_ADDR); debug_print_reg(REG_READ_DATA_READY_DELAYS_ADDR); debug_print_reg(REG_DDR3_MR0_ADDR); debug_print_reg(REG_DDR3_MR1_ADDR); debug_print_reg(REG_DDR3_MR2_ADDR); debug_print_reg(REG_DDR3_MR3_ADDR); debug_print_reg(REG_DDR3_RANK_CTRL_ADDR); debug_print_reg(REG_DRAM_PHY_CONFIG_ADDR); debug_print_reg(REG_STATIC_DRAM_DLB_CONTROL); debug_print_reg(DLB_BUS_OPTIMIZATION_WEIGHTS_REG); debug_print_reg(DLB_AGING_REGISTER); debug_print_reg(DLB_EVICTION_CONTROL_REG); debug_print_reg(DLB_EVICTION_TIMERS_REGISTER_REG); #if defined(MV88F672X) debug_print_reg(REG_FASTPATH_WIN_CTRL_ADDR(0)); debug_print_reg(REG_FASTPATH_WIN_BASE_ADDR(0)); debug_print_reg(REG_FASTPATH_WIN_CTRL_ADDR(1)); debug_print_reg(REG_FASTPATH_WIN_BASE_ADDR(1)); #else debug_print_reg(REG_FASTPATH_WIN_0_CTRL_ADDR); #endif debug_print_reg(REG_CDI_CONFIG_ADDR); #endif } #if !defined(STATIC_TRAINING) static void ddr3_restore_and_set_final_windows(u32 *win_backup) { u32 ui, reg, cs; u32 win_ctrl_reg, num_of_win_regs; u32 cs_ena = ddr3_get_cs_ena_from_reg(); #if defined(MV88F672X) if (DDR3_FAST_PATH_EN == 0) return; #endif #if defined(MV88F672X) win_ctrl_reg = REG_XBAR_WIN_16_CTRL_ADDR; num_of_win_regs = 8; #else win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR; num_of_win_regs = 16; #endif /* Return XBAR windows 4-7 or 16-19 init configuration */ for (ui = 0; ui < num_of_win_regs; ui++) reg_write((win_ctrl_reg + 0x4 * ui), win_backup[ui]); DEBUG_INIT_FULL_S("DDR3 Training Sequence - Switching XBAR Window to FastPath Window\n"); #if defined(MV88F672X) /* Set L2 filtering to 1G */ reg_write(0x8c04, 0x40000000); /* Open fast path windows */ for (cs = 0; cs < MAX_CS; cs++) { if (cs_ena & (1 << cs)) { /* set fast path window control for the cs */ reg = 0x1FFFFFE1; reg |= (cs << 2); reg |= (SDRAM_CS_SIZE & 0xFFFF0000); /* Open fast path Window */ reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg); /* set fast path window base address for the cs */ reg = (((SDRAM_CS_SIZE + 1) * cs) & 0xFFFF0000); /* Set base address */ reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg); } } #else reg = 0x1FFFFFE1; for (cs = 0; cs < MAX_CS; cs++) { if (cs_ena & (1 << cs)) { reg |= (cs << 2); break; } } /* Open fast path Window to - 0.5G */ reg_write(REG_FASTPATH_WIN_0_CTRL_ADDR, reg); #endif } static void ddr3_save_and_set_training_windows(u32 *win_backup) { u32 cs_ena = ddr3_get_cs_ena_from_reg(); u32 reg, tmp_count, cs, ui; u32 win_ctrl_reg, win_base_reg, win_remap_reg; u32 num_of_win_regs, win_jump_index; #if defined(MV88F672X) /* Disable L2 filtering */ reg_write(0x8c04, 0); win_ctrl_reg = REG_XBAR_WIN_16_CTRL_ADDR; win_base_reg = REG_XBAR_WIN_16_BASE_ADDR; win_remap_reg = REG_XBAR_WIN_16_REMAP_ADDR; win_jump_index = 0x8; num_of_win_regs = 8; #else win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR; win_base_reg = REG_XBAR_WIN_4_BASE_ADDR; win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR; win_jump_index = 0x10; num_of_win_regs = 16; #endif /* Close XBAR Window 19 - Not needed */ /* {0x000200e8} - Open Mbus Window - 2G */ reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0); /* Save XBAR Windows 