// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2013 Gateworks Corporation * * Author: Tim Harvey <tharvey@gateworks.com> */ #include <common.h> #include <asm/arch/clock.h> #include <asm/arch/crm_regs.h> #include <asm/arch/iomux.h> #include <asm/arch/mx6-pins.h> #include <asm/arch/mxc_hdmi.h> #include <asm/arch/sys_proto.h> #include <asm/gpio.h> #include <asm/mach-imx/boot_mode.h> #include <asm/mach-imx/sata.h> #include <asm/mach-imx/spi.h> #include <asm/mach-imx/video.h> #include <asm/io.h> #include <asm/setup.h> #include <dm.h> #include <dm/platform_data/serial_mxc.h> #include <environment.h> #include <hwconfig.h> #include <i2c.h> #include <fdt_support.h> #include <fsl_esdhc.h> #include <jffs2/load_kernel.h> #include <linux/ctype.h> #include <miiphy.h> #include <mtd_node.h> #include <netdev.h> #include <pci.h> #include <power/pmic.h> #include <power/ltc3676_pmic.h> #include <power/pfuze100_pmic.h> #include <fdt_support.h> #include <jffs2/load_kernel.h> #include <spi_flash.h> #include "gsc.h" #include "common.h" DECLARE_GLOBAL_DATA_PTR; /* * EEPROM board info struct populated by read_eeprom so that we only have to * read it once. */ struct ventana_board_info ventana_info; static int board_type; /* ENET */ static iomux_v3_cfg_t const enet_pads[] = { IOMUX_PADS(PAD_ENET_MDIO__ENET_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_ENET_MDC__ENET_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TXC__RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD0__RGMII_TD0 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD1__RGMII_TD1 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD2__RGMII_TD2 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TD3__RGMII_TD3 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_TX_CTL__RGMII_TX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_ENET_REF_CLK__ENET_TX_CLK | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RXC__RGMII_RXC | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD0__RGMII_RD0 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD1__RGMII_RD1 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD2__RGMII_RD2 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RD3__RGMII_RD3 | MUX_PAD_CTRL(ENET_PAD_CTRL)), IOMUX_PADS(PAD_RGMII_RX_CTL__RGMII_RX_CTL | MUX_PAD_CTRL(ENET_PAD_CTRL)), /* PHY nRST */ IOMUX_PADS(PAD_ENET_TXD0__GPIO1_IO30 | DIO_PAD_CFG), }; #ifdef CONFIG_CMD_NAND static iomux_v3_cfg_t const nfc_pads[] = { IOMUX_PADS(PAD_NANDF_CLE__NAND_CLE | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_ALE__NAND_ALE | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_WP_B__NAND_WP_B | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_RB0__NAND_READY_B | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_CS0__NAND_CE0_B | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_CMD__NAND_RE_B | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_SD4_CLK__NAND_WE_B | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D0__NAND_DATA00 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D1__NAND_DATA01 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D2__NAND_DATA02 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D3__NAND_DATA03 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D4__NAND_DATA04 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D5__NAND_DATA05 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D6__NAND_DATA06 | MUX_PAD_CTRL(NO_PAD_CTRL)), IOMUX_PADS(PAD_NANDF_D7__NAND_DATA07 | MUX_PAD_CTRL(NO_PAD_CTRL)), }; static void setup_gpmi_nand(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* config gpmi nand iomux */ SETUP_IOMUX_PADS(nfc_pads); /* config gpmi and bch clock to 100 MHz */ clrsetbits_le32(&mxc_ccm->cs2cdr, MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK | MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK | MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK, MXC_CCM_CS2CDR_ENFC_CLK_PODF(0) | MXC_CCM_CS2CDR_ENFC_CLK_PRED(3) | MXC_CCM_CS2CDR_ENFC_CLK_SEL(3)); /* enable gpmi and bch clock gating */ setbits_le32(&mxc_ccm->CCGR4, MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK | MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK | MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_OFFSET); /* enable apbh clock gating */ setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK); } #endif static void setup_iomux_enet(int gpio) { SETUP_IOMUX_PADS(enet_pads); /* toggle PHY_RST# */ gpio_request(gpio, "phy_rst#"); gpio_direction_output(gpio, 0); mdelay(10); gpio_set_value(gpio, 1); mdelay(100); } #ifdef CONFIG_USB_EHCI_MX6 static iomux_v3_cfg_t const usb_pads[] = { IOMUX_PADS(PAD_GPIO_1__USB_OTG_ID | DIO_PAD_CFG), IOMUX_PADS(PAD_KEY_COL4__USB_OTG_OC | DIO_PAD_CFG), /* OTG PWR */ IOMUX_PADS(PAD_EIM_D22__GPIO3_IO22 | DIO_PAD_CFG), }; int board_ehci_hcd_init(int port) { int gpio; SETUP_IOMUX_PADS(usb_pads); /* Reset USB HUB */ switch (board_type) { case GW53xx: case GW552x: gpio = (IMX_GPIO_NR(1, 9)); break; case GW54proto: case GW54xx: gpio = (IMX_GPIO_NR(1, 16)); break; default: return 0; } /* request and toggle hub rst */ gpio_request(gpio, "usb_hub_rst#"); gpio_direction_output(gpio, 0); mdelay(2); gpio_set_value(gpio, 1); return 0; } int board_ehci_power(int port, int on) { /* enable OTG VBUS */ if (!port && board_type < GW_UNKNOWN) { if (gpio_cfg[board_type].otgpwr_en) gpio_set_value(gpio_cfg[board_type].otgpwr_en, on); } return 0; } #endif /* CONFIG_USB_EHCI_MX6 */ #ifdef CONFIG_MXC_SPI iomux_v3_cfg_t const ecspi1_pads[] = { /* SS1 */ IOMUX_PADS(PAD_EIM_D19__GPIO3_IO19 | MUX_PAD_CTRL(SPI_PAD_CTRL)), IOMUX_PADS(PAD_EIM_D17__ECSPI1_MISO | MUX_PAD_CTRL(SPI_PAD_CTRL)), IOMUX_PADS(PAD_EIM_D18__ECSPI1_MOSI | MUX_PAD_CTRL(SPI_PAD_CTRL)), IOMUX_PADS(PAD_EIM_D16__ECSPI1_SCLK | MUX_PAD_CTRL(SPI_PAD_CTRL)), }; int board_spi_cs_gpio(unsigned bus, unsigned cs) { return (bus == 0 && cs == 0) ? (IMX_GPIO_NR(3, 19)) : -1; } static void setup_spi(void) { gpio_request(IMX_GPIO_NR(3, 19), "spi_cs"); gpio_direction_output(IMX_GPIO_NR(3, 19), 1); SETUP_IOMUX_PADS(ecspi1_pads); } #endif /* configure eth0 PHY board-specific LED behavior */ int board_phy_config(struct phy_device *phydev) { unsigned short val; /* Marvel 88E1510 */ if (phydev->phy_id == 0x1410dd1) { /* * Page 3, Register 16: LED[2:0] Function Control Register * LED[0] (SPD:Amber) R16_3.3:0 to 0111: on-GbE link * LED[1] (LNK:Green) R16_3.7:4 to 0001: on-link, blink-activity */ phy_write(phydev, MDIO_DEVAD_NONE, 22, 3); val = phy_read(phydev, MDIO_DEVAD_NONE, 16); val &= 0xff00; val |= 0x0017; phy_write(phydev, MDIO_DEVAD_NONE, 16, val); phy_write(phydev, MDIO_DEVAD_NONE, 22, 0); } /* TI DP83867 */ else if (phydev->phy_id == 0x2000a231) { /* configure register 0x170 for ref CLKOUT */ phy_write(phydev, MDIO_DEVAD_NONE, 13, 0x001f); phy_write(phydev, MDIO_DEVAD_NONE, 14, 0x0170); phy_write(phydev, MDIO_DEVAD_NONE, 13, 0x401f); val = phy_read(phydev, MDIO_DEVAD_NONE, 14); val &= ~0x1f00; val |= 0x0b00; /* chD tx clock*/ phy_write(phydev, MDIO_DEVAD_NONE, 14, val); } if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #ifdef CONFIG_MV88E61XX_SWITCH int mv88e61xx_hw_reset(struct phy_device *phydev) { struct mii_dev *bus = phydev->bus; /* GPIO[0] output, CLK125 */ debug("enabling RGMII_REFCLK\n"); bus->write(bus, 0x1c /*MV_GLOBAL2*/, 0, 0x1a /*MV_SCRATCH_MISC*/, (1 << 15) | (0x62 /*MV_GPIO_DIR*/ << 8) | 0xfe); bus->write(bus, 0x1c /*MV_GLOBAL2*/, 0, 0x1a /*MV_SCRATCH_MISC*/, (1 << 15) | (0x68 /*MV_GPIO01_CNTL*/ << 8) | 7); /* RGMII delay - Physical Control register bit[15:14] */ debug("setting port%d RGMII rx/tx delay\n", CONFIG_MV88E61XX_CPU_PORT); /* forced 1000mbps full-duplex link */ bus->write(bus, 0x10 + CONFIG_MV88E61XX_CPU_PORT, 0, 1, 0xc0fe); phydev->autoneg = AUTONEG_DISABLE; phydev->speed = SPEED_1000; phydev->duplex = DUPLEX_FULL; /* LED configuration: 7:4-green (8=Activity) 3:0 amber (9=10Link) */ bus->write(bus, 0x10, 0, 0x16, 0x8089); bus->write(bus, 0x11, 0, 0x16, 0x8089); bus->write(bus, 0x12, 0, 0x16, 0x8089); bus->write(bus, 0x13, 0, 0x16, 0x8089); return 0; } #endif // CONFIG_MV88E61XX_SWITCH int board_eth_init(bd_t *bis) { #ifdef CONFIG_FEC_MXC struct ventana_board_info *info = &ventana_info; if (test_bit(EECONFIG_ETH0, info->config)) { setup_iomux_enet(GP_PHY_RST); cpu_eth_init(bis); } #endif #ifdef CONFIG_E1000 e1000_initialize(bis); #endif #ifdef CONFIG_CI_UDC /* For otg ethernet*/ usb_eth_initialize(bis); #endif /* default to the first detected enet dev */ if (!env_get("ethprime")) { struct eth_device *dev = eth_get_dev_by_index(0); if (dev) { env_set("ethprime", dev->name); printf("set ethprime to %s\n", env_get("ethprime")); } } return 0; } #if defined(CONFIG_VIDEO_IPUV3) static void enable_hdmi(struct display_info_t const *dev) { imx_enable_hdmi_phy(); } static int detect_i2c(struct display_info_t const *dev) { return i2c_set_bus_num(dev->bus) == 0 && i2c_probe(dev->addr) == 0; } static void enable_lvds(struct display_info_t const *dev) { struct iomuxc *iomux = (struct iomuxc *) IOMUXC_BASE_ADDR; /* set CH0 data width to 24bit (IOMUXC_GPR2:5 0=18bit, 1=24bit) */ u32 reg = readl(&iomux->gpr[2]); reg |= IOMUXC_GPR2_DATA_WIDTH_CH0_24BIT; writel(reg, &iomux->gpr[2]); /* Enable Backlight */ gpio_request(IMX_GPIO_NR(1, 10), "bklt_gpio"); gpio_direction_output(IMX_GPIO_NR(1, 10), 0); gpio_request(IMX_GPIO_NR(1, 18), "bklt_en"); SETUP_IOMUX_PAD(PAD_SD1_CMD__GPIO1_IO18 | DIO_PAD_CFG); gpio_direction_output(IMX_GPIO_NR(1, 18), 1); } struct display_info_t const displays[] = {{ /* HDMI Output */ .bus = -1, .addr = 0, .pixfmt = IPU_PIX_FMT_RGB24, .detect = detect_hdmi, .enable = enable_hdmi, .mode = { .name = "HDMI", .refresh = 60, .xres = 1024, .yres = 768, .pixclock = 15385, .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* Freescale MXC-LVDS1: HannStar HSD100PXN1-A00 w/ egalx_ts cont */ .bus = 2, .addr = 0x4, .pixfmt = IPU_PIX_FMT_LVDS666, .detect = detect_i2c, .enable = enable_lvds, .mode = { .name = "Hannstar-XGA", .refresh = 60, .xres = 1024, .yres = 768, .pixclock = 15385, .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* DLC700JMG-T-4 */ .bus = 0, .addr = 0, .detect = NULL, .enable = enable_lvds, .pixfmt = IPU_PIX_FMT_LVDS666, .mode = { .name = "DLC700JMGT4", .refresh = 60, .xres = 1024, /* 1024x600active pixels */ .yres = 600, .pixclock = 15385, /* 64MHz */ .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* DLC800FIG-T-3 */ .bus = 0, .addr = 0, .detect = NULL, .enable = enable_lvds, .pixfmt = IPU_PIX_FMT_LVDS666, .mode = { .name = "DLC800FIGT3", .refresh = 60, .xres = 1024, /* 1024x768 active pixels */ .yres = 768, .pixclock = 15385, /* 64MHz */ .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } } }; size_t display_count = ARRAY_SIZE(displays); static void setup_display(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; int reg; enable_ipu_clock(); imx_setup_hdmi(); /* Turn on LDB0,IPU,IPU DI0 clocks */ reg = __raw_readl(&mxc_ccm->CCGR3); reg |= MXC_CCM_CCGR3_LDB_DI0_MASK; writel(reg, &mxc_ccm->CCGR3); /* set LDB0, LDB1 clk select to 011/011 */ reg = readl(&mxc_ccm->cs2cdr); reg &= ~(MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK |MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK); reg |= (3<<MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET) |(3<<MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET); writel(reg, &mxc_ccm->cs2cdr); reg = readl(&mxc_ccm->cscmr2); reg |= MXC_CCM_CSCMR2_LDB_DI0_IPU_DIV; writel(reg, &mxc_ccm->cscmr2); reg = readl(&mxc_ccm->chsccdr); reg |= (CHSCCDR_CLK_SEL_LDB_DI0 <<MXC_CCM_CHSCCDR_IPU1_DI0_CLK_SEL_OFFSET); writel(reg, &mxc_ccm->chsccdr); reg = IOMUXC_GPR2_BGREF_RRMODE_EXTERNAL_RES |IOMUXC_GPR2_DI1_VS_POLARITY_ACTIVE_HIGH |IOMUXC_GPR2_DI0_VS_POLARITY_ACTIVE_LOW |IOMUXC_GPR2_BIT_MAPPING_CH1_SPWG |IOMUXC_GPR2_DATA_WIDTH_CH1_18BIT |IOMUXC_GPR2_BIT_MAPPING_CH0_SPWG |IOMUXC_GPR2_DATA_WIDTH_CH0_18BIT |IOMUXC_GPR2_LVDS_CH1_MODE_DISABLED |IOMUXC_GPR2_LVDS_CH0_MODE_ENABLED_DI0; writel(reg, &iomux->gpr[2]); reg = readl(&iomux->gpr[3]); reg = (reg & ~IOMUXC_GPR3_LVDS0_MUX_CTL_MASK) | (IOMUXC_GPR3_MUX_SRC_IPU1_DI0 <<IOMUXC_GPR3_LVDS0_MUX_CTL_OFFSET); writel(reg, &iomux->gpr[3]); /* LVDS Backlight GPIO on LVDS connector - output low */ SETUP_IOMUX_PAD(PAD_SD2_CLK__GPIO1_IO10 | DIO_PAD_CFG); gpio_direction_output(IMX_GPIO_NR(1, 10), 0); } #endif /* CONFIG_VIDEO_IPUV3 */ /* setup board specific