// SPDX-License-Identifier: GPL-2.0+ /* * board.c * * Board functions for TI AM43XX based boards * * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/ */ #include <common.h> #include <environment.h> #include <i2c.h> #include <linux/errno.h> #include <spl.h> #include <usb.h> #include <asm/omap_sec_common.h> #include <asm/arch/clock.h> #include <asm/arch/sys_proto.h> #include <asm/arch/mux.h> #include <asm/arch/ddr_defs.h> #include <asm/arch/gpio.h> #include <asm/emif.h> #include <asm/omap_common.h> #include "../common/board_detect.h" #include "board.h" #include <power/pmic.h> #include <power/tps65218.h> #include <power/tps62362.h> #include <miiphy.h> #include <cpsw.h> #include <linux/usb/gadget.h> #include <dwc3-uboot.h> #include <dwc3-omap-uboot.h> #include <ti-usb-phy-uboot.h> DECLARE_GLOBAL_DATA_PTR; static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; /* * Read header information from EEPROM into global structure. */ #ifdef CONFIG_TI_I2C_BOARD_DETECT void do_board_detect(void) { if (ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS, CONFIG_EEPROM_CHIP_ADDRESS)) printf("ti_i2c_eeprom_init failed\n"); } #endif #ifndef CONFIG_SKIP_LOWLEVEL_INIT const struct dpll_params dpll_mpu[NUM_CRYSTAL_FREQ][NUM_OPPS] = { { /* 19.2 MHz */ {125, 3, 2, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {125, 3, 1, -1, -1, -1, -1}, /* OPP 100 */ {150, 3, 1, -1, -1, -1, -1}, /* OPP 120 */ {125, 2, 1, -1, -1, -1, -1}, /* OPP TB */ {625, 11, 1, -1, -1, -1, -1} /* OPP NT */ }, { /* 24 MHz */ {300, 23, 1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {600, 23, 1, -1, -1, -1, -1}, /* OPP 100 */ {720, 23, 1, -1, -1, -1, -1}, /* OPP 120 */ {800, 23, 1, -1, -1, -1, -1}, /* OPP TB */ {1000, 23, 1, -1, -1, -1, -1} /* OPP NT */ }, { /* 25 MHz */ {300, 24, 1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {600, 24, 1, -1, -1, -1, -1}, /* OPP 100 */ {720, 24, 1, -1, -1, -1, -1}, /* OPP 120 */ {800, 24, 1, -1, -1, -1, -1}, /* OPP TB */ {1000, 24, 1, -1, -1, -1, -1} /* OPP NT */ }, { /* 26 MHz */ {300, 25, 1, -1, -1, -1, -1}, /* OPP 50 */ {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ {600, 25, 1, -1, -1, -1, -1}, /* OPP 100 */ {720, 25, 1, -1, -1, -1, -1}, /* OPP 120 */ {800, 25, 1, -1, -1, -1, -1}, /* OPP TB */ {1000, 25, 1, -1, -1, -1, -1} /* OPP NT */ }, }; const struct dpll_params dpll_core[NUM_CRYSTAL_FREQ] = { {625, 11, -1, -1, 10, 8, 4}, /* 19.2 MHz */ {1000, 23, -1, -1, 10, 8, 4}, /* 24 MHz */ {1000, 24, -1, -1, 10, 8, 4}, /* 25 MHz */ {1000, 25, -1, -1, 10, 8, 4} /* 26 MHz */ }; const struct dpll_params dpll_per[NUM_CRYSTAL_FREQ] = { {400, 7, 5, -1, -1, -1, -1}, /* 19.2 MHz */ {400, 9, 5, -1, -1, -1, -1}, /* 24 MHz */ {384, 9, 5, -1, -1, -1, -1}, /* 25 MHz */ {480, 12, 5, -1, -1, -1, -1} /* 26 MHz */ }; const struct dpll_params