// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017 Stefano Babic <sbabic@denx.de> */ #include <common.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/imx-regs.h> #include <asm/arch/iomux.h> #include <asm/arch/crm_regs.h> #include <asm/arch/iomux.h> #include <asm/arch/mx6-pins.h> #include <asm/mach-imx/iomux-v3.h> #include <asm/mach-imx/boot_mode.h> #include <asm/mach-imx/mxc_i2c.h> #include <asm/mach-imx/spi.h> #include <linux/errno.h> #include <asm/gpio.h> #include <mmc.h> #include <i2c.h> #include <fsl_esdhc.h> #include <nand.h> #include <miiphy.h> #include <netdev.h> #include <asm/arch/sys_proto.h> #include <asm/sections.h> DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_PUS_100K_UP | \ PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | \ PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define USDHC_PAD_CTRL (PAD_CTL_PUS_47K_UP | \ PAD_CTL_SPEED_LOW | PAD_CTL_DSE_80ohm | \ PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | \ PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | PAD_CTL_HYS) #define SPI_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #define I2C_PAD_CTRL (PAD_CTL_PUS_100K_UP | \ PAD_CTL_SPEED_MED | PAD_CTL_DSE_40ohm | PAD_CTL_HYS | \ PAD_CTL_ODE | PAD_CTL_SRE_FAST) #define I2C_PAD MUX_PAD_CTRL(I2C_PAD_CTRL) #define ASRC_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_100K_UP | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #define NAND_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST) #define ENET_PHY_RESET_GPIO IMX_GPIO_NR(1, 14) #define USDHC2_CD_GPIO IMX_GPIO_NR(1, 4) #define GREEN_LED IMX_GPIO_NR(2, 31) #define RED_LED IMX_GPIO_NR(1, 30) #define IMX6Q_DRIVE_STRENGTH 0x30 int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } static iomux_v3_cfg_t const uart4_pads[] = { IOMUX_PADS(PAD_KEY_COL0__UART4_TX_DATA | MUX_PAD_CTRL(UART_PAD_CTRL)), IOMUX_PADS(PAD_KEY_ROW0__UART4_RX_DATA | MUX_PAD_CTRL(UART_PAD_CTRL)), }; static iomux_v3_cfg_t const enet_pads[] = { IOMUX_PADS(PAD_ENET_MDIO__ENET_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_ENET_MDC__ENET_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TXC__RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD0__RGMII_TD0 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD1__RGMII_TD1 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD2__RGMII_TD2 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD3__RGMII_TD3 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TX_CTL__RGMII_TX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_ENET_REF_CLK__ENET_TX_CLK | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RXC__RGMII_RXC | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD0__RGMII_RD0 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD1__RGMII_RD1 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD2__RGMII_RD2 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD3__RGMII_RD3 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RX_CTL__RGMII_RX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_SD2_DAT1__GPIO1_IO14 | MUX_PAD_CTRL(NO_PAD_CTRL)), }; static iomux_v3_cfg_t const ecspi3_pads[] = { IOMUX_PADS(PAD_DISP0_DAT0__ECSPI3_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL)), IOMUX_PADS(PAD_DISP0_DAT1__ECSPI3_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL)), IOMUX_PADS(PAD_DISP0_DAT2__ECSPI3_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL)), IOMUX_PADS(PAD_DISP0_DAT3__GPIO4_IO24 | MUX_PAD_CTRL(NO_PAD_CTRL)), }; static iomux_v3_cfg_t const gpios_pads[] = { IOMUX_PADS(PAD_SD4_DAT3__GPIO2_IO11 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_DAT4__GPIO2_IO12 