PMIC */ int power_init_board(void) { setup_pmic(); return 0; } #if defined(CONFIG_CMD_PCI) int imx6_pcie_toggle_reset(void) { if (board_type < GW_UNKNOWN) { uint pin = gpio_cfg[board_type].pcie_rst; gpio_request(pin, "pci_rst#"); gpio_direction_output(pin, 0); mdelay(50); gpio_direction_output(pin, 1); } return 0; } /* * Most Ventana boards have a PLX PEX860x PCIe switch onboard and use its * GPIO's as PERST# signals for its downstream ports - configure the GPIO's * properly and assert reset for 100ms. */ #define MAX_PCI_DEVS 32 struct pci_dev { pci_dev_t devfn; unsigned short vendor; unsigned short device; unsigned short class; unsigned short busno; /* subbordinate busno */ struct pci_dev *ppar; }; struct pci_dev pci_devs[MAX_PCI_DEVS]; int pci_devno; int pci_bridgeno; void board_pci_fixup_dev(struct pci_controller *hose, pci_dev_t dev, unsigned short vendor, unsigned short device, unsigned short class) { int i; u32 dw; struct pci_dev *pdev = &pci_devs[pci_devno++]; debug("%s: %02d:%02d.%02d: %04x:%04x\n", __func__, PCI_BUS(dev), PCI_DEV(dev), PCI_FUNC(dev), vendor, device); /* store array of devs for later use in device-tree fixup */ pdev->devfn = dev; pdev->vendor = vendor; pdev->device = device; pdev->class = class; pdev->ppar = NULL; if (class == PCI_CLASS_BRIDGE_PCI) pdev->busno = ++pci_bridgeno; else pdev->busno = 0; /* fixup RC - it should be 00:00.0 not 00:01.0 */ if (PCI_BUS(dev) == 0) pdev->devfn = 0; /* find dev's parent */ for (i = 0; i < pci_devno; i++) { if (pci_devs[i].busno == PCI_BUS(pdev->devfn)) { pdev->ppar = &pci_devs[i]; break; } } /* assert downstream PERST# */ if (vendor == PCI_VENDOR_ID_PLX && (device & 0xfff0) == 0x8600 && PCI_DEV(dev) == 0 && PCI_FUNC(dev) == 0) { debug("configuring PLX 860X downstream PERST#\n"); pci_hose_read_config_dword(hose, dev, 0x62c, &dw); dw |= 0xaaa8; /* GPIO1-7 outputs */ pci_hose_write_config_dword(hose, dev, 0x62c, dw); pci_hose_read_config_dword(hose, dev, 0x644, &dw); dw |= 0xfe; /* GPIO1-7 output high */ pci_hose_write_config_dword(hose, dev, 0x644, dw); mdelay(100); } } #endif /* CONFIG_CMD_PCI */ #ifdef CONFIG_SERIAL_TAG /* * called when setting up ATAGS before booting kernel * populate serialnum from the following (in order of priority): * serial# env var * eeprom */ void get_board_serial(struct tag_serialnr *serialnr) { char *serial = env_get("serial#"); if (serial) { serialnr->high = 0; serialnr->low = simple_strtoul(serial, NULL, 10); } else if (ventana_info.model[0]) { serialnr->high = 0; serialnr->low = ventana_info.serial; } else { serialnr->high = 0; serialnr->low = 0; } } #endif /* * Board Support */ int board_early_init_f(void) { setup_iomux_uart(); #if defined(CONFIG_VIDEO_IPUV3) setup_display(); #endif return 0; } int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } int board_init(void) { struct iomuxc *const iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUXC_GPR1_OTG_ID_MASK, IOMUXC_GPR1_OTG_ID_GPIO1); /* address of linux boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; #ifdef CONFIG_CMD_NAND setup_gpmi_nand(); #endif #ifdef CONFIG_MXC_SPI setup_spi(); #endif setup_ventana_i2c(); #ifdef CONFIG_SATA setup_sata(); #endif /* read Gateworks EEPROM into global struct (used later) */ board_type = read_eeprom(CONFIG_I2C_GSC, &ventana_info); setup_iomux_gpio(board_type, &ventana_info); return 0; } #if defined(CONFIG_DISPLAY_BOARDINFO_LATE) /* * called during late init (after relocation and after board_init()) * by virtue of CONFIG_DISPLAY_BOARDINFO_LATE as we needed i2c initialized and * EEPROM read. */ int checkboard(void) { struct ventana_board_info *info = &ventana_info; unsigned char buf[4]; const char *p; int quiet; /* Quiet or minimal output mode */ quiet = 0; p = env_get("quiet"); if (p) quiet = simple_strtol(p, NULL, 10); else env_set("quiet", "0"); puts("\nGateworks Corporation Copyright 2014\n"); if (info->model[0]) { printf("Model: %s\n", info->model); printf("MFGDate: %02x-%02x-%02x%02x\n", info->mfgdate[0], info->mfgdate[1], info->mfgdate[2], info->mfgdate[3]); printf("Serial:%d\n", info->serial); } else { puts("Invalid EEPROM - board will not function fully\n"); } if (quiet) return 0; /* Display GSC firmware revision/CRC/status */ gsc_info(0); /* Display RTC */ if (!gsc_i2c_read(GSC_RTC_ADDR, 0x00, 1, buf, 4)) { printf("RTC: %d\n", buf[0] | buf[1]<<8 | buf[2]<<16 | buf[3]<<24); } return 0; } #endif #ifdef CONFIG_CMD_BMODE /* * BOOT_CFG1, BOOT_CFG2, BOOT_CFG3, BOOT_CFG4 * see Table 8-11 and Table 5-9 * BOOT_CFG1[7] = 1 (boot from NAND) * BOOT_CFG1[5] = 0 - raw NAND * BOOT_CFG1[4] = 0 - default pad settings * BOOT_CFG1[3:2] = 00 - devices = 1 * BOOT_CFG1[1:0] = 00 - Row Address Cycles = 3 * BOOT_CFG2[4:3] = 00 - Boot Search Count = 2 * BOOT_CFG2[2:1] = 01 - Pages In Block = 64 * BOOT_CFG2[0] = 0 - Reset time 12ms */ static const struct boot_mode board_boot_modes[] = { /* NAND: 64pages per block, 3 row addr cycles, 2 copies of FCB/DBBT */ { "nand", MAKE_CFGVAL(0x80, 0x02, 0x00, 0x00) }, { "emmc2", MAKE_CFGVAL(0x60, 0x48, 0x00, 0x00) }, /* GW5600 */ { "emmc3", MAKE_CFGVAL(0x60, 0x50, 0x00, 0x00) }, /* GW5903/GW5904 */ { NULL, 0 }, }; #endif /* late init */ int misc_init_r(void) { struct ventana_board_info *info = &ventana_info; char buf[256]; int i; /* set env vars based on EEPROM data */ if (ventana_info.model[0]) { char str[16], fdt[36]; char *p; const char *cputype = ""; /* * FDT name will be prefixed with CPU type. Three versions * will be created each increasingly generic and bootloader * env scripts will try loading each from most specific to * least. */ if (is_cpu_type(MXC_CPU_MX6Q) || is_cpu_type(MXC_CPU_MX6D)) cputype = "imx6q"; else if (is_cpu_type(MXC_CPU_MX6DL) || is_cpu_type(MXC_CPU_MX6SOLO)) cputype = "imx6dl"; env_set("soctype", cputype); if (8 << (ventana_info.nand_flash_size-1) >= 2048) env_set("flash_layout", "large"); else env_set("flash_layout", "normal"); memset(str, 0, sizeof(str)); for (i = 0; i < (sizeof(str)-1) && info->model[i]; i++) str[i] = tolower(info->model[i]); env_set("model", str); if (!env_get("fdt_file")) { sprintf(fdt, "%s-%s.dtb", cputype, str); env_set("fdt_file", fdt); } p = strchr(str, '-'); if (p) { *p++ = 0; env_set("model_base", str); sprintf(fdt, "%s-%s.dtb", cputype, str); env_set("fdt_file1", fdt); if (board_type != GW551x && board_type != GW552x && board_type != GW553x && board_type != GW560x) str[4] = 'x'; str[5] = 'x'; str[6] = 0; sprintf(fdt, "%s-%s.dtb", cputype, str); env_set("fdt_file2", fdt); } /* initialize env from EEPROM */ if (test_bit(EECONFIG_ETH0, info->config) && !env_get("ethaddr")) { eth_env_set_enetaddr("ethaddr", info->mac0); } if (test_bit(EECONFIG_ETH1, info->config) && !env_get("eth1addr")) { eth_env_set_enetaddr("eth1addr", info->mac1); } /* board serial-number */ sprintf(str, "%6d", info->serial); env_set("serial#", str); /* memory MB */ sprintf(str, "%d", (int) (gd->ram_size >> 20)); env_set("mem_mb", str); } /* Set a non-initialized hwconfig based on board configuration */ if (!strcmp(env_get("hwconfig"), "_UNKNOWN_")) { buf[0] = 0; if (gpio_cfg[board_type].rs232_en) strcat(buf, "rs232;"); for (i = 0; i < gpio_cfg[board_type].dio_num; i++) { char buf1[32]; sprintf(buf1, "dio%d:mode=gpio;", i); if (strlen(buf) + strlen(buf1) < sizeof(buf)) strcat(buf, buf1); } env_set("hwconfig", buf); } /* setup baseboard specific GPIO based on board and env */ setup_board_gpio(board_type, info); #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif /* disable boot watchdog */ gsc_boot_wd_disable(); return 0; } #ifdef CONFIG_OF_BOARD_SETUP static int ft_sethdmiinfmt(void *blob, char *mode) { int off; if (!mode) return -EINVAL; off = fdt_node_offset_by_compatible(blob, -1, "nxp,tda1997x"); if (off < 0) return off; if (0 == strcasecmp(mode, "yuv422bt656")) { u8 cfg[] = { 0x00, 0x00, 0x00, 0x82, 0x81, 0x00, 0x00, 0x00, 0x00 }; mode = "422_ccir"; fdt_setprop(blob, off, "vidout_fmt", mode, strlen(mode) + 1); fdt_setprop_u32(blob, off, "vidout_trc", 1); fdt_setprop_u32(blob, off, "vidout_blc", 1); fdt_setprop(blob, off, "vidout_portcfg", cfg, sizeof(cfg)); printf(" set HDMI input mode to %s\n", mode); } else if (0 == strcasecmp(mode, "yuv422smp")) { u8 cfg[] = { 0x00, 0x00, 0x00, 0x88, 0x87, 0x00, 