// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2013, Google Inc. */ #ifdef USE_HOSTCC #include "mkimage.h" #include <time.h> #else #include <common.h> #include <malloc.h> DECLARE_GLOBAL_DATA_PTR; #endif /* !USE_HOSTCC*/ #include <image.h> #include <u-boot/rsa.h> #include <u-boot/rsa-checksum.h> #define IMAGE_MAX_HASHED_NODES 100 #ifdef USE_HOSTCC void *host_blob; void image_set_host_blob(void *blob) { host_blob = blob; } void *image_get_host_blob(void) { return host_blob; } #endif struct checksum_algo checksum_algos[] = { { .name = "sha1", .checksum_len = SHA1_SUM_LEN, .der_len = SHA1_DER_LEN, .der_prefix = sha1_der_prefix, #if IMAGE_ENABLE_SIGN .calculate_sign = EVP_sha1, #endif .calculate = hash_calculate, }, { .name = "sha256", .checksum_len = SHA256_SUM_LEN, .der_len = SHA256_DER_LEN, .der_prefix = sha256_der_prefix, #if IMAGE_ENABLE_SIGN .calculate_sign = EVP_sha256, #endif .calculate = hash_calculate, } }; struct crypto_algo crypto_algos[] = { { .name = "rsa2048", .key_len = RSA2048_BYTES, .sign = rsa_sign, .add_verify_data = rsa_add_verify_data, .verify = rsa_verify, }, { .name = "rsa4096", .key_len = RSA4096_BYTES, .sign = rsa_sign, .add_verify_data = rsa_add_verify_data, .verify = rsa_verify, } }; struct checksum_algo *image_get_checksum_algo(const char *full_name) { int i; const char *name; for (i = 0; i < ARRAY_SIZE(checksum_algos); i++) { name = checksum_algos[i].name; /* Make sure names match and next char is a comma */ if (!strncmp(name, full_name, strlen(name)) && full_name[strlen(name)] == ',') return &checksum_algos[i]; } return NULL; } struct crypto_algo *image_get_crypto_algo(const char *full_name) { int i; const char *name; /* Move name to after the comma */ name = strchr(full_name, ','); if (!name) return NULL; name += 1; for (i = 0; i < ARRAY_SIZE(crypto_algos); i++) { if (!strcmp(crypto_algos[i].name, name)) return &crypto_algos[i]; } return NULL; } /** * fit_region_make_list() - Make a list of image regions * * Given a list of fdt_regions, create a list of image_regions. This is a * simple conversion routine since the FDT and image code use different * structures. * * @fit: FIT image * @fdt_regions: Pointer to FDT regions * @count: Number of FDT regions * @region: Pointer to image regions, which must hold @count records. If * region is NULL, then (except for an SPL build) the array will be * allocated. * @return: Pointer to image regions */ struct image_region *fit_region_make_list(const void *fit, struct fdt_region *fdt_regions, int count, struct image_region *region) { int i; debug("Hash regions:\n"); debug("%10s %10s\n", "Offset", "Size"); /* * Use malloc() except in SPL (to save code size). In SPL the caller * must allocate the array. */ #ifndef CONFIG_SPL_BUILD if (!region) region = calloc(sizeof(*region), count); #endif if (!region) return NULL; for (i = 0; i < count; i++) { debug("%10x %10x\n", fdt_regions[i].offset, fdt_regions[i].size); region[i].data = fit + fdt_regions[i].offset; region[i].size = fdt_regions[i].size; } return region; } static int fit_image_setup_verify(struct image_sign_info *info, const void *fit, int noffset, int required_keynode, char **err_msgp) { char *algo_name; if (fit_image_hash_get_algo(fit, noffset, &algo_name)) { *err_msgp = "Can't get hash algo property"; return -1; } memset(info, '\0', sizeof(*info)); info->keyname = fdt_getprop(fit, noffset, "key-name-hint", NULL); info->fit = (void *)fit; info->node_offset = noffset; info->name = algo_name; info->checksum = image_get_checksum_algo(algo_name); info->crypto = image_get_crypto_algo(algo_name); info->fdt_blob = gd_fdt_blob(); info->required_keynode = required_keynode; printf("%s:%s", algo_name, info->keyname); if (!info->checksum || !info->crypto) { *err_msgp = "Unknown signature algorithm"; return -1; } return 0; } int fit_image_check_sig(const void *fit, int noffset, const void *data, size_t size, int required_keynode, char **err_msgp) { struct image_sign_info info; struct image_region region; uint8_t *fit_value; int fit_value_len; *err_msgp = NULL; if (fit_image_setup_verify(&info, fit, noffset, required_keynode, err_msgp)) return -1; if (fit_image_hash_get_value(fit, noffset, &fit_value, &fit_value_len)) { *err_msgp = "Can't get hash value property"; return -1; } region.data = data; region.size = size; if (info.crypto->verify(&info, ®ion, 1, fit_value, fit_value_len)) { *err_msgp = "Verification failed"; return -1; } return 0; } static int fit_image_verify_sig(const void *fit, int image_noffset, const char *data, size_t size, const void *sig_blob, int sig_offset) { int noffset; char *err_msg = ""; int verified = 0; int ret; /* Process all hash subnodes of the component image node */ fdt_for_each_subnode(noffset, fit, image_noffset) { const char *name = fit_get_name(fit, noffset, NULL); if (!strncmp(name, FIT_SIG_NODENAME, strlen(FIT_SIG_NODENAME))) { ret = fit_image_check_sig(fit, noffset, data, size, -1, &err_msg); if (ret) { puts("- "); } else { puts("+ "); verified = 1; break; } } } if (noffset == -FDT_ERR_TRUNCATED || noffset == -FDT_ERR_BADSTRUCTURE) { err_msg = "Corrupted or truncated tree"; goto error; } return verified ? 0 : -EPERM; error: printf(" error!\n%s for '%s' hash node in '%s' image node\n", err_msg, fit_get_name(fit, noffset, NULL), fit_get_name(fit, image_noffset, NULL)); return -1; } int fit_image_verify_required_sigs(const void *fit, int image_noffset, const char *data, size_t size, const void *sig_blob, int *no_sigsp) { int verify_count = 0; int noffset; int sig_node; /* Work out what we need to verify */ *no_sigsp = 1; sig_node = fdt_subnode_offset(sig_blob, 0, FIT_SIG_NODENAME); if (sig_node < 0) { debug("%s: No signature node found: %s\n", __func__, fdt_strerror(sig_node)); return 0; } fdt_for_each_subnode(noffset, sig_blob, sig_node) { const char *required; int ret; required = fdt_getprop(sig_blob, noffset, "required", NULL); if (!required || strcmp(required, "image")) continue; ret = fit_image_verify_sig(fit, image_noffset, data, size, sig_blob, noffset); if (ret) { printf("Failed to verify required signature '%s'\n", fit_get_name(sig_blob, noffset, NULL)); return ret; } verify_count++; } if (verify_count) *no_sigsp = 0; return 0; } int fit_config_check_sig(const void *fit, int noffset, int required_keynode, char **err_msgp) { char * const exc_prop[] = {"data"}; const char *prop, *end, *name; struct image_sign_info info; const uint32_t *strings; uint8_t *fit_value; int fit_value_len; int max_regions; int i, prop_len; char path[200]; int count; debug("%s: fdt=%p, conf='%s', sig='%s'\n", __func__, gd_fdt_blob(), fit_get_name(fit, noffset, NULL), fit_get_name(gd_fdt_blob(), required_keynode, NULL)); *err_msgp = NULL; if (fit_image_setup_verify(&info, fit, noffset, required_keynode, err_msgp)) return -1; if (fit_image_hash_get_value(fit, noffset, &fit_value, &fit_value_len)) { *err_msgp = "Can't get hash value property"; return -1; } /* Count the number of strings in the property */ prop = fdt_getprop(fit, noffset, "hashed-nodes", &prop_len); end = prop ? prop + prop_len : prop; for (name = prop, count = 0; name < end; name++) if (!