epos_evm_dpll_ddr[NUM_CRYSTAL_FREQ] = { {665, 47, 1, -1, 4, -1, -1}, /*19.2*/ {133, 11, 1, -1, 4, -1, -1}, /* 24 MHz */ {266, 24, 1, -1, 4, -1, -1}, /* 25 MHz */ {133, 12, 1, -1, 4, -1, -1} /* 26 MHz */ }; const struct dpll_params gp_evm_dpll_ddr = { 50, 2, 1, -1, 2, -1, -1}; static const struct dpll_params idk_dpll_ddr = { 400, 23, 1, -1, 2, -1, -1 }; static const u32 ext_phy_ctrl_const_base_lpddr2[] = { 0x00500050, 0x00350035, 0x00350035, 0x00350035, 0x00350035, 0x00350035, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x40001000, 0x08102040 }; const struct ctrl_ioregs ioregs_lpddr2 = { .cm0ioctl = LPDDR2_ADDRCTRL_IOCTRL_VALUE, .cm1ioctl = LPDDR2_ADDRCTRL_WD0_IOCTRL_VALUE, .cm2ioctl = LPDDR2_ADDRCTRL_WD1_IOCTRL_VALUE, .dt0ioctl = LPDDR2_DATA0_IOCTRL_VALUE, .dt1ioctl = LPDDR2_DATA0_IOCTRL_VALUE, .dt2ioctrl = LPDDR2_DATA0_IOCTRL_VALUE, .dt3ioctrl = LPDDR2_DATA0_IOCTRL_VALUE, .emif_sdram_config_ext = 0x1, }; const struct emif_regs emif_regs_lpddr2 = { .sdram_config = 0x808012BA, .ref_ctrl = 0x0000040D, .sdram_tim1 = 0xEA86B411, .sdram_tim2 = 0x103A094A, .sdram_tim3 = 0x0F6BA37F, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074BE4, .temp_alert_config = 0x0, .emif_rd_wr_lvl_rmp_win = 0x0, .emif_rd_wr_lvl_rmp_ctl = 0x0, .emif_rd_wr_lvl_ctl = 0x0, .emif_ddr_phy_ctlr_1 = 0x0E284006, .emif_rd_wr_exec_thresh = 0x80000405, .emif_ddr_ext_phy_ctrl_1 = 0x04010040, .emif_ddr_ext_phy_ctrl_2 = 0x00500050, .emif_ddr_ext_phy_ctrl_3 = 0x00500050, .emif_ddr_ext_phy_ctrl_4 = 0x00500050, .emif_ddr_ext_phy_ctrl_5 = 0x00500050, .emif_prio_class_serv_map = 0x80000001, .emif_connect_id_serv_1_map = 0x80000094, .emif_connect_id_serv_2_map = 0x00000000, .emif_cos_config = 0x000FFFFF }; const struct ctrl_ioregs ioregs_ddr3 = { .cm0ioctl = DDR3_ADDRCTRL_IOCTRL_VALUE, .cm1ioctl = DDR3_ADDRCTRL_WD0_IOCTRL_VALUE, .cm2ioctl = DDR3_ADDRCTRL_WD1_IOCTRL_VALUE, .dt0ioctl = DDR3_DATA0_IOCTRL_VALUE, .dt1ioctl = DDR3_DATA0_IOCTRL_VALUE, .dt2ioctrl = DDR3_DATA0_IOCTRL_VALUE, .dt3ioctrl = DDR3_DATA0_IOCTRL_VALUE, .emif_sdram_config_ext = 0xc163, }; const struct emif_regs ddr3_emif_regs_400Mhz = { .sdram_config = 0x638413B2, .ref_ctrl = 0x00000C30, .sdram_tim1 = 0xEAAAD4DB, .sdram_tim2 = 0x266B7FDA, .sdram_tim3 = 0x107F8678, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074BE4, .temp_alert_config = 0x0, .emif_ddr_phy_ctlr_1 = 0x0E004008, .emif_ddr_ext_phy_ctrl_1 = 0x08020080, .emif_ddr_ext_phy_ctrl_2 = 0x00400040, .emif_ddr_ext_phy_ctrl_3 = 0x00400040, .emif_ddr_ext_phy_ctrl_4 = 0x00400040, .emif_ddr_ext_phy_ctrl_5 = 0x00400040, .emif_rd_wr_lvl_rmp_win = 0x0, .emif_rd_wr_lvl_rmp_ctl = 0x0, .emif_rd_wr_lvl_ctl = 0x0, .emif_rd_wr_exec_thresh = 0x80000405, .emif_prio_class_serv_map = 0x80000001, .emif_connect_id_serv_1_map = 0x80000094, .emif_connect_id_serv_2_map = 