4-19 init configurations */ for (ui = 0; ui < num_of_win_regs; ui++) win_backup[ui] = reg_read(win_ctrl_reg + 0x4 * ui); /* Open XBAR Windows 4-7 or 16-19 for other CS */ reg = 0; tmp_count = 0; for (cs = 0; cs < MAX_CS; cs++) { if (cs_ena & (1 << cs)) { switch (cs) { case 0: reg = 0x0E00; break; case 1: reg = 0x0D00; break; case 2: reg = 0x0B00; break; case 3: reg = 0x0700; break; } reg |= (1 << 0); reg |= (SDRAM_CS_SIZE & 0xFFFF0000); reg_write(win_ctrl_reg + win_jump_index * tmp_count, reg); reg = ((SDRAM_CS_SIZE + 1) * (tmp_count)) & 0xFFFF0000; reg_write(win_base_reg + win_jump_index * tmp_count, reg); if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR) { reg_write(win_remap_reg + win_jump_index * tmp_count, 0); } tmp_count++; } } } #endif /* !defined(STATIC_TRAINING) */ /* * Name: ddr3_init - Main DDR3 Init function * Desc: This routine initialize the DDR3 MC and runs HW training. * Args: None. * Notes: * Returns: None. */ int ddr3_init(void) { unsigned int status; ddr3_set_pbs(DDR3_PBS); ddr3_set_sw_wl_rl_debug(DDR3_RUN_SW_WHEN_HW_FAIL); status = ddr3_init_main(); if (status == MV_DDR3_TRAINING_ERR_BAD_SAR) DEBUG_INIT_S("DDR3 Training Error: Bad sample at reset"); if (status == MV_DDR3_TRAINING_ERR_BAD_DIMM_SETUP) DEBUG_INIT_S("DDR3 Training Error: Bad DIMM setup"); if (status == MV_DDR3_TRAINING_ERR_MAX_CS_LIMIT) DEBUG_INIT_S("DDR3 Training Error: Max CS limit"); if (status == MV_DDR3_TRAINING_ERR_MAX_ENA_CS_LIMIT) DEBUG_INIT_S("DDR3 Training Error: Max enable CS limit"); if (status == MV_DDR3_TRAINING_ERR_BAD_R_DIMM_SETUP) DEBUG_INIT_S("DDR3 Training Error: Bad R-DIMM setup"); if (status == MV_DDR3_TRAINING_ERR_TWSI_FAIL) DEBUG_INIT_S("DDR3 Training Error: TWSI failure"); if (status == MV_DDR3_TRAINING_ERR_DIMM_TYPE_NO_MATCH) DEBUG_INIT_S("DDR3 Training Error: DIMM type no match"); if (status == MV_DDR3_TRAINING_ERR_TWSI_BAD_TYPE) DEBUG_INIT_S("DDR3 Training Error: TWSI bad type"); if (status == MV_DDR3_TRAINING_ERR_BUS_WIDTH_NOT_MATCH) DEBUG_INIT_S("DDR3 Training Error: bus width no match"); if (status > MV_DDR3_TRAINING_ERR_HW_FAIL_BASE) DEBUG_INIT_C("DDR3 Training Error: HW Failure 0x", status, 8); return status; } static void print_ddr_target_freq(u32 cpu_freq, u32 fab_opt) { puts("\nDDR3 Training Sequence - Run DDR3 at "); switch (cpu_freq) { #if defined(MV88F672X) case 21: puts("533 Mhz\n"); break; #else case 1: puts("533 Mhz\n"); break; case 2: if (fab_opt == 5) puts("600 Mhz\n"); if (fab_opt == 9) puts("400 Mhz\n"); break; case 3: puts("667 Mhz\n"); break; case 4: if (fab_opt == 5) puts("750 Mhz\n"); if (fab_opt == 9) puts("500 Mhz\n"); break; case 0xa: puts("400 Mhz\n"); break; case 0xb: if (fab_opt == 5) puts("800 Mhz\n"); if (fab_opt == 9) puts("553 Mhz\n"); if (fab_opt == 0xA) puts("640 Mhz\n"); break; #endif default: puts("NOT DEFINED FREQ\n"); } } static u32 ddr3_init_main(void) { u32 target_freq; u32 reg = 0; u32 cpu_freq, fab_opt, hclk_time_ps, soc_num; __maybe_unused u32 ecc = DRAM_ECC; __maybe_unused int dqs_clk_aligned = 0; __maybe_unused u32 scrub_offs, scrub_size; __maybe_unused u32 ddr_width = BUS_WIDTH; __maybe_unused int