// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2010-2011 Freescale Semiconductor, Inc. * Authors: Timur Tabi <timur@freescale.com> * * FSL DIU Framebuffer driver */ #include <common.h> #include <command.h> #include <linux/ctype.h> #include <asm/io.h> #include <stdio_dev.h> #include <video_fb.h> #include "../common/ngpixis.h" #include <fsl_diu_fb.h> /* The CTL register is called 'csr' in the ngpixis_t structure */ #define PX_CTL_ALTACC 0x80 #define PX_BRDCFG0_ELBC_SPI_MASK 0xc0 #define PX_BRDCFG0_ELBC_SPI_ELBC 0x00 #define PX_BRDCFG0_ELBC_SPI_NULL 0xc0 #define PX_BRDCFG0_ELBC_DIU 0x02 #define PX_BRDCFG1_DVIEN 0x80 #define PX_BRDCFG1_DFPEN 0x40 #define PX_BRDCFG1_BACKLIGHT 0x20 #define PMUXCR_ELBCDIU_MASK 0xc0000000 #define PMUXCR_ELBCDIU_NOR16 0x80000000 #define PMUXCR_ELBCDIU_DIU 0x40000000 /* * DIU Area Descriptor * * Note that we need to byte-swap the value before it's written to the AD * register. So even though the registers don't look like they're in the same * bit positions as they are on the MPC8610, the same value is written to the * AD register on the MPC8610 and on the P1022. */ #define AD_BYTE_F 0x10000000 #define AD_ALPHA_C_SHIFT 25 #define AD_BLUE_C_SHIFT 23 #define AD_GREEN_C_SHIFT 21 #define AD_RED_C_SHIFT 19 #define AD_PIXEL_S_SHIFT 16 #define AD_COMP_3_SHIFT 12 #define AD_COMP_2_SHIFT 8 #define AD_COMP_1_SHIFT 4 #define AD_COMP_0_SHIFT 0 /* * Variables used by the DIU/LBC switching code. It's safe to makes these * global, because the DIU requires DDR, so we'll only run this code after * relocation. */ static u8 px_brdcfg0; static u32 pmuxcr; static void *lbc_lcs0_ba; static void *lbc_lcs1_ba; static u32 old_br0, old_or0, old_br1, old_or1; static u32 new_br0, new_or0, new_br1, new_or1; void diu_set_pixel_clock(unsigned int pixclock) { ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); unsigned long speed_ccb, temp; u32 pixval; speed_ccb = get_bus_freq(0); temp = 1000000000 / pixclock; temp *= 1000; pixval = speed_ccb / temp; debug("DIU pixval = %u\n", pixval); /* Modify PXCLK in GUTS CLKDVDR */ temp = in_be32(&gur->clkdvdr) & 0x2000FFFF; out_be32(&gur->clkdvdr, temp); /* turn off clock */ out_be32(&gur->clkdvdr, temp | 0x80000000 | ((pixval & 0x1F) << 16)); } int platform_diu_init(unsigned int xres, unsigned int yres, const char *port) { ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); const char *name; u32 pixel_format; u8 temp; phys_addr_t phys0, phys1; /* BR0/BR1 physical addresses */ /* * Indirect mode requires both BR0 and BR1 to be set to "GPCM", * otherwise writes to these addresses won't actually appear on the * local bus, and so the PIXIS won't see them. * * In FCM mode, writes go to the NAND controller, which does not pass * them to the localbus directly. So we force BR0 and BR1 into GPCM * mode, since we don't care about what's behind the localbus any * more. However, we save those registers first, so that we can * restore them when necessary. */ new_br0 = old_br0 = get_lbc_br(0); new_br1 = old_br1 = get_lbc_br(1); new_or0 = old_or0 = get_lbc_or(0); new_or1 = old_or1 = get_lbc_or(1); /* * Use the existing BRx/ORx values if it's already GPCM. Otherwise, * force