*name) count++; if (!count) { *err_msgp = "Can't get hashed-nodes property"; return -1; } /* Add a sanity check here since we are using the stack */ if (count > IMAGE_MAX_HASHED_NODES) { *err_msgp = "Number of hashed nodes exceeds maximum"; return -1; } /* Create a list of node names from those strings */ char *node_inc[count]; debug("Hash nodes (%d):\n", count); for (name = prop, i = 0; name < end; name += strlen(name) + 1, i++) { debug(" '%s'\n", name); node_inc[i] = (char *)name; } /* * Each node can generate one region for each sub-node. Allow for * 7 sub-nodes (hash-1, signature-1, etc.) and some extra. */ max_regions = 20 + count * 7; struct fdt_region fdt_regions[max_regions]; /* Get a list of regions to hash */ count = fdt_find_regions(fit, node_inc, count, exc_prop, ARRAY_SIZE(exc_prop), fdt_regions, max_regions - 1, path, sizeof(path), 0); if (count < 0) { *err_msgp = "Failed to hash configuration"; return -1; } if (count == 0) { *err_msgp = "No data to hash"; return -1; } if (count >= max_regions - 1) { *err_msgp = "Too many hash regions"; return -1; } /* Add the strings */ strings = fdt_getprop(fit, noffset, "hashed-strings", NULL); if (strings) { fdt_regions[count].offset = fdt_off_dt_strings(fit) + fdt32_to_cpu(strings[0]); fdt_regions[count].size = fdt32_to_cpu(strings[1]); count++; } /* Allocate the region list on the stack */ struct image_region region[count]; fit_region_make_list(fit, fdt_regions, count, region); if (info.crypto->verify(&info, region, count, fit_value, fit_value_len)) { *err_msgp = "Verification failed"; return -1; } return 0; } static int fit_config_verify_sig(const void *fit, int conf_noffset, const void *sig_blob, int sig_offset) { int noffset; char *err_msg = ""; int verified = 0; int ret; /* Process all hash subnodes of the component conf node */ fdt_for_each_subnode(noffset, fit, conf_noffset) { const char *name = fit_get_name(fit, noffset, NULL); if (!strncmp(name, FIT_SIG_NODENAME, strlen(FIT_SIG_NODENAME))) { ret = fit_config_check_sig(fit, noffset, sig_offset, &err_msg); if (ret) { puts("- "); } else { puts("+ "); verified = 1; break; } } } if (noffset == -FDT_ERR_TRUNCATED || noffset == -FDT_ERR_BADSTRUCTURE) { err_msg = "Corrupted or truncated tree"; goto error; } return verified ? 0 : -EPERM; error: printf(" error!\n%s for '%s' hash node in '%s' config node\n", err_msg, fit_get_name(fit, noffset, NULL), fit_get_name(fit, conf_noffset, NULL)); return -1; } int fit_config_verify_required_sigs(const void *fit, int conf_noffset, const void *sig_blob) { int noffset; int sig_node; /* Work out what we need to verify */ sig_node = fdt_subnode_offset(sig_blob, 0, FIT_SIG_NODENAME); if (sig_node < 0) { debug("%s: No signature node found: %s\n", __func__, fdt_strerror(sig_node)); return 0; } fdt_for_each_subnode(noffset, sig_blob, sig_node) { const char *required; int ret; required = fdt_getprop(sig_blob, noffset, "required", NULL); if (!required || strcmp(required, "conf")) continue; ret = fit_config_verify_sig(fit, conf_noffset, sig_blob, noffset); if (ret) { printf("Failed to verify required signature '%s'\n", fit_get_name(sig_blob, noffset, NULL)); return ret; } } return 0; } int fit_config_verify(const void *fit, int conf_noffset) { return fit_config_verify_required_sigs(fit, conf_noffset, gd_fdt_blob()); }