status; __maybe_unused u32 win_backup[16]; /* SoC/Board special Initializtions */ fab_opt = ddr3_get_fab_opt(); #ifdef CONFIG_SPD_EEPROM i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); #endif ddr3_print_version(); DEBUG_INIT_S("4\n"); /* Lib version 5.5.4 */ fab_opt = ddr3_get_fab_opt(); /* Switching CPU to MRVL ID */ soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >> SAR1_CPU_CORE_OFFSET; switch (soc_num) { case 0x3: reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET); reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET); case 0x1: reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET); case 0x0: reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET); default: break; } /* Power down deskew PLL */ #if !defined(MV88F672X) /* 0x18780 [25] */ reg = (reg_read(REG_DDRPHY_APLL_CTRL_ADDR) & ~(1 << 25)); reg_write(REG_DDRPHY_APLL_CTRL_ADDR, reg); #endif /* * Stage 0 - Set board configuration */ cpu_freq = ddr3_get_cpu_freq(); if (fab_opt > FAB_OPT) fab_opt = FAB_OPT - 1; if (ddr3_get_log_level() > 0) print_ddr_target_freq(cpu_freq, fab_opt); #if defined(MV88F672X) get_target_freq(cpu_freq, &target_freq, &hclk_time_ps); #else target_freq = cpu_ddr_ratios[fab_opt][cpu_freq]; hclk_time_ps = cpu_fab_clk_to_hclk[fab_opt][cpu_freq]; #endif if ((target_freq == 0) || (hclk_time_ps == 0)) { DEBUG_INIT_S("DDR3 Training Sequence - FAILED - Wrong Sample at Reset Configurations\n"); if (target_freq == 0) { DEBUG_INIT_C("target_freq", target_freq, 2); DEBUG_INIT_C("fab_opt", fab_opt, 2); DEBUG_INIT_C("cpu_freq", cpu_freq, 2); } else if (hclk_time_ps == 0) { DEBUG_INIT_C("hclk_time_ps", hclk_time_ps, 2); DEBUG_INIT_C("fab_opt", fab_opt, 2); DEBUG_INIT_C("cpu_freq", cpu_freq, 2); } return MV_DDR3_TRAINING_ERR_BAD_SAR; } #if defined(ECC_SUPPORT) scrub_offs = U_BOOT_START_ADDR; scrub_size = U_BOOT_SCRUB_SIZE; #else scrub_offs = 0; scrub_size = 0; #endif #if defined(ECC_SUPPORT) && defined(AUTO_DETECTION_SUPPORT) ecc = DRAM_ECC; #endif #if defined(ECC_SUPPORT) && defined(AUTO_DETECTION_SUPPORT) ecc = 0; if (ddr3_check_config(BUS_WIDTH_ECC_TWSI_ADDR, CONFIG_ECC)) ecc = 1; #endif #ifdef DQS_CLK_ALIGNED dqs_clk_aligned = 1; #endif /* Check if DRAM is already initialized */ if (reg_read(REG_BOOTROM_ROUTINE_ADDR) & (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) { DEBUG_INIT_S("DDR3 Training Sequence - 2nd boot - Skip\n"); return MV_OK; } /* * Stage 1 - Dunit Setup */ #ifdef DUNIT_STATIC /* * For Static D-Unit Setup use must set the correct static values * at the ddr3_*soc*_vars.h file */ DEBUG_INIT_FULL_S("DDR3 Training Sequence - Static MC Init\n"); ddr3_static_mc_init(); #ifdef ECC_SUPPORT ecc = DRAM_ECC; if (ecc) { reg = reg_read(REG_SDRAM_CONFIG_ADDR); reg |= (1 << REG_SDRAM_CONFIG_ECC_OFFS); reg_write(REG_SDRAM_CONFIG_ADDR, reg); } #endif #endif #if defined(MV88F78X60) || defined(MV88F672X) #if defined(AUTO_DETECTION_SUPPORT) /* * Configurations for both static and dynamic MC setups * * Dynamically Set 32Bit and ECC for AXP (Relevant only for * Marvell DB boards) */ if (ddr3_check_config(BUS_WIDTH_ECC_TWSI_ADDR, CONFIG_BUS_WIDTH)) { ddr_width = 32; DEBUG_INIT_S("DDR3 