0x00000000, .emif_cos_config = 0x000FFFFF }; /* EMIF DDR3 Configurations are different for beta AM43X GP EVMs */ const struct emif_regs ddr3_emif_regs_400Mhz_beta = { .sdram_config = 0x638413B2, .ref_ctrl = 0x00000C30, .sdram_tim1 = 0xEAAAD4DB, .sdram_tim2 = 0x266B7FDA, .sdram_tim3 = 0x107F8678, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074BE4, .temp_alert_config = 0x0, .emif_ddr_phy_ctlr_1 = 0x0E004008, .emif_ddr_ext_phy_ctrl_1 = 0x08020080, .emif_ddr_ext_phy_ctrl_2 = 0x00000065, .emif_ddr_ext_phy_ctrl_3 = 0x00000091, .emif_ddr_ext_phy_ctrl_4 = 0x000000B5, .emif_ddr_ext_phy_ctrl_5 = 0x000000E5, .emif_rd_wr_exec_thresh = 0x80000405, .emif_prio_class_serv_map = 0x80000001, .emif_connect_id_serv_1_map = 0x80000094, .emif_connect_id_serv_2_map = 0x00000000, .emif_cos_config = 0x000FFFFF }; /* EMIF DDR3 Configurations are different for production AM43X GP EVMs */ const struct emif_regs ddr3_emif_regs_400Mhz_production = { .sdram_config = 0x638413B2, .ref_ctrl = 0x00000C30, .sdram_tim1 = 0xEAAAD4DB, .sdram_tim2 = 0x266B7FDA, .sdram_tim3 = 0x107F8678, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074BE4, .temp_alert_config = 0x0, .emif_ddr_phy_ctlr_1 = 0x0E004008, .emif_ddr_ext_phy_ctrl_1 = 0x08020080, .emif_ddr_ext_phy_ctrl_2 = 0x00000066, .emif_ddr_ext_phy_ctrl_3 = 0x00000091, .emif_ddr_ext_phy_ctrl_4 = 0x000000B9, .emif_ddr_ext_phy_ctrl_5 = 0x000000E6, .emif_rd_wr_exec_thresh = 0x80000405, .emif_prio_class_serv_map = 0x80000001, .emif_connect_id_serv_1_map = 0x80000094, .emif_connect_id_serv_2_map = 0x00000000, .emif_cos_config = 0x000FFFFF }; static const struct emif_regs ddr3_sk_emif_regs_400Mhz = { .sdram_config = 0x638413b2, .sdram_config2 = 0x00000000, .ref_ctrl = 0x00000c30, .sdram_tim1 = 0xeaaad4db, .sdram_tim2 = 0x266b7fda, .sdram_tim3 = 0x107f8678, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074be4, .temp_alert_config = 0x0, .emif_ddr_phy_ctlr_1 = 0x0e084008, .emif_ddr_ext_phy_ctrl_1 = 0x08020080, .emif_ddr_ext_phy_ctrl_2 = 0x89, .emif_ddr_ext_phy_ctrl_3 = 0x90, .emif_ddr_ext_phy_ctrl_4 = 0x8e, .emif_ddr_ext_phy_ctrl_5 = 0x8d, .emif_rd_wr_lvl_rmp_win = 0x0, .emif_rd_wr_lvl_rmp_ctl = 0x00000000, .emif_rd_wr_lvl_ctl = 0x00000000, .emif_rd_wr_exec_thresh = 0x80000000, .emif_prio_class_serv_map = 0x80000001, .emif_connect_id_serv_1_map = 0x80000094, .emif_connect_id_serv_2_map = 0x00000000, .emif_cos_config = 0x000FFFFF }; static const struct emif_regs ddr3_idk_emif_regs_400Mhz = { .sdram_config = 0x61a11b32, .sdram_config2 = 0x00000000, .ref_ctrl = 0x00000c30, .sdram_tim1 = 0xeaaad4db, .sdram_tim2 = 0x266b7fda, .sdram_tim3 = 0x107f8678, .read_idle_ctrl = 0x00050000, .zq_config = 0x50074be4, .temp_alert_config = 0x00000000, .emif_ddr_phy_ctlr_1 = 0x00008009, .emif_ddr_ext_phy_ctrl_1 = 0x08020080, .emif_ddr_ext_phy_ctrl_2 = 0x00000040, .emif_ddr_ext_phy_ctrl_3 = 0x0000003e, .emif_ddr_ext_phy_ctrl_4 = 0x00000051, .emif_ddr_ext_phy_ctrl_5 = 0x00000051, .emif_rd_wr_lvl_rmp_win = 0x00000000, .emif_rd_wr_lvl_rmp_ctl = 0x00000000, .emif_rd_wr_lvl_ctl = 0x00000000, .emif_rd_wr_exec_thresh = 0x00000405, .emif_prio_class_serv_map = 0x00000000, .emif_connect_id_serv_1_map = 0x00000000, .emif_connect_id_serv_2_map = 0x00000000, .emif_cos_config = 0x00ffffff }; void emif_get_ext_phy_ctrl_const_regs(const u32 **regs, u32 *size) { if (board_is_eposevm()) { *regs = ext_phy_ctrl_const_base_lpddr2; *size = ARRAY_SIZE(ext_phy_ctrl_const_base_lpddr2); } return; } const struct dpll_params *get_dpll_ddr_params(void) { int ind = get_sys_clk_index(); if (board_is_eposevm()) return &epos_evm_dpll_ddr[ind]; else if (board_is_evm() || board_is_sk()) return &gp_evm_dpll_ddr; else if (board_is_idk()) return &idk_dpll_ddr; printf(" Board '%s' not supported\n", board_ti_get_name()); return NULL; } /* * get_opp_offset: * Returns the index for safest OPP of the device to boot. * max_off: Index of the MAX OPP in DEV ATTRIBUTE register. * min_off: Index of the MIN OPP in DEV ATTRIBUTE register. * This data is read from dev_attribute register which is e-fused. * A'1' in bit indicates OPP disabled and not available, a '0' indicates * OPP available. Lowest OPP starts with min_off. So returning the * bit with rightmost '0'. */ static int get_opp_offset(int max_off, int min_off) { struct ctrl_stat *ctrl = (struct ctrl_stat *)CTRL_BASE; int opp, offset, i; /* Bits 0:11 are defined to be the MPU_MAX_FREQ */ opp = readl(&ctrl->dev_attr) & ~0xFFFFF000; for (i = max_off; i >= min_off; i--) { offset = opp & (1 << i); if (!offset) return i; } return min_off; } const struct dpll_params *get_dpll_mpu_params(void) { int opp = get_opp_offset(DEV_ATTR_MAX_OFFSET, DEV_ATTR_MIN_OFFSET); u32 ind = get_sys_clk_index(); return &dpll_mpu[ind][opp]; } const struct dpll_params *get_dpll_core_params(void) { int ind = get_sys_clk_index(); return &dpll_core[ind]; } const struct dpll_params *get_dpll_per_params(void) { int ind = get_sys_clk_index(); return &dpll_per[ind]; } void scale_vcores_generic(u32 m) { int mpu_vdd, ddr_volt; if (i2c_probe(TPS65218_CHIP_PM)) return; switch (m) { case 1000: mpu_vdd = TPS65218_DCDC_VOLT_SEL_1330MV; break; case 800: mpu_vdd = TPS65218_DCDC_VOLT_SEL_1260MV; break; case 720: mpu_vdd = TPS65218_DCDC_VOLT_SEL_1200MV; break; case 600: mpu_vdd = TPS65218_DCDC_VOLT_SEL_1100MV; break; case 300: mpu_vdd = TPS65218_DCDC_VOLT_SEL_0950MV; break; default: puts("Unknown MPU clock, not scaling\n"); return; } /* Set DCDC1 (CORE) voltage to 1.1V */ if (tps65218_voltage_update(TPS65218_DCDC1, TPS65218_DCDC_VOLT_SEL_1100MV)) { printf("%s failure\n", __func__); return; } /* Set DCDC2 (MPU) voltage */ if (tps65218_voltage_update(TPS65218_DCDC2, mpu_vdd)) { printf("%s failure\n", __func__); return; } if (board_is_eposevm()) ddr_volt = TPS65218_DCDC3_VOLT_SEL_1200MV; else ddr_volt = TPS65218_DCDC3_VOLT_SEL_1350MV; /* Set DCDC3 (DDR) voltage */ if (tps65218_voltage_update(TPS65218_DCDC3, ddr_volt)) { printf("%s failure\n", __func__); return; } } void scale_vcores_idk(u32 m) { int mpu_vdd; if (i2c_probe(TPS62362_I2C_ADDR)) return; switch (m) { case 1000: mpu_vdd = TPS62362_DCDC_VOLT_SEL_1330MV; break; case 800: mpu_vdd = TPS62362_DCDC_VOLT_SEL_1260MV; break; case 720: mpu_vdd = TPS62362_DCDC_VOLT_SEL_1200MV; break; case 600: mpu_vdd = TPS62362_DCDC_VOLT_SEL_1100MV; break; case 300: mpu_vdd = TPS62362_DCDC_VOLT_SEL_1330MV; break; default: puts("Unknown MPU clock, not scaling\n"); return; } /* Set VDD_MPU voltage */ if (tps62362_voltage_update(TPS62362_SET3, mpu_vdd)) { printf("%s failure\n", __func__); return; } } void gpi2c_init(void) { /* When needed to be invoked prior to BSS initialization */ static bool first_time = true; if (first_time) { enable_i2c0_pin_mux(); i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE); first_time = false; } } void scale_vcores(void) { const struct dpll_params *mpu_params; /* Ensure I2C is initialized for PMIC configuration */ gpi2c_init(); /* Get the frequency */ mpu_params = get_dpll_mpu_params(); if (board_is_idk()) scale_vcores_idk(mpu_params->m); else scale_vcores_generic(mpu_params->m); } void set_uart_mux_conf(void) { enable_uart0_pin_mux(); } void set_mux_conf_regs(void) { enable_board_pin_mux(); } static void enable_vtt_regulator(void) { u32 temp; /* enable module */ writel(GPIO_CTRL_ENABLEMODULE, AM33XX_GPIO5_BASE + OMAP_GPIO_CTRL); /* enable output for GPIO5_7 */ writel(GPIO_SETDATAOUT(7), AM33XX_GPIO5_BASE + OMAP_GPIO_SETDATAOUT); temp = readl(AM33XX_GPIO5_BASE + OMAP_GPIO_OE); temp = temp & ~(GPIO_OE_ENABLE(7)); writel(temp, AM33XX_GPIO5_BASE + OMAP_GPIO_OE); } enum { RTC_BOARD_EPOS = 1, RTC_BOARD_EVM14, RTC_BOARD_EVM12, RTC_BOARD_GPEVM, RTC_BOARD_SK, }; /* * In the rtc_only+DRR in self-refresh boot path we have the board type info * in the rtc scratch pad register hence we bypass the costly i2c reads to * eeprom and directly programthe board name string */ void rtc_only_update_board_type(u32 btype) { const char *name = ""; const char *rev = "1.0"; switch (btype) { case RTC_BOARD_EPOS: name = "AM43EPOS"; break; case RTC_BOARD_EVM14: name = "AM43__GP"; rev = "1.4"; break; case RTC_BOARD_EVM12: name = "AM43__GP"; rev = "1.2"; break; case RTC_BOARD_GPEVM: name = "AM43__GP"; break; case RTC_BOARD_SK: name = "AM43__SK"; break; } ti_i2c_eeprom_am_set(name, rev); } u32 rtc_only_get_board_type(void) { if (board_is_eposevm()) return RTC_BOARD_EPOS; else if (board_is_evm_14_or_later()) return