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_DAT5__GPIO2_IO13 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_DAT6__GPIO2_IO14 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_DAT7__GPIO2_IO15 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_EIM_EB3__GPIO2_IO31 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_ENET_TXD0__GPIO1_IO30 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_DAT3__GPIO2_IO11 | MUX_PAD_CTRL(NO_PAD_CTRL)), }; #ifdef CONFIG_CMD_NAND /* NAND */ static iomux_v3_cfg_t const nfc_pads[] = { IOMUX_PADS(PAD_NANDF_CLE__NAND_CLE | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_ALE__NAND_ALE | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_WP_B__NAND_WP_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_RB0__NAND_READY_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_CS0__NAND_CE0_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_CS1__NAND_CE1_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_CS2__NAND_CE2_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_CS3__NAND_CE3_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_SD4_CMD__NAND_RE_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_SD4_CLK__NAND_WE_B | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D0__NAND_DATA00 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D1__NAND_DATA01 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D2__NAND_DATA02 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D3__NAND_DATA03 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D4__NAND_DATA04 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D5__NAND_DATA05 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D6__NAND_DATA06 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D7__NAND_DATA07 | MUX_PAD_CTRL(NAND_PAD_CTRL)), IOMUX_PADS(PAD_SD4_DAT0__NAND_DQS | MUX_PAD_CTRL(NAND_PAD_CTRL)), }; #endif static struct i2c_pads_info i2c_pad_info = { .scl = { .i2c_mode = MX6Q_PAD_EIM_D21__I2C1_SCL | I2C_PAD, .gpio_mode = MX6Q_PAD_EIM_D21__GPIO3_IO21 | I2C_PAD, .gp = IMX_GPIO_NR(3, 21) }, .sda = { .i2c_mode = MX6Q_PAD_EIM_D28__I2C1_SDA | I2C_PAD, .gpio_mode = MX6Q_PAD_EIM_D28__GPIO3_IO28 | I2C_PAD, .gp = IMX_GPIO_NR(3, 28) } }; static struct fsl_esdhc_cfg usdhc_cfg[] = { {USDHC3_BASE_ADDR, .max_bus_width = 4}, {.esdhc_base = USDHC2_BASE_ADDR, .max_bus_width = 4}, }; #if !defined(CONFIG_SPL_BUILD) static iomux_v3_cfg_t const usdhc2_pads[] = { IOMUX_PADS(PAD_SD2_CLK__SD2_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD2_CMD__SD2_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD2_DAT0__SD2_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD2_DAT1__SD2_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD2_DAT2__SD2_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD2_DAT3__SD2_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_EIM_BCLK__GPIO6_IO31 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_GPIO_4__GPIO1_IO04 | MUX_PAD_CTRL(NO_PAD_CTRL)), }; #endif static iomux_v3_cfg_t const usdhc3_pads[] = { IOMUX_PADS(PAD_SD3_CLK__SD3_CLK | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_CMD__SD3_CMD | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT0__SD3_DATA0 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT1__SD3_DATA1 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT2__SD3_DATA2 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT3__SD3_DATA3 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT4__SD3_DATA4 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT5__SD3_DATA5 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT6__SD3_DATA6 