the values to simple 32KB GPCM windows with the most * conservative timing. */ if ((old_br0 & BR_MSEL) != BR_MS_GPCM) { new_br0 = (get_lbc_br(0) & BR_BA) | BR_V; new_or0 = OR_AM_32KB | 0xFF7; set_lbc_br(0, new_br0); set_lbc_or(0, new_or0); } if ((old_br1 & BR_MSEL) != BR_MS_GPCM) { new_br1 = (get_lbc_br(1) & BR_BA) | BR_V; new_or1 = OR_AM_32KB | 0xFF7; set_lbc_br(1, new_br1); set_lbc_or(1, new_or1); } /* * Determine the physical addresses for Chip Selects 0 and 1. The * BR0/BR1 registers contain the truncated physical addresses for the * chip selects, mapped via the localbus LAW. Since the BRx registers * only contain the lower 32 bits of the address, we have to determine * the upper 4 bits some other way. The proper way is to scan the LAW * table looking for a matching localbus address. Instead, we cheat. * We know that the upper bits are 0 for 32-bit addressing, or 0xF for * 36-bit addressing. */ #ifdef CONFIG_PHYS_64BIT phys0 = 0xf00000000ULL | (old_br0 & old_or0 & BR_BA); phys1 = 0xf00000000ULL | (old_br1 & old_or1 & BR_BA); #else phys0 = old_br0 & old_or0 & BR_BA; phys1 = old_br1 & old_or1 & BR_BA; #endif /* Save the LBC LCS0 and LCS1 addresses for the DIU mux functions */ lbc_lcs0_ba = map_physmem(phys0, 1, 0); lbc_lcs1_ba = map_physmem(phys1, 1, 0); pixel_format = cpu_to_le32(AD_BYTE_F | (3 << AD_ALPHA_C_SHIFT) | (0 << AD_BLUE_C_SHIFT) | (1 << AD_GREEN_C_SHIFT) | (2 << AD_RED_C_SHIFT) | (8 << AD_COMP_3_SHIFT) | (8 << AD_COMP_2_SHIFT) | (8 << AD_COMP_1_SHIFT) | (8 << AD_COMP_0_SHIFT) | (3 << AD_PIXEL_S_SHIFT)); temp = in_8(&pixis->brdcfg1); if (strncmp(port, "lvds", 4) == 0) { /* Single link LVDS */ temp &= ~PX_BRDCFG1_DVIEN; /* * LVDS also needs backlight enabled, otherwise the display * will be blank. */ temp |= (PX_BRDCFG1_DFPEN | PX_BRDCFG1_BACKLIGHT); name = "Single-Link LVDS"; } else { /* DVI */ /* Enable the DVI port, disable the DFP and the backlight */ temp &= ~(PX_BRDCFG1_DFPEN | PX_BRDCFG1_BACKLIGHT); temp |= PX_BRDCFG1_DVIEN; name = "DVI"; } printf("DIU: Switching to %s monitor @ %ux%u\n", name, xres, yres); out_8(&pixis->brdcfg1, temp); /* * Enable PIXIS indirect access mode. This is a hack that allows us to * access PIXIS registers even when the LBC pins have been muxed to the * DIU. */ setbits_8(&pixis->csr, PX_CTL_ALTACC); /* * Route the LAD pins to the DIU. This will disable access to the eLBC, * which means we won't be able to read/write any NOR flash addresses! */ out_8(lbc_lcs0_ba, offsetof(ngpixis_t, brdcfg0)); px_brdcfg0 = in_8(lbc_lcs1_ba); out_8(lbc_lcs1_ba, px_brdcfg0 | PX_BRDCFG0_ELBC_DIU); in_8(lbc_lcs1_ba); /* Set PMUXCR to switch the muxed pins from the LBC to the DIU */ clrsetbits_be32(&gur->pmuxcr, PMUXCR_ELBCDIU_MASK, PMUXCR_ELBCDIU_DIU); pmuxcr = in_be32(&gur->pmuxcr); return fsl_diu_init(xres, yres, pixel_format, 0); } /* * set_mux_to_lbc - disable the DIU so that we can read/write to elbc * * On the Freescale P1022, the DIU video signal and the LBC address/data lines * share the same pins, which means that when the DIU is active (e.g. the * console is on the DVI display), NOR flash cannot be accessed. So we use the * weak accessor feature of the CFI