RTC_BOARD_EVM14; else if (board_is_evm_12_or_later()) return RTC_BOARD_EVM12; else if (board_is_gpevm()) return RTC_BOARD_GPEVM; else if (board_is_sk()) return RTC_BOARD_SK; return 0; } void sdram_init(void) { /* * EPOS EVM has 1GB LPDDR2 connected to EMIF. * GP EMV has 1GB DDR3 connected to EMIF * along with VTT regulator. */ if (board_is_eposevm()) { config_ddr(0, &ioregs_lpddr2, NULL, NULL, &emif_regs_lpddr2, 0); } else if (board_is_evm_14_or_later()) { enable_vtt_regulator(); config_ddr(0, &ioregs_ddr3, NULL, NULL, &ddr3_emif_regs_400Mhz_production, 0); } else if (board_is_evm_12_or_later()) { enable_vtt_regulator(); config_ddr(0, &ioregs_ddr3, NULL, NULL, &ddr3_emif_regs_400Mhz_beta, 0); } else if (board_is_evm()) { enable_vtt_regulator(); config_ddr(0, &ioregs_ddr3, NULL, NULL, &ddr3_emif_regs_400Mhz, 0); } else if (board_is_sk()) { config_ddr(400, &ioregs_ddr3, NULL, NULL, &ddr3_sk_emif_regs_400Mhz, 0); } else if (board_is_idk()) { config_ddr(400, &ioregs_ddr3, NULL, NULL, &ddr3_idk_emif_regs_400Mhz, 0); } } #endif /* setup board specific PMIC */ int power_init_board(void) { struct pmic *p; if (board_is_idk()) { power_tps62362_init(I2C_PMIC); p = pmic_get("TPS62362"); if (p && !pmic_probe(p)) puts("PMIC: TPS62362\n"); } else { power_tps65218_init(I2C_PMIC); p = pmic_get("TPS65218_PMIC"); if (p && !pmic_probe(p)) puts("PMIC: TPS65218\n"); } return 0; } int board_init(void) { struct l3f_cfg_bwlimiter *bwlimiter = (struct l3f_cfg_bwlimiter *)L3F_CFG_BWLIMITER; u32 mreqprio_0, mreqprio_1, modena_init0_bw_fractional, modena_init0_bw_integer, modena_init0_watermark_0; gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; gpmc_init(); /* * Call this to initialize *ctrl again */ hw_data_init(); /* Clear all important bits for DSS errata that may need to be tweaked*/ mreqprio_0 = readl(&cdev->mreqprio_0) & MREQPRIO_0_SAB_INIT1_MASK & MREQPRIO_0_SAB_INIT0_MASK; mreqprio_1 = readl(&cdev->mreqprio_1) & MREQPRIO_1_DSS_MASK; modena_init0_bw_fractional = readl(&bwlimiter->modena_init0_bw_fractional) & BW_LIMITER_BW_FRAC_MASK; modena_init0_bw_integer = readl(&bwlimiter->modena_init0_bw_integer) & BW_LIMITER_BW_INT_MASK; modena_init0_watermark_0 = readl(&bwlimiter->modena_init0_watermark_0) & BW_LIMITER_BW_WATERMARK_MASK; /* Setting MReq Priority of the DSS*/ mreqprio_0 |= 0x77; /* * Set L3 Fast Configuration Register * Limiting bandwith for ARM core to 700 MBPS */ modena_init0_bw_fractional |= 0x10; modena_init0_bw_integer |= 0x3; writel(mreqprio_0, &cdev->mreqprio_0); writel(mreqprio_1, &cdev->mreqprio_1); writel(modena_init0_bw_fractional, &bwlimiter->modena_init0_bw_fractional); writel(modena_init0_bw_integer, &bwlimiter->modena_init0_bw_integer); writel(modena_init0_watermark_0, &bwlimiter->modena_init0_watermark_0); return 