Training Sequence - DRAM bus width 32Bit\n"); } #endif #if defined(MV88F672X) reg = reg_read(REG_SDRAM_CONFIG_ADDR); if ((reg >> 15) & 1) ddr_width = 32; else ddr_width = 16; #endif #endif #ifdef DUNIT_SPD status = ddr3_dunit_setup(ecc, hclk_time_ps, &ddr_width); if (MV_OK != status) { DEBUG_INIT_S("DDR3 Training Sequence - FAILED (ddr3 Dunit Setup)\n"); return status; } #endif /* Fix read ready phases for all SOC in reg 0x15C8 */ reg = reg_read(REG_TRAINING_DEBUG_3_ADDR); reg &= ~(REG_TRAINING_DEBUG_3_MASK); reg |= 0x4; /* Phase 0 */ reg &= ~(REG_TRAINING_DEBUG_3_MASK << REG_TRAINING_DEBUG_3_OFFS); reg |= (0x4 << (1 * REG_TRAINING_DEBUG_3_OFFS)); /* Phase 1 */ reg &= ~(REG_TRAINING_DEBUG_3_MASK << (3 * REG_TRAINING_DEBUG_3_OFFS)); reg |= (0x6 << (3 * REG_TRAINING_DEBUG_3_OFFS)); /* Phase 3 */ reg &= ~(REG_TRAINING_DEBUG_3_MASK << (4 * REG_TRAINING_DEBUG_3_OFFS)); reg |= (0x6 << (4 * REG_TRAINING_DEBUG_3_OFFS)); reg &= ~(REG_TRAINING_DEBUG_3_MASK << (5 * REG_TRAINING_DEBUG_3_OFFS)); reg |= (0x6 << (5 * REG_TRAINING_DEBUG_3_OFFS)); reg_write(REG_TRAINING_DEBUG_3_ADDR, reg); #if defined(MV88F672X) /* * AxiBrespMode[8] = Compliant, * AxiAddrDecodeCntrl[11] = Internal, * AxiDataBusWidth[0] = 128bit */ /* 0x14A8 - AXI Control Register */ reg_write(REG_DRAM_AXI_CTRL_ADDR, 0); #else /* 0x14A8 - AXI Control Register */ reg_write(REG_DRAM_AXI_CTRL_ADDR, 0x00000100); reg_write(REG_CDI_CONFIG_ADDR, 0x00000006); if ((ddr_width == 64) && (reg_read(REG_DDR_IO_ADDR) & (1 << REG_DDR_IO_CLK_RATIO_OFFS))) { /* 0x14A8 - AXI Control Register */ reg_write(REG_DRAM_AXI_CTRL_ADDR, 0x00000101); reg_write(REG_CDI_CONFIG_ADDR, 0x00000007); } #endif #if !defined(MV88F67XX) /* * ARMADA-370 activate DLB later at the u-boot, * Armada38x - No DLB activation at this time */ reg_write(DLB_BUS_OPTIMIZATION_WEIGHTS_REG, 0x18C01E); #if defined(MV88F78X60) /* WA according to eratta GL-8672902*/ if (mv_ctrl_rev_get() == MV_78XX0_B0_REV) reg_write(DLB_BUS_OPTIMIZATION_WEIGHTS_REG, 0xc19e); #endif reg_write(DLB_AGING_REGISTER, 0x0f7f007f); reg_write(DLB_EVICTION_CONTROL_REG, 0x0); reg_write(DLB_EVICTION_TIMERS_REGISTER_REG, 0x00FF3C1F); reg_write(MBUS_UNITS_PRIORITY_CONTROL_REG, 0x55555555); reg_write(FABRIC_UNITS_PRIORITY_CONTROL_REG, 0xAA); reg_write(MBUS_UNITS_PREFETCH_CONTROL_REG, 0xffff); reg_write(FABRIC_UNITS_PREFETCH_CONTROL_REG, 0xf0f); #if defined(MV88F78X60) /* WA according to eratta GL-8672902 */ if (mv_ctrl_rev_get() == MV_78XX0_B0_REV) { reg = reg_read(REG_STATIC_DRAM_DLB_CONTROL); reg |= DLB_ENABLE; reg_write(REG_STATIC_DRAM_DLB_CONTROL, reg); } #endif /* end defined(MV88F78X60) */ #endif /* end !defined(MV88F67XX) */ if (ddr3_get_log_level() >= MV_LOG_LEVEL_1) print_dunit_setup(); /* * Stage 2 - Training Values Setup */ #ifdef STATIC_TRAINING /* * DRAM Init - After all the D-unit values are set, its time to init * the D-unit */ /* Wait for '0' */ reg_write(REG_SDRAM_INIT_CTRL_ADDR, 0x1); do { reg = (reg_read(REG_SDRAM_INIT_CTRL_ADDR)) & (1 << REG_SDRAM_INIT_CTRL_OFFS); } while (reg); /* ddr3 init using static parameters - HW training is disabled */ DEBUG_INIT_FULL_S("DDR3 Training