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), IOMUX_PADS(PAD_SD3_DAT7__SD3_DATA7 | MUX_PAD_CTRL(USDHC_PAD_CTRL)), }; int board_mmc_get_env_dev(int devno) { return devno - 1; } int board_mmc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv; int ret = 0; switch (cfg->esdhc_base) { case USDHC2_BASE_ADDR: ret = !gpio_get_value(USDHC2_CD_GPIO); ret = 1; break; case USDHC3_BASE_ADDR: ret = 1; break; } return ret; } #ifndef CONFIG_SPL_BUILD int board_mmc_init(bd_t *bis) { int ret; int i; for (i = 0; i < CONFIG_SYS_FSL_USDHC_NUM; i++) { switch (i) { case 0: SETUP_IOMUX_PADS(usdhc3_pads); usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); break; case 1: SETUP_IOMUX_PADS(usdhc2_pads); gpio_direction_input(USDHC2_CD_GPIO); usdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC2_CLK); break; default: printf("Warning: you configured more USDHC controllers" "(%d) then supported by the board (%d)\n", i + 1, CONFIG_SYS_FSL_USDHC_NUM); return -EINVAL; } ret = fsl_esdhc_initialize(bis, &usdhc_cfg[i]); if (ret) return ret; } return 0; } #endif static void setup_iomux_uart(void) { SETUP_IOMUX_PADS(uart4_pads); } static void setup_iomux_enet(void) { SETUP_IOMUX_PADS(enet_pads); gpio_direction_output(ENET_PHY_RESET_GPIO, 0); mdelay(10); gpio_set_value(ENET_PHY_RESET_GPIO, 1); mdelay(30); } static void setup_spi(void) { gpio_request(IMX_GPIO_NR(4, 24), "spi_cs0"); gpio_direction_output(IMX_GPIO_NR(4, 24), 1); SETUP_IOMUX_PADS(ecspi3_pads); enable_spi_clk(true, 2); } static void setup_gpios(void) { SETUP_IOMUX_PADS(gpios_pads); } #ifdef CONFIG_CMD_NAND static void setup_gpmi_nand(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* config gpmi nand iomux */ SETUP_IOMUX_PADS(nfc_pads); /* gate ENFC_CLK_ROOT clock first,before clk source switch */ clrbits_le32(&mxc_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK); /* config gpmi and bch clock to 100 MHz */ clrsetbits_le32(&mxc_ccm->cs2cdr, MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK | MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK | MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK, MXC_CCM_CS2CDR_ENFC_CLK_PODF(0) | MXC_CCM_CS2CDR_ENFC_CLK_PRED(3) | MXC_CCM_CS2CDR_ENFC_CLK_SEL(3)); /* enable ENFC_CLK_ROOT clock */ setbits_le32(&mxc_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK); /* enable gpmi and bch clock gating */ setbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_OFFSET); /* enable apbh clock gating */ setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK); } #endif /* * Board revision is coded in 4 GPIOs */ u32 get_board_rev(void) { u32 rev; int i; for (i = 0, rev = 0; i < 4; i++) rev |= (gpio_get_value(IMX_GPIO_NR(2, 12 + i)) << i); return 16 - rev; } int board_spi_cs_gpio(unsigned bus, unsigned cs) { if (bus != 2 || (cs != 0)) return -EINVAL; return IMX_GPIO_NR(4, 24); } int board_eth_init(bd_t *bis) { setup_iomux_enet(); return cpu_eth_init(bis); } int board_early_init_f(void) { setup_iomux_uart(); return 0; } int board_init(void) { /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_SYS_I2C_MXC setup_i2c(0, CONFIG_SYS_I2C_SPEED, 0x7f, &i2c_pad_info); #endif #ifdef CONFIG_MXC_SPI setup_spi(); #endif setup_gpios(); #ifdef CONFIG_CMD_NAND setup_gpmi_nand(); #endif return 0; } #ifdef CONFIG_CMD_BMODE /* * BOOT_CFG1, BOOT_CFG2, BOOT_CFG3, BOOT_CFG4 * see Table 8-11 and Table 5-9 * BOOT_CFG1[7] = 1 (boot from NAND) * BOOT_CFG1[5] = 0 - raw NAND * BOOT_CFG1[4] = 0 - default pad settings * BOOT_CFG1[3:2] = 00 - devices = 1 * BOOT_CFG1[1:0] = 00 - Row Address Cycles = 3 * BOOT_CFG2[4:3] = 00 - Boot Search Count = 2 * BOOT_CFG2[2:1] = 