0; } #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG set_board_info_env(NULL); /* * Default FIT boot on HS devices. Non FIT images are not allowed * on HS devices. */ if (get_device_type() == HS_DEVICE) env_set("boot_fit", "1"); #endif return 0; } #endif #ifdef CONFIG_USB_DWC3 static struct dwc3_device usb_otg_ss1 = { .maximum_speed = USB_SPEED_HIGH, .base = USB_OTG_SS1_BASE, .tx_fifo_resize = false, .index = 0, }; static struct dwc3_omap_device usb_otg_ss1_glue = { .base = (void *)USB_OTG_SS1_GLUE_BASE, .utmi_mode = DWC3_OMAP_UTMI_MODE_SW, .index = 0, }; static struct ti_usb_phy_device usb_phy1_device = { .usb2_phy_power = (void *)USB2_PHY1_POWER, .index = 0, }; static struct dwc3_device usb_otg_ss2 = { .maximum_speed = USB_SPEED_HIGH, .base = USB_OTG_SS2_BASE, .tx_fifo_resize = false, .index = 1, }; static struct dwc3_omap_device usb_otg_ss2_glue = { .base = (void *)USB_OTG_SS2_GLUE_BASE, .utmi_mode = DWC3_OMAP_UTMI_MODE_SW, .index = 1, }; static struct ti_usb_phy_device usb_phy2_device = { .usb2_phy_power = (void *)USB2_PHY2_POWER, .index = 1, }; int usb_gadget_handle_interrupts(int index) { u32 status; status = dwc3_omap_uboot_interrupt_status(index); if (status) dwc3_uboot_handle_interrupt(index); return 0; } #endif /* CONFIG_USB_DWC3 */ #if defined(CONFIG_USB_DWC3) || defined(CONFIG_USB_XHCI_OMAP) int board_usb_init(int index, enum usb_init_type init) { enable_usb_clocks(index); #ifdef CONFIG_USB_DWC3 switch (index) { case 0: if (init == USB_INIT_DEVICE) { usb_otg_ss1.dr_mode = USB_DR_MODE_PERIPHERAL; usb_otg_ss1_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID; dwc3_omap_uboot_init(&usb_otg_ss1_glue); ti_usb_phy_uboot_init(&usb_phy1_device); dwc3_uboot_init(&usb_otg_ss1); } break; case 1: if (init == USB_INIT_DEVICE) { usb_otg_ss2.dr_mode = USB_DR_MODE_PERIPHERAL; usb_otg_ss2_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID; ti_usb_phy_uboot_init(&usb_phy2_device); dwc3_omap_uboot_init(&usb_otg_ss2_glue); dwc3_uboot_init(&usb_otg_ss2); } break; default: printf("Invalid Controller Index\n"); } #endif return 0; } int board_usb_cleanup(int index, enum usb_init_type init) { #ifdef CONFIG_USB_DWC3 switch (index) { case 0: case 1: if (init == USB_INIT_DEVICE) { ti_usb_phy_uboot_exit(index); dwc3_uboot_exit(index); dwc3_omap_uboot_exit(index); } break; default: printf("Invalid Controller Index\n"); } #endif disable_usb_clocks(index); return 0; } #endif /* defined(CONFIG_USB_DWC3) || defined(CONFIG_USB_XHCI_OMAP) */ #ifdef CONFIG_DRIVER_TI_CPSW static void cpsw_control(int enabled) { /* Additional controls can be added here */ return; } static struct cpsw_slave_data cpsw_slaves[] = { { .slave_reg_ofs = 0x208, .sliver_reg_ofs = 0xd80, .phy_addr = 16, }, { .slave_reg_ofs = 0x308, .sliver_reg_ofs = 0xdc0, .phy_addr = 1, }, }; static struct