// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2014 Freescale Semiconductor, Inc. * * Author: Ye Li <ye.li@nxp.com> */ #include <asm/arch/clock.h> #include <asm/arch/crm_regs.h> #include <asm/arch/iomux.h> #include <asm/arch/imx-regs.h> #include <asm/arch/mx6-pins.h> #include <asm/arch/sys_proto.h> #include <asm/gpio.h> #include <asm/mach-imx/iomux-v3.h> #include <asm/mach-imx/boot_mode.h> #include <asm/io.h> #include <linux/sizes.h> #include <common.h> #include <fsl_esdhc.h> #include <miiphy.h> #include <netdev.h> #include <power/pmic.h> #include <power/pfuze100_pmic.h> #include "../common/pfuze.h" #include <usb.h> #include <usb/ehci-ci.h> #include <pca953x.h> DECLARE_GLOBAL_DATA_PTR; #define UART_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_PUS_100K_UP | PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST | PAD_CTL_HYS) #define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \ PAD_CTL_SPEED_HIGH | \ PAD_CTL_DSE_48ohm | PAD_CTL_SRE_FAST) #define ENET_CLK_PAD_CTRL (PAD_CTL_SPEED_MED | \ PAD_CTL_DSE_120ohm | PAD_CTL_SRE_FAST) #define ENET_RX_PAD_CTRL (PAD_CTL_PKE | PAD_CTL_PUE | \ PAD_CTL_SPEED_HIGH | PAD_CTL_SRE_FAST) #define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP) #define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \ PAD_CTL_SRE_FAST) #define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1) int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } static iomux_v3_cfg_t const uart1_pads[] = { MX6_PAD_GPIO1_IO04__UART1_TX | MUX_PAD_CTRL(UART_PAD_CTRL), MX6_PAD_GPIO1_IO05__UART1_RX | MUX_PAD_CTRL(UART_PAD_CTRL), }; static iomux_v3_cfg_t const fec2_pads[] = { MX6_PAD_ENET1_MDC__ENET2_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_ENET1_MDIO__ENET2_MDIO | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_RX_CTL__ENET2_RX_EN | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD0__ENET2_RX_DATA_0 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD1__ENET2_RX_DATA_1 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD2__ENET2_RX_DATA_2 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RD3__ENET2_RX_DATA_3 | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_RXC__ENET2_RX_CLK | MUX_PAD_CTRL(ENET_RX_PAD_CTRL), MX6_PAD_RGMII2_TX_CTL__ENET2_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD0__ENET2_TX_DATA_0 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD1__ENET2_TX_DATA_1 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD2__ENET2_TX_DATA_2 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TD3__ENET2_TX_DATA_3 | MUX_PAD_CTRL(ENET_PAD_CTRL), MX6_PAD_RGMII2_TXC__ENET2_RGMII_TXC | MUX_PAD_CTRL(ENET_PAD_CTRL), }; static void setup_iomux_uart(void) { imx_iomux_v3_setup_multiple_pads(uart1_pads, ARRAY_SIZE(uart1_pads)); } static int setup_fec(void) { struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; /* Use 125MHz anatop loopback REF_CLK1 for ENET2 */ clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC2_MASK, 0); return enable_fec_anatop_clock(1, ENET_125MHZ); } int board_eth_init(bd_t *bis) { int ret; imx_iomux_v3_setup_multiple_pads(fec2_pads, ARRAY_SIZE(fec2_pads)); setup_fec(); ret = fecmxc_initialize_multi(bis, 1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); if (ret) printf("FEC%d MXC: %s:failed\n", 1, __func__); return ret; } int board_phy_config(struct phy_device *phydev) { /* * Enable 1.8V(SEL_1P5_1P8_POS_REG) on * Phy control debug reg 0 */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x1f); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x8); /* rgmii tx clock delay enable */ phy_write(phydev, MDIO_DEVAD_NONE, 0x1d, 0x05); phy_write(phydev, MDIO_DEVAD_NONE, 0x1e, 0x100); if (phydev->drv->config) phydev->drv->config(phydev); return 0; } int power_init_board(void) { struct udevice *dev; int ret; u32 dev_id, rev_id, i; u32 switch_num = 6; u32 offset = PFUZE100_SW1CMODE; ret = pmic_get("pfuze100", &dev); if (ret == -ENODEV) return 0; if (ret != 0) return ret; dev_id = pmic_reg_read(dev, PFUZE100_DEVICEID); rev_id = pmic_reg_read(dev, PFUZE100_REVID); printf("PMIC: PFUZE100! DEV_ID=0x%x REV_ID=0x%x\n", dev_id, rev_id); /* Init mode to APS_PFM */ pmic_reg_write(dev, PFUZE100_SW1ABMODE, APS_PFM); for (i = 0; i < switch_num - 1; i++) pmic_reg_write(dev, offset + i * SWITCH_SIZE, APS_PFM); /* set SW1AB staby volatage 0.975V */ pmic_clrsetbits(dev, PFUZE100_SW1ABSTBY, 0x3f, 0x1b); /* set SW1AB/VDDARM step ramp up time from 16us to 4us/25mV */ pmic_clrsetbits(dev, PFUZE100_SW1ABCONF, 0xc0, 0x40); /* set SW1C staby volatage 1.10V */ pmic_clrsetbits(dev, PFUZE100_SW1CSTBY, 0x3f, 0x20); /* set SW1C/VDDSOC step ramp up time to from 16us to 4us/25mV */ pmic_clrsetbits(dev, PFUZE100_SW1CCONF, 0xc0, 0x40); return 0; } #ifdef CONFIG_USB_EHCI_MX6 #define USB