01 - Pages In Block = 64 * BOOT_CFG2[0] = 0 - Reset time 12ms */ static const struct boot_mode board_boot_modes[] = { /* NAND: 64pages per block, 3 row addr cycles, 2 copies of FCB/DBBT */ {"nand", MAKE_CFGVAL(0x80, 0x02, 0x00, 0x00)}, {"mmc0", MAKE_CFGVAL(0x40, 0x20, 0x00, 0x00)}, {NULL, 0}, }; #endif int board_late_init(void) { char buf[10]; #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif snprintf(buf, sizeof(buf), "%d", get_board_rev()); env_set("board_rev", buf); return 0; } #ifdef CONFIG_SPL_BUILD #include <asm/arch/mx6-ddr.h> #include <spl.h> #include <linux/libfdt.h> #define MX6_PHYFLEX_ERR006282 IMX_GPIO_NR(2, 11) static void phyflex_err006282_workaround(void) { /* * Boards beginning with 1362.2 have the SD4_DAT3 pin connected * to the CMIC. If this pin isn't toggled within 10s the boards * reset. The pin is unconnected on older boards, so we do not * need a check for older boards before applying this fixup. */ gpio_direction_output(MX6_PHYFLEX_ERR006282, 0); mdelay(2); gpio_direction_output(MX6_PHYFLEX_ERR006282, 1); mdelay(2); gpio_set_value(MX6_PHYFLEX_ERR006282, 0); gpio_direction_input(MX6_PHYFLEX_ERR006282); } static const struct mx6dq_iomux_ddr_regs mx6_ddr_ioregs = { .dram_sdclk_0 = 0x00000030, .dram_sdclk_1 = 0x00000030, .dram_cas = 0x00000030, .dram_ras = 0x00000030, .dram_reset = 0x00000030, .dram_sdcke0 = 0x00003000, .dram_sdcke1 = 0x00003000, .dram_sdba2 = 0x00000030, .dram_sdodt0 = 0x00000030, .dram_sdodt1 = 0x00000030, .dram_sdqs0 = 0x00000028, .dram_sdqs1 = 0x00000028, .dram_sdqs2 = 0x00000028, .dram_sdqs3 = 0x00000028, .dram_sdqs4 = 0x00000028, .dram_sdqs5 = 0x00000028, .dram_sdqs6 = 0x00000028, .dram_sdqs7 = 0x00000028, .dram_dqm0 = 0x00000028, .dram_dqm1 = 0x00000028, .dram_dqm2 = 0x00000028, .dram_dqm3 = 0x00000028, .dram_dqm4 = 0x00000028, .dram_dqm5 = 0x00000028, .dram_dqm6 = 0x00000028, .dram_dqm7 = 0x00000028, }; static const struct mx6dq_iomux_grp_regs mx6_grp_ioregs = { .grp_ddr_type = 0x000C0000, .grp_ddrmode_ctl = 0x00020000, .grp_ddrpke = 0x00000000, .grp_addds = IMX6Q_DRIVE_STRENGTH, .grp_ctlds = IMX6Q_DRIVE_STRENGTH, .grp_ddrmode = 0x00020000, .grp_b0ds = 0x00000028, .grp_b1ds = 0x00000028, .grp_b2ds = 0x00000028, .grp_b3ds = 0x00000028, .grp_b4ds = 0x00000028, .grp_b5ds = 0x00000028, .grp_b6ds = 0x00000028, .grp_b7ds = 0x00000028, }; static const struct mx6_mmdc_calibration mx6_mmcd_calib = { .p0_mpwldectrl0 = 0x00110011, .p0_mpwldectrl1 = 0x00240024, .p1_mpwldectrl0 = 0x00260038, .p1_mpwldectrl1 = 0x002C0038, .p0_mpdgctrl0 = 0x03400350, .p0_mpdgctrl1 = 0x03440340, .p1_mpdgctrl0 = 0x034C0354, .p1_mpdgctrl1 = 0x035C033C, .p0_mprddlctl = 0x322A2A2A, .p1_mprddlctl = 0x302C2834, .p0_mpwrdlctl = 0x34303834, .p1_mpwrdlctl = 0x422A3E36, }; /* Index in RAM Chip array */ enum { RAM_MT64K, RAM_MT128K, RAM_MT256K }; static struct mx6_ddr3_cfg mt41k_xx[] = { /* MT41K64M16JT-125 (1Gb density) */ { .mem_speed = 1600, .density = 1, .width = 16, .banks = 8, .rowaddr = 13, .coladdr = 10, .pagesz = 2, .trcd = 1375, .trcmin = 4875, .trasmin = 3500, .SRT = 1, }, /* MT41K256M16JT-125 (2Gb density) */ { .mem_speed = 1600, .density = 2, .width = 16, .banks = 8, .rowaddr = 14, .coladdr = 10, .pagesz = 2, .trcd = 1375, .trcmin = 4875, .trasmin = 3500, .SRT = 1, }, /* MT41K256M16JT-125 (4Gb density) */ { .mem_speed = 1600, .density = 4, .width = 16, .banks = 8, .rowaddr = 15, .coladdr = 10, .pagesz = 2, .trcd = 1375, .trcmin = 4875, .trasmin = 3500, .SRT = 1, } }; static void