cpsw_platform_data cpsw_data = { .mdio_base = CPSW_MDIO_BASE, .cpsw_base = CPSW_BASE, .mdio_div = 0xff, .channels = 8, .cpdma_reg_ofs = 0x800, .slaves = 1, .slave_data = cpsw_slaves, .ale_reg_ofs = 0xd00, .ale_entries = 1024, .host_port_reg_ofs = 0x108, .hw_stats_reg_ofs = 0x900, .bd_ram_ofs = 0x2000, .mac_control = (1 << 5), .control = cpsw_control, .host_port_num = 0, .version = CPSW_CTRL_VERSION_2, }; int board_eth_init(bd_t *bis) { int rv; uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; /* try reading mac address from efuse */ mac_lo = readl(&cdev->macid0l); mac_hi = readl(&cdev->macid0h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; if (!env_get("ethaddr")) { puts("<ethaddr> not set. Validating first E-fuse MAC\n"); if (is_valid_ethaddr(mac_addr)) eth_env_set_enetaddr("ethaddr", mac_addr); } mac_lo = readl(&cdev->macid1l); mac_hi = readl(&cdev->macid1h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; if (!env_get("eth1addr")) { if (is_valid_ethaddr(mac_addr)) eth_env_set_enetaddr("eth1addr", mac_addr); } if (board_is_eposevm()) { writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII; cpsw_slaves[0].phy_addr = 16; } else if (board_is_sk()) { writel(RGMII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII; cpsw_slaves[0].phy_addr = 4; cpsw_slaves[1].phy_addr = 5; } else if (board_is_idk()) { writel(RGMII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII; cpsw_slaves[0].phy_addr = 0; } else { writel(RGMII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII; cpsw_slaves[0].phy_addr = 0; } rv = cpsw_register(&cpsw_data); if (rv < 0) printf("Error %d registering CPSW switch\n", rv); return rv; } #endif #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP) int ft_board_setup(void *blob, bd_t *bd) { ft_cpu_setup(blob, bd); return 0; } #endif #if defined(CONFIG_SPL_LOAD_FIT) || defined(CONFIG_DTB_RESELECT) int board_fit_config_name_match(const char *name) { bool eeprom_read = board_ti_was_eeprom_read(); if (!strcmp(name, "am4372-generic") && !eeprom_read) return 0; else if (board_is_evm() && !strcmp(name, "am437x-gp-evm")) return 0; else if (board_is_sk() && !strcmp(name, "am437x-sk-evm")) return 0; else if (board_is_eposevm() && !strcmp(name, "am43x-epos-evm")) return 0; else if (board_is_idk() && !strcmp(name, "am437x-idk-evm")) return 0; else return -1; } #endif #ifdef CONFIG_DTB_RESELECT int embedded_dtb_select(void) { do_board_detect(); fdtdec_setup(); return 0; } #endif #ifdef CONFIG_TI_SECURE_DEVICE void board_fit_image_post_process(void **p_image, size_t *p_size) { secure_boot_verify_image(p_image, p_size); } void board_tee_image_process(ulong tee_image, size_t tee_size) { secure_tee_install((u32)tee_image); } U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_TEE, board_tee_image_process); #endif