flash code to temporarily switch the pin * mux from DIU to LBC whenever we want to read or write flash. This has a * significant performance penalty, but it's the only way to make it work. * * There are two muxes: one on the chip, and one on the board. The chip mux * controls whether the pins are used for the DIU or the LBC, and it is * set via PMUXCR. The board mux controls whether those signals go to * the video connector or the NOR flash chips, and it is set via the ngPIXIS. */ static int set_mux_to_lbc(void) { ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR; /* Switch the muxes only if they're currently set to DIU mode */ if ((in_be32(&gur->pmuxcr) & PMUXCR_ELBCDIU_MASK) != PMUXCR_ELBCDIU_NOR16) { /* * In DIU mode, the PIXIS can only be accessed indirectly * since we can't read/write the LBC directly. */ /* Set the board mux to LBC. This will disable the display. */ out_8(lbc_lcs0_ba, offsetof(ngpixis_t, brdcfg0)); out_8(lbc_lcs1_ba, px_brdcfg0); in_8(lbc_lcs1_ba); /* Disable indirect PIXIS mode */ out_8(lbc_lcs0_ba, offsetof(ngpixis_t, csr)); clrbits_8(lbc_lcs1_ba, PX_CTL_ALTACC); /* Set the chip mux to LBC mode, so that writes go to flash. */ out_be32(&gur->pmuxcr, (pmuxcr & ~PMUXCR_ELBCDIU_MASK) | PMUXCR_ELBCDIU_NOR16); in_be32(&gur->pmuxcr); /* Restore the BR0 and BR1 settings */ set_lbc_br(0, old_br0); set_lbc_or(0, old_or0); set_lbc_br(1, old_br1); set_lbc_or(1, old_or1); return 1; } return 0; } /* * set_mux_to_diu - re-enable the DIU muxing * * This function restores the chip and board muxing to point to the DIU. */ static void set_mux_to_diu(void) { ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR; /* Set BR0 and BR1 to GPCM mode */ set_lbc_br(0, new_br0); set_lbc_or(0, new_or0); set_lbc_br(1, new_br1); set_lbc_or(1, new_or1); /* Enable indirect PIXIS mode */ setbits_8(&pixis->csr, PX_CTL_ALTACC); /* Set the board mux to DIU. This will enable the display. */ out_8(lbc_lcs0_ba, offsetof(ngpixis_t, brdcfg0)); out_8(lbc_lcs1_ba, px_brdcfg0 | PX_BRDCFG0_ELBC_DIU); in_8(lbc_lcs1_ba); /* Set the chip mux to DIU mode. */ out_be32(&gur->pmuxcr, pmuxcr); in_be32(&gur->pmuxcr); } /* * pixis_read - board-specific function to read from the PIXIS * * This function overrides the generic pixis_read() function, so that it can * use PIXIS indirect mode if necessary. */ u8 pixis_read(unsigned int reg) { ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR; /* Use indirect mode if the mux is currently set to DIU mode */ if ((in_be32(&gur->pmuxcr) & PMUXCR_ELBCDIU_MASK) != PMUXCR_ELBCDIU_NOR16) { out_8(lbc_lcs0_ba, reg); return in_8(lbc_lcs1_ba); } else { void *p = (void *)PIXIS_BASE; return in_8(p + reg); } } /* * pixis_write - board-specific function to write to the PIXIS * * This function overrides the generic pixis_write() function, so that it can * use PIXIS indirect mode if necessary. */ void pixis_write(unsigned int reg, u8 value) { ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR; /* Use indirect mode if the mux is currently set to DIU mode */ if ((in_be32(&gur->pmuxcr) & PMUXCR_ELBCDIU_MASK) != PMUXCR_ELBCDIU_NOR16) { out_8(lbc_lcs0_ba, reg); out_8(lbc_lcs1_ba, value); /* Do