0x82, 0x81, 0x00 }; mode = "422_smp"; fdt_setprop(blob, off, "vidout_fmt", mode, strlen(mode) + 1); fdt_setprop_u32(blob, off, "vidout_trc", 0); fdt_setprop_u32(blob, off, "vidout_blc", 0); fdt_setprop(blob, off, "vidout_portcfg", cfg, sizeof(cfg)); printf(" set HDMI input mode to %s\n", mode); } else { return -EINVAL; } return 0; } /* enable a property of a node if the node is found */ static inline void ft_enable_path(void *blob, const char *path) { int i = fdt_path_offset(blob, path); if (i >= 0) { debug("enabling %s\n", path); fdt_status_okay(blob, i); } } /* remove a property of a node if the node is found */ static inline void ft_delprop_path(void *blob, const char *path, const char *name) { int i = fdt_path_offset(blob, path); if (i) { debug("removing %s/%s\n", path, name); fdt_delprop(blob, i, name); } } #if defined(CONFIG_CMD_PCI) #define PCI_ID(x) ( \ (PCI_BUS(x->devfn)<<16)| \ (PCI_DEV(x->devfn)<<11)| \ (PCI_FUNC(x->devfn)<<8) \ ) #define PCIE_PATH "/soc/pcie@0x01000000" int fdt_add_pci_node(void *blob, int par, struct pci_dev *dev) { uint32_t reg[5]; char node[32]; int np; sprintf(node, "pcie@%d,%d,%d", PCI_BUS(dev->devfn), PCI_DEV(dev->devfn), PCI_FUNC(dev->devfn)); np = fdt_subnode_offset(blob, par, node); if (np >= 0) return np; np = fdt_add_subnode(blob, par, node); if (np < 0) { printf(" %s failed: no space\n", __func__); return np; } memset(reg, 0, sizeof(reg)); reg[0] = cpu_to_fdt32(PCI_ID(dev)); fdt_setprop(blob, np, "reg", reg, sizeof(reg)); return np; } /* build a path of nested PCI devs for all bridges passed through */ int fdt_add_pci_path(void *blob, struct pci_dev *dev) { struct pci_dev *bridges[MAX_PCI_DEVS]; int k, np; /* build list of parents */ np = fdt_path_offset(blob, PCIE_PATH); if (np < 0) return np; k = 0; while (dev) { bridges[k++] = dev; dev = dev->ppar; }; /* now add them the to DT in reverse order */ while (k--) { np = fdt_add_pci_node(blob, np, bridges[k]); if (np < 0) break; } return np; } /* * The GW16082 has a hardware errata errata such that it's * INTA/B/C/D are mis-mapped to its four slots (slot12-15). Because * of this normal PCI interrupt swizzling will not work so we will * provide an irq-map via device-tree. */ int fdt_fixup_gw16082(void *blob, int np, struct pci_dev *dev) { int len; int host; uint32_t imap_new[8*4*4]; const uint32_t *imap; uint32_t irq[4]; uint32_t reg[4]; int i; /* build irq-map based on host controllers map */ host = fdt_path_offset(blob, PCIE_PATH); if (host < 0) { printf(" %s failed: missing host\n", __func__); return host; } /* use interrupt data from root complex's node */ imap = fdt_getprop(blob, host, "interrupt-map", &len); if (!imap || len != 128) { printf(" %s failed: invalid interrupt-map\n", __func__); return -FDT_ERR_NOTFOUND; } /* obtain irq's of host controller in pin order */ for (i = 0; i < 4; i++) irq[(fdt32_to_cpu(imap[(i*8)+3])-1)%4] = imap[(i*8)+6]; /* * determine number of swizzles necessary: * For each bridge we pass through we need to swizzle * the number of the slot we are on. */ struct pci_dev *d; int b; b = 0; d = dev->ppar; while(d && d->ppar) { b += PCI_DEV(d->devfn); d = d->ppar; } /* create new irq mappings for slots12-15 * <skt> <idsel> <slot> <skt-inta> <skt-intb> * J3 AD28 12 INTD INTA * J4 AD29 13 INTC INTD * J5 AD30 14 INTB INTC * J2 AD31 15 INTA INTB */ for (i = 0; i < 4; i++) { /* addr matches bus:dev:func */ u32 addr = dev->busno << 16 | (12+i) << 11; /* default cells from root complex */ memcpy(&imap_new[i*32], imap, 128); /* first cell is PCI device address (BDF) */ imap_new[(i*32)+(0*8)+0] = cpu_to_fdt32(addr); imap_new[(i*32)+(1*8)+0] = cpu_to_fdt32(addr); imap_new[(i*32)+(2*8)+0] = cpu_to_fdt32(addr); imap_new[(i*32)+(3*8)+0] = cpu_to_fdt32(addr); /* third cell is pin */ imap_new[(i*32)+(0*8)+3] = cpu_to_fdt32(1); imap_new[(i*32)+(1*8)+3] = cpu_to_fdt32(2); imap_new[(i*32)+(2*8)+3] = cpu_to_fdt32(3); imap_new[(i*32)+(3*8)+3] = cpu_to_fdt32(4); /* sixth cell is relative interrupt */ imap_new[(i*32)+(0*8)+6] = irq[(15-(12+i)+b+0)%4]; imap_new[(i*32)+(1*8)+6] = irq[(15-(12+i)+b+1)%4]; imap_new[(i*32)+(2*8)+6] = irq[(15-(12+i)+b+2)%4]; imap_new[(i*32)+(3*8)+6] = irq[(15-(12+i)+b+3)%4]; } fdt_setprop(blob, np, "interrupt-map", imap_new, sizeof(imap_new)); reg[0] = cpu_to_fdt32(0xfff00); reg[1] = 0; reg[2] = 0; reg[3] = cpu_to_fdt32(0x7); fdt_setprop(blob, np, "interrupt-map-mask", reg, sizeof(reg)); fdt_setprop_cell(blob, np, "#interrupt-cells", 1); fdt_setprop_string(blob, np, "device_type", "pci"); fdt_setprop_cell(blob, np, "#address-cells", 3); fdt_setprop_cell(blob, np, "#size-cells", 2); printf(" Added custom interrupt-map for GW16082\n"); return 0; } /* The sky2 GigE MAC obtains it's MAC addr from device-tree by default */ int fdt_fixup_sky2(void *blob, int np, struct pci_dev *dev) { char *tmp, *end; char mac[16]; unsigned char mac_addr[6]; int j; sprintf(mac, "eth1addr"); tmp = env_get(mac); if (tmp) { for (j = 0; j < 6; j++) { mac_addr[j] = tmp ? simple_strtoul(tmp, &end,16) : 0; if (tmp) tmp = (*end) ? end+1 : end; } fdt_setprop(blob, np, "local-mac-address", mac_addr, sizeof(mac_addr)); printf(" Added mac addr for eth1\n"); return 0; } return -1; } /* * PCI DT nodes must be nested therefore if we need to apply a DT fixup * we will walk the PCI bus and add bridge nodes up to the device receiving * the fixup. */ void ft_board_pci_fixup(void *blob, bd_t *bd) { int i, np; struct pci_dev *dev; for (i = 0; i < pci_devno; i++) { dev = &pci_devs[i]; /* * The GW16082 consists of a TI XIO2001 PCIe-to-PCI bridge and * an EEPROM at i2c1-0x50. */ if ((dev->vendor == PCI_VENDOR_ID_TI) && (dev->device == 0x8240) && (i2c_set_bus_num(1) == 0) && (i2c_probe(0x50) == 0)) { np = fdt_add_pci_path(blob, dev); if (np > 0) fdt_fixup_gw16082(blob, np, dev); } /* ethernet1 mac address */ else if ((dev->vendor == PCI_VENDOR_ID_MARVELL) && (dev->device == 0x4380)) { np = fdt_add_pci_path(blob, dev); if (np > 0) fdt_fixup_sky2(blob, np, dev); } } } #endif /* if defined(CONFIG_CMD_PCI) */ void ft_board_wdog_fixup(void *blob, const char *path) { ft_delprop_path(blob, path, "ext-reset-output"); ft_delprop_path(blob, path, "fsl,ext-reset-output"); } /* * called prior to booting kernel or by 'fdt boardsetup' command * * unless 'fdt_noauto' env var is set we will update the following in the DTB: * - mtd partitions based on mtdparts/mtdids env * - system-serial (board serial num from EEPROM) * - board (full model from EEPROM) * - peripherals removed from DTB if not loaded on board (per EEPROM config) */ #define UART1_PATH "/soc/aips-bus@02100000/serial@021ec000" #define WDOG1_PATH "/soc/aips-bus@02000000/wdog@020bc000" #define WDOG2_PATH "/soc/aips-bus@02000000/wdog@020c0000" #define GPIO3_PATH "/soc/aips-bus@02000000/gpio@020a4000" int ft_board_setup(void *blob, bd_t *bd) { struct ventana_board_info *info = &ventana_info; struct ventana_eeprom_config *cfg; struct node_info nodes[] = { { "sst,w25q256", MTD_DEV_TYPE_NOR, }, /* SPI flash */ { "fsl,imx6q-gpmi-nand", MTD_DEV_TYPE_NAND, }, /* NAND flash */ }; const char *model = env_get("model"); const char *display = env_get("display"); int i; char rev = 0; /* determine board revision */ for (i = sizeof(ventana_info.model) - 1; i > 0; i--) { if (ventana_info.model[i] >= 'A') { rev = ventana_info.model[i]; break; } } if (env_get("fdt_noauto")) { puts(" Skiping ft_board_setup (fdt_noauto defined)\n"); return 0; } if (test_bit(EECONFIG_NAND, info->config)) { /* Update partition nodes using info from mtdparts env var */ puts(" Updating MTD partitions...\n"); fdt_fixup_mtdparts(blob, nodes, ARRAY_SIZE(nodes)); } /* Update display timings from display env var */ if (display) { if (fdt_fixup_display(blob, fdt_get_alias(blob, "lvds0"), display) >= 0) printf(" Set display timings for %s...\n", display); } printf(" Adjusting FDT per EEPROM for %s...