Sequence - Static Training Parameters\n"); ddr3_static_training_init(); #if defined(MV88F78X60) /* * If ECC is enabled, need to scrub the U-Boot area memory region - * Run training function with Xor bypass just to scrub the memory */ status = ddr3_hw_training(target_freq, ddr_width, 1, scrub_offs, scrub_size, dqs_clk_aligned, DDR3_TRAINING_DEBUG, REG_DIMM_SKIP_WL); if (MV_OK != status) { DEBUG_INIT_FULL_S("DDR3 Training Sequence - FAILED\n"); return status; } #endif #else /* Set X-BAR windows for the training sequence */ ddr3_save_and_set_training_windows(win_backup); /* Run DDR3 Training Sequence */ /* DRAM Init */ reg_write(REG_SDRAM_INIT_CTRL_ADDR, 0x1); do { reg = (reg_read(REG_SDRAM_INIT_CTRL_ADDR)) & (1 << REG_SDRAM_INIT_CTRL_OFFS); } while (reg); /* Wait for '0' */ /* ddr3 init using DDR3 HW training procedure */ DEBUG_INIT_FULL_S("DDR3 Training Sequence - HW Training Procedure\n"); status = ddr3_hw_training(target_freq, ddr_width, 0, scrub_offs, scrub_size, dqs_clk_aligned, DDR3_TRAINING_DEBUG, REG_DIMM_SKIP_WL); if (MV_OK != status) { DEBUG_INIT_FULL_S("DDR3 Training Sequence - FAILED\n"); return status; } #endif /* * Stage 3 - Finish */ #if defined(MV88F78X60) || defined(MV88F672X) /* Disable ECC Ignore bit */ reg = reg_read(REG_SDRAM_CONFIG_ADDR) & ~(1 << REG_SDRAM_CONFIG_IERR_OFFS); reg_write(REG_SDRAM_CONFIG_ADDR, reg); #endif #if !defined(STATIC_TRAINING) /* Restore and set windows */ ddr3_restore_and_set_final_windows(win_backup); #endif /* Update DRAM init indication in bootROM register */ reg = reg_read(REG_BOOTROM_ROUTINE_ADDR); reg_write(REG_BOOTROM_ROUTINE_ADDR, reg | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)); #if !defined(MV88F67XX) #if defined(MV88F78X60) if (mv_ctrl_rev_get() == MV_78XX0_B0_REV) { reg = reg_read(REG_SDRAM_CONFIG_ADDR); if (ecc == 0) reg_write(REG_SDRAM_CONFIG_ADDR, reg | (1 << 19)); } #endif /* end defined(MV88F78X60) */ reg_write(DLB_EVICTION_CONTROL_REG, 0x9); reg = reg_read(REG_STATIC_DRAM_DLB_CONTROL); reg |= (DLB_ENABLE | DLB_WRITE_COALESING | DLB_AXI_PREFETCH_EN | DLB_MBUS_PREFETCH_EN | PREFETCH_NLNSZTR); reg_write(REG_STATIC_DRAM_DLB_CONTROL, reg); #endif /* end !defined(MV88F67XX) */ #ifdef STATIC_TRAINING DEBUG_INIT_S("DDR3 Training Sequence - Ended Successfully (S)\n"); #else DEBUG_INIT_S("DDR3 Training Sequence - Ended Successfully\n"); #endif return MV_OK; } /* * Name: ddr3_get_cpu_freq * Desc: read S@R and return CPU frequency * Args: * Notes: * Returns: required value */ u32 ddr3_get_cpu_freq(void) { u32 reg, cpu_freq; #if defined(MV88F672X) /* Read sample at reset setting */ reg = reg_read(REG_SAMPLE_RESET_HIGH_ADDR); /* 0xE8200 */ cpu_freq = (reg & REG_SAMPLE_RESET_CPU_FREQ_MASK) >> REG_SAMPLE_RESET_CPU_FREQ_OFFS; #else /* Read sample at reset setting */ reg = reg_read(REG_SAMPLE_RESET_LOW_ADDR); /* 0x18230 [23:21] */ #if defined(MV88F78X60) cpu_freq = (reg & REG_SAMPLE_RESET_CPU_FREQ_MASK) >> REG_SAMPLE_RESET_CPU_FREQ_OFFS; reg = reg_read(REG_SAMPLE_RESET_HIGH_ADDR); /* 0x18234 [20] */ cpu_freq |= (((reg >> REG_SAMPLE_RESET_HIGH_CPU_FREQ_OFFS) & 0x1) << 3); #elif defined(MV88F67XX) cpu_freq = (reg & REG_SAMPLE_RESET_CPU_FREQ_MASK) >> REG_SAMPLE_RESET_CPU_FREQ_OFFS; #endif #endif return cpu_freq; } /* * Name: ddr3_get_fab_opt * Desc: read S@R and return CPU frequency * Args: * Notes: * Returns: required value */ u32 ddr3_get_fab_opt(void) { __maybe_unused u32 reg, fab_opt; #if defined(MV88F672X) return 0; /* No fabric */ #else /* Read sample at reset setting */ reg = reg_read(REG_SAMPLE_RESET_LOW_ADDR); fab_opt = (reg & REG_SAMPLE_RESET_FAB_MASK) >> REG_SAMPLE_RESET_FAB_OFFS; #if defined(MV88F78X60) reg = reg_read(REG_SAMPLE_RESET_HIGH_ADDR); fab_opt |= (((reg >> 19) & 0x1) << 4); #endif return fab_opt; #endif } /* * Name: ddr3_get_vco_freq * Desc: read S@R and return VCO frequency * Args: * Notes: * Returns: required value */ u32 ddr3_get_vco_freq(void) { u32 fab, cpu_freq, ui_vco_freq; fab = ddr3_get_fab_opt(); cpu_freq = ddr3_get_cpu_freq(); if (fab == 2 || fab == 3 || fab == 7 || fab == 8 || fab == 10 || fab == 15 || fab == 17 || fab == 20) ui_vco_freq = cpu_freq + CLK_CPU; else ui_vco_freq = cpu_freq; return ui_vco_freq; } #ifdef STATIC_TRAINING /* * Name: ddr3_static_training_init - Init DDR3 Training with * static parameters * Desc: Use this routine to init the controller without the HW training * procedure * User must provide compatible header file with registers data. * Args: None. * Notes: * Returns: None. */ void ddr3_static_training_init(void) { MV_DRAM_MODES *ddr_mode; u32 reg; int j; ddr_mode = ddr3_get_static_ddr_mode(); j = 0; while (ddr_mode->vals[j].reg_addr != 0) { udelay(10); /* haim want to delay each write */ reg_write(ddr_mode->vals[j].reg_addr, ddr_mode->vals[j].reg_value); if (ddr_mode->vals[j].reg_addr == REG_PHY_REGISTRY_FILE_ACCESS_ADDR) do { reg = reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR) & REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE; } while (reg); j++; } } #endif /* * Name: ddr3_get_static_mc_value - Init Memory controller with static * parameters * Desc: Use this routine to init the controller without the HW training * procedure * User must provide compatible header file with registers data. * Args: None. * Notes: * Returns: None. */ u32 ddr3_get_static_mc_value(u32 reg_addr, u32 offset1, u32 mask1, u32 offset2, u32 mask2) { u32 reg, tmp; reg = reg_read(reg_addr); tmp = (reg >> offset1) & mask1; if (mask2) tmp |= (reg >> offset2) & mask2; return tmp; } /* * Name: ddr3_get_static_ddr_mode - Init Memory controller with static * parameters * Desc: Use this routine to init the controller without the HW training * procedure * User must provide compatible header file with registers data. * Args: None. * Notes: * Returns: None. */ __weak MV_DRAM_MODES *ddr3_get_static_ddr_mode(void) { u32 chip_board_rev, i; u32 size; /* Do not modify this code. relevant only for marvell Boards */ #if defined(DB_78X60_PCAC) chip_board_rev = Z1_PCAC; #elif defined(DB_78X60_AMC) chip_board_rev = A0_AMC; #elif defined(DB_88F6710_PCAC) chip_board_rev = A0_PCAC; #elif defined(RD_88F6710) chip_board_rev = A0_RD; #elif defined(MV88F672X) chip_board_rev = mv_board_id_get(); #else chip_board_rev = A0; #endif size = sizeof(ddr_modes) / sizeof(MV_DRAM_MODES); for (i = 0; i < size; i++) { if ((ddr3_get_cpu_freq() == ddr_modes[i].cpu_freq) && (ddr3_get_fab_opt() == ddr_modes[i].fab_freq) && (chip_board_rev == ddr_modes[i].chip_board_rev)) return &ddr_modes[i]; } return &ddr_modes[0]; } #ifdef DUNIT_STATIC /* * Name: ddr3_static_mc_init - Init Memory controller with static parameters * Desc: Use this routine to init the controller without the HW training * procedure * User must provide compatible header file with registers data. * Args: None. * Notes: * Returns: None. */ void ddr3_static_mc_init(void) { MV_DRAM_MODES *ddr_mode; u32 reg; int j; ddr_mode = ddr3_get_static_ddr_mode(); j = 0; while (ddr_mode->regs[j].reg_addr != 0) { reg_write(ddr_mode->regs[j].reg_addr, ddr_mode->regs[j].reg_value); if (ddr_mode->regs[j].reg_addr == REG_PHY_REGISTRY_FILE_ACCESS_ADDR) do { reg = reg_read(REG_PHY_REGISTRY_FILE_ACCESS_ADDR) & REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE; } while (reg); j++; } } #endif /* * Name: ddr3_check_config - Check user configurations: ECC/MultiCS * Desc: * Args: twsi Address * Notes: Only Available for ArmadaXP/Armada 370 DB boards * Returns: None. */ int ddr3_check_config(u32 twsi_addr, MV_CONFIG_TYPE config_type) { #ifdef AUTO_DETECTION_SUPPORT u8 data = 0; int ret; int offset; if ((config_type == CONFIG_ECC) || (config_type == CONFIG_BUS_WIDTH)) offset = 1; else offset = 0; ret = i2c_read(twsi_addr, offset, 1, (u8 *)&data, 1); if (!ret) { switch (config_type) { case CONFIG_ECC: if (data & 0x2) return 1; break; case CONFIG_BUS_WIDTH: if (data & 0x1) return 1; break; #ifdef DB_88F6710 case CONFIG_MULTI_CS: if (CFG_MULTI_CS_MODE(data)) return 1; break; #else case CONFIG_MULTI_CS: break; #endif } } #endif return 0; } #if defined(DB_88F78X60_REV2) /* * Name: ddr3_get_eprom_fabric - Get Fabric configuration from EPROM * Desc: * Args: twsi Address * Notes: Only Available for ArmadaXP DB Rev2 boards * Returns: None. */ u8 ddr3_get_eprom_fabric(void) { #ifdef AUTO_DETECTION_SUPPORT u8 data = 0; int ret; ret = i2c_read(NEW_FABRIC_TWSI_ADDR, 1, 1, (u8 *)&data, 1); if (!ret) return data & 0x1F; #endif return 0; } #endif /* * Name: ddr3_cl_to_valid_cl - this return register matching CL value * Desc: * Args: clValue - the value * Notes: * Returns: required CL value */ u32 ddr3_cl_to_valid_cl(u32 cl) { switch (cl) { case 5: return 2; break; case 6: return 4; break; case 7: return 6; break; case 8: return 8; break; case 9: return 10; break; case 10: return 12; break; case 11: return 14; break; case 12: return 1; break; case 13: return 3; break; case 14: return 5; break; default: return 2; } } /* * Name: ddr3_cl_to_valid_cl - this return register matching CL value * Desc: * Args: clValue - the value * Notes: * Returns: required CL value */ u32 ddr3_valid_cl_to_cl(u32 ui_valid_cl) { switch (ui_valid_cl) { case 1: return 12; break; case 2: return 5; break; case 3: return 13; break; case 4: return 6; break; case 5: return 14; break; case 6: return 7; break; case 8: return 8; break; case 10: return 9; break; case 12: return 10; break; case 14: return 11; break; default: return 0; } } /* * Name: ddr3_get_cs_num_from_reg * Desc: * Args: * Notes: * Returns: */ u32 ddr3_get_cs_num_from_reg(void) { u32 cs_ena = ddr3_get_cs_ena_from_reg(); u32 cs_count = 0; u32 cs; for (cs = 0; cs < MAX_CS; cs++) { if (cs_ena & (1 << cs)) cs_count++; } return cs_count; } /* * Name: ddr3_get_cs_ena_from_reg * Desc: * Args: * Notes: * Returns: */ u32 ddr3_get_cs_ena_from_reg(void) { return reg_read(REG_DDR3_RANK_CTRL_ADDR) & REG_DDR3_RANK_CTRL_CS_ENA_MASK; } /* * mv_ctrl_rev_get - Get Marvell controller device revision number * * DESCRIPTION: * This function returns 8bit describing the device revision as defined * in PCI Express Class Code and Revision ID Register. * * INPUT: * None. * * OUTPUT: * None. * * RETURN: * 8bit desscribing Marvell controller revision number * */ #if !defined(MV88F672X) u8 mv_ctrl_rev_get(void) { u8 rev_num; #if defined(MV_INCLUDE_CLK_PWR_CNTRL) /* Check pex power state */ u32 pex_power; pex_power = mv_ctrl_pwr_clck_get(PEX_UNIT_ID, 0); if (pex_power == 0) mv_ctrl_pwr_clck_set(PEX_UNIT_ID, 0, 1); #endif rev_num = (u8)reg_read(PEX_CFG_DIRECT_ACCESS(0, PCI_CLASS_CODE_AND_REVISION_ID)); #if defined(MV_INCLUDE_CLK_PWR_CNTRL) /* Return to power off state */ if (pex_power == 0) mv_ctrl_pwr_clck_set(PEX_UNIT_ID, 0, 0); #endif return (rev_num & PCCRIR_REVID_MASK) >> PCCRIR_REVID_OFFS; } #endif #if defined(MV88F672X) void get_target_freq(u32 freq_mode, u32 *ddr_freq, u32 *hclk_ps) { u32 tmp, hclk; switch (freq_mode) { case CPU_333MHz_DDR_167MHz_L2_167MHz: hclk = 84; tmp = DDR_100; break; case CPU_266MHz_DDR_266MHz_L2_133MHz: case CPU_333MHz_DDR_222MHz_L2_167MHz: case CPU_400MHz_DDR_200MHz_L2_200MHz: case CPU_400MHz_DDR_267MHz_L2_200MHz: case CPU_533MHz_DDR_267MHz_L2_267MHz: case CPU_500MHz_DDR_250MHz_L2_250MHz: case CPU_600MHz_DDR_300MHz_L2_300MHz: case CPU_800MHz_DDR_267MHz_L2_400MHz: case CPU_900MHz_DDR_300MHz_L2_450MHz: tmp = DDR_300; hclk = 150; break; case CPU_333MHz_DDR_333MHz_L2_167MHz: case CPU_500MHz_DDR_334MHz_L2_250MHz: case CPU_666MHz_DDR_333MHz_L2_333MHz: tmp = DDR_333; hclk = 165; break; case CPU_533MHz_DDR_356MHz_L2_267MHz: tmp = DDR_360; hclk = 180; break; case CPU_400MHz_DDR_400MHz_L2_200MHz: case CPU_600MHz_DDR_400MHz_L2_300MHz: case CPU_800MHz_DDR_400MHz_L2_400MHz: case CPU_400MHz_DDR_400MHz_L2_400MHz: tmp = DDR_400; hclk = 200; break; case CPU_666MHz_DDR_444MHz_L2_333MHz: case CPU_900MHz_DDR_450MHz_L2_450MHz: tmp = DDR_444; hclk = 222; break; case CPU_500MHz_DDR_500MHz_L2_250MHz: case CPU_1000MHz_DDR_500MHz_L2_500MHz: case CPU_1000MHz_DDR_500MHz_L2_333MHz: tmp = DDR_500; hclk = 250; break; case CPU_533MHz_DDR_533MHz_L2_267MHz: case CPU_800MHz_DDR_534MHz_L2_400MHz: case CPU_1100MHz_DDR_550MHz_L2_550MHz: tmp = DDR_533; hclk = 267; break; case CPU_600MHz_DDR_600MHz_L2_300MHz: case CPU_900MHz_DDR_600MHz_L2_450MHz: case CPU_1200MHz_DDR_600MHz_L2_600MHz: tmp = DDR_600; hclk = 300; break; case CPU_666MHz_DDR_666MHz_L2_333MHz: case CPU_1000MHz_DDR_667MHz_L2_500MHz: tmp = DDR_666; hclk = 333; break; default: *ddr_freq = 0; *hclk_ps = 0; break; } *ddr_freq = tmp; /* DDR freq define */ *hclk_ps = 1000000 / hclk; /* values are 1/HCLK in ps */ return; } #endif