ccgr_init(void) { struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; writel(0x00C03F3F, &ccm->CCGR0); writel(0x0030FC03, &ccm->CCGR1); writel(0x0FFFC000, &ccm->CCGR2); writel(0x3FF00000, &ccm->CCGR3); writel(0x00FFF300, &ccm->CCGR4); writel(0x0F0000C3, &ccm->CCGR5); writel(0x000003FF, &ccm->CCGR6); } static void spl_dram_init(struct mx6_ddr_sysinfo *sysinfo, struct mx6_ddr3_cfg *mem_ddr) { mx6dq_dram_iocfg(64, &mx6_ddr_ioregs, &mx6_grp_ioregs); mx6_dram_cfg(sysinfo, &mx6_mmcd_calib, mem_ddr); } int board_mmc_init(bd_t *bis) { if (spl_boot_device() == BOOT_DEVICE_SPI) printf("MMC SEtup, Boot SPI"); SETUP_IOMUX_PADS(usdhc3_pads); usdhc_cfg[0].esdhc_base = USDHC3_BASE_ADDR; usdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK); usdhc_cfg[0].max_bus_width = 4; gd->arch.sdhc_clk = usdhc_cfg[0].sdhc_clk; return fsl_esdhc_initialize(bis, &usdhc_cfg[0]); } void board_boot_order(u32 *spl_boot_list) { spl_boot_list[0] = spl_boot_device(); printf("Boot device %x\n", spl_boot_list[0]); switch (spl_boot_list[0]) { case BOOT_DEVICE_SPI: spl_boot_list[1] = BOOT_DEVICE_UART; break; case BOOT_DEVICE_MMC1: spl_boot_list[1] = BOOT_DEVICE_SPI; spl_boot_list[2] = BOOT_DEVICE_UART; break; default: printf("Boot device %x\n", spl_boot_list[0]); } } /* * This is used because get_ram_size() does not * take care of cache, resulting a wrong size * pfla02 has just 1, 2 or 4 GB option * Function checks for mirrors in the first CS */ #define RAM_TEST_PATTERN 0xaa5555aa #define MIN_BANK_SIZE (512 * 1024 * 1024) static unsigned int pfla02_detect_chiptype(void) { u32 *p, *p1; unsigned int offset = MIN_BANK_SIZE; int i; for (i = 0; i < 2; i++) { p = (u32 *)PHYS_SDRAM; p1 = (u32 *)(PHYS_SDRAM + (i + 1) * offset); *p1 = 0; *p = RAM_TEST_PATTERN; /* * This is required to detect mirroring * else we read back values from cache */ flush_dcache_all(); if (*p == *p1) return i; } return RAM_MT256K; } void board_init_f(ulong dummy) { unsigned int ramchip; struct mx6_ddr_sysinfo sysinfo = { /* width of data bus:0=16,1=32,2=64 */ .dsize = 2, /* config for full 4GB range so that get_mem_size() works */ .cs_density = 32, /* 512 MB */ /* single chip select */ #if IS_ENABLED(CONFIG_SPL_DRAM_1_BANK) .ncs = 1, #else .ncs = 2, #endif .cs1_mirror = 1, .rtt_wr = 1 /*DDR3_RTT_60_OHM*/, /* RTT_Wr = RZQ/4 */ .rtt_nom = 1 /*DDR3_RTT_60_OHM*/, /* RTT_Nom = RZQ/4 */ .walat = 1, /* Write additional latency */ .ralat = 5, /* Read additional latency */ .mif3_mode = 3, /* Command prediction working mode */ .bi_on = 1, /* Bank interleaving enabled */ .sde_to_rst = 0x10, /* 14 cycles, 200us (JEDEC default) */ .rst_to_cke = 0x23, /* 33 cycles, 500us (JEDEC default) */ .ddr_type = DDR_TYPE_DDR3, .refsel = 1, /* Refresh cycles at 32KHz */ .refr = 7, /* 8 refresh commands per refresh cycle */ }; #ifdef CONFIG_CMD_NAND /* Enable NAND */ setup_gpmi_nand(); #endif /* setup clock gating */ ccgr_init(); /* setup AIPS and disable watchdog */ arch_cpu_init(); /* setup AXI */ gpr_init(); board_early_init_f(); /* setup GP timer */ timer_init(); /* UART clocks enabled and gd valid - init serial console */ preloader_console_init(); setup_spi(); setup_gpios(); /* DDR initialization */ spl_dram_init(&sysinfo, &mt41k_xx[RAM_MT256K]); ramchip = pfla02_detect_chiptype(); debug("Detected chip %d\n", ramchip); #if !IS_ENABLED(CONFIG_SPL_DRAM_1_BANK) switch (ramchip) { case RAM_MT64K: sysinfo.cs_density = 6; break; case RAM_MT128K: sysinfo.cs_density = 10; break; case RAM_MT256K: sysinfo.cs_density = 18; break; } #endif spl_dram_init(&sysinfo, &mt41k_xx[ramchip]); /* Clear the BSS. */ memset(__bss_start, 0, __bss_end - __bss_start); phyflex_err006282_workaround(); /* load/boot image from boot device */ board_init_r(NULL, 0); } #endif