\n", model); /* board serial number */ fdt_setprop(blob, 0, "system-serial", env_get("serial#"), strlen(env_get("serial#")) + 1); /* board (model contains model from device-tree) */ fdt_setprop(blob, 0, "board", info->model, strlen((const char *)info->model) + 1); /* set desired digital video capture format */ ft_sethdmiinfmt(blob, env_get("hdmiinfmt")); /* * Board model specific fixups */ switch (board_type) { case GW51xx: /* * disable wdog node for GW51xx-A/B to work around * errata causing wdog timer to be unreliable. */ if (rev >= 'A' && rev < 'C') { i = fdt_path_offset(blob, WDOG1_PATH); if (i) fdt_status_disabled(blob, i); } /* GW51xx-E adds WDOG1_B external reset */ if (rev < 'E') ft_board_wdog_fixup(blob, WDOG1_PATH); break; case GW52xx: /* GW522x Uses GPIO3_IO23 instead of GPIO1_IO29 */ if (info->model[4] == '2') { u32 handle = 0; u32 *range = NULL; i = fdt_node_offset_by_compatible(blob, -1, "fsl,imx6q-pcie"); if (i) range = (u32 *)fdt_getprop(blob, i, "reset-gpio", NULL); if (range) { i = fdt_path_offset(blob, GPIO3_PATH); if (i) handle = fdt_get_phandle(blob, i); if (handle) { range[0] = cpu_to_fdt32(handle); range[1] = cpu_to_fdt32(23); } } /* these have broken usd_vsel */ if (strstr((const char *)info->model, "SP318-B") || strstr((const char *)info->model, "SP331-B")) gpio_cfg[board_type].usd_vsel = 0; /* GW522x-B adds WDOG1_B external reset */ ft_board_wdog_fixup(blob, WDOG1_PATH); } /* GW520x-E adds WDOG1_B external reset */ else if (info->model[4] == '0' && rev < 'E') ft_board_wdog_fixup(blob, WDOG1_PATH); break; case GW53xx: /* GW53xx-E adds WDOG1_B external reset */ if (rev < 'E') ft_board_wdog_fixup(blob, WDOG1_PATH); break; case GW54xx: /* * disable serial2 node for GW54xx for compatibility with older * 3.10.x kernel that improperly had this node enabled in the DT */ i = fdt_path_offset(blob, UART1_PATH); if (i) fdt_del_node(blob, i); /* GW54xx-E adds WDOG2_B external reset */ if (rev < 'E') ft_board_wdog_fixup(blob, WDOG2_PATH); break; case GW551x: /* * isolate CSI0_DATA_EN for GW551x-A to work around errata * causing non functional digital video in (it is not hooked up) */ if (rev == 'A') { u32 *range = NULL; int len; const u32 *handle = NULL; i = fdt_node_offset_by_compatible(blob, -1, "fsl,imx-tda1997x-video"); if (i) handle = fdt_getprop(blob, i, "pinctrl-0", NULL); if (handle) i = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*handle)); if (i) range = (u32 *)fdt_getprop(blob, i, "fsl,pins", &len); if (range) { len /= sizeof(u32); for (i = 0; i < len; i += 6) { u32 mux_reg = fdt32_to_cpu(range[i+0]); u32 conf_reg = fdt32_to_cpu(range[i+1]); /* mux PAD_CSI0_DATA_EN to GPIO */ if (is_cpu_type(MXC_CPU_MX6Q) && mux_reg == 0x260 && conf_reg == 0x630) range[i+3] = cpu_to_fdt32(0x5); else if (!is_cpu_type(MXC_CPU_MX6Q) && mux_reg == 0x08c && conf_reg == 0x3a0) range[i+3] = cpu_to_fdt32(0x5); } fdt_setprop_inplace(blob, i, "fsl,pins", range, len); } /* set BT656 video format */ ft_sethdmiinfmt(blob, "yuv422bt656"); } /* GW551x-C adds WDOG1_B external reset */ if (rev < 'C') ft_board_wdog_fixup(blob, WDOG1_PATH); break; } /* Configure DIO */ for (i = 0; i < gpio_cfg[board_type].dio_num; i++) { struct dio_cfg *cfg = &gpio_cfg[board_type].dio_cfg[i]; char arg[10]; sprintf(arg, "dio%d", i); if (!hwconfig(arg)) continue; if (hwconfig_subarg_cmp(arg, "mode", "pwm") && cfg->pwm_param) { char path[48]; sprintf(path, "/soc/aips-bus@02000000/pwm@%08x", 0x02080000 + (0x4000 * (cfg->pwm_param - 1))); printf(" Enabling pwm%d for DIO%d\n", cfg->pwm_param, i); ft_enable_path(blob, path); } } /* remove no-1-8-v if UHS-I support is present */ if (gpio_cfg[board_type].usd_vsel) { debug("Enabling UHS-I support\n"); ft_delprop_path(blob, "/soc/aips-bus@02100000/usdhc@02198000", "no-1-8-v"); } #if defined(CONFIG_CMD_PCI) if (!env_get("nopcifixup")) ft_board_pci_fixup(blob, bd); #endif /* * Peripheral Config: * remove nodes by alias path if EEPROM config tells us the * peripheral is not loaded on the board. */ if (env_get("fdt_noconfig")) { puts(" Skiping periperhal config (fdt_noconfig defined)\n"); return 0; } cfg = econfig; while (cfg->name) { if (!test_bit(cfg->bit, info->config)) { fdt_del_node_and_alias(blob, cfg->dtalias ? cfg->dtalias : cfg->name); } cfg++; } return 0; } #endif /* CONFIG_OF_BOARD_SETUP */ static struct mxc_serial_platdata ventana_mxc_serial_plat = { .reg = (struct mxc_uart *)UART2_BASE, }; U_BOOT_DEVICE(ventana_serial) = { .name = "serial_mxc", .platdata = &ventana_mxc_serial_plat, };