a read-back to ensure the write completed */ in_8(lbc_lcs1_ba); } else { void *p = (void *)PIXIS_BASE; out_8(p + reg, value); } } void pixis_bank_reset(void) { /* * For some reason, a PIXIS bank reset does not work if the PIXIS is * in indirect mode, so switch to direct mode first. */ set_mux_to_lbc(); out_8(&pixis->vctl, 0); out_8(&pixis->vctl, 1); while (1); } #ifdef CONFIG_CFI_FLASH_USE_WEAK_ACCESSORS void flash_write8(u8 value, void *addr) { int sw = set_mux_to_lbc(); __raw_writeb(value, addr); if (sw) { /* * To ensure the post-write is completed to eLBC, software must * perform a dummy read from one valid address from eLBC space * before changing the eLBC_DIU from NOR mode to DIU mode. * set_mux_to_diu() includes a sync that will ensure the * __raw_readb() completes before it switches the mux. */ __raw_readb(addr); set_mux_to_diu(); } } void flash_write16(u16 value, void *addr) { int sw = set_mux_to_lbc(); __raw_writew(value, addr); if (sw) { /* * To ensure the post-write is completed to eLBC, software must * perform a dummy read from one valid address from eLBC space * before changing the eLBC_DIU from NOR mode to DIU mode. * set_mux_to_diu() includes a sync that will ensure the * __raw_readb() completes before it switches the mux. */ __raw_readb(addr); set_mux_to_diu(); } } void flash_write32(u32 value, void *addr) { int sw = set_mux_to_lbc(); __raw_writel(value, addr); if (sw) { /* * To ensure the post-write is completed to eLBC, software must * perform a dummy read from one valid address from eLBC space * before changing the eLBC_DIU from NOR mode to DIU mode. * set_mux_to_diu() includes a sync that will ensure the * __raw_readb() completes before it switches the mux. */ __raw_readb(addr); set_mux_to_diu(); } } void flash_write64(u64 value, void *addr) { int sw = set_mux_to_lbc(); uint32_t *p = addr; /* * There is no __raw_writeq(), so do the write manually. We don't trust * the compiler, so we use inline assembly. */ __asm__ __volatile__( "stw%U0%X0 %2,%0;\n" "stw%U1%X1 %3,%1;\n" : "=m" (*p), "=m" (*(p + 1)) : "r" ((uint32_t) (value >> 32)), "r" ((uint32_t) (value))); if (sw) { /* * To ensure the post-write is completed to eLBC, software must * perform a dummy read from one valid address from eLBC space * before changing the eLBC_DIU from NOR mode to DIU mode. We * read addr+4 because we just wrote to addr+4, so that's how we * maintain execution order. set_mux_to_diu() includes a sync * that will ensure the __raw_readb() completes before it * switches the mux. */ __raw_readb(addr + 4); set_mux_to_diu(); } } u8 flash_read8(void *addr) { u8 ret; int sw = set_mux_to_lbc(); ret = __raw_readb(addr); if (sw) set_mux_to_diu(); return ret; } u16 flash_read16(void *addr) { u16 ret; int sw = set_mux_to_lbc(); ret = __raw_readw(addr); if (sw) set_mux_to_diu(); return ret; } u32 flash_read32(void *addr) { u32 ret; int sw = set_mux_to_lbc(); ret = __raw_readl(addr); if (sw) set_mux_to_diu(); return ret; } u64 flash_read64(void *addr) { u64 ret; int sw = set_mux_to_lbc(); /* There is no __raw_readq(), so do the read manually */ ret = *(volatile u64 *)addr; if (sw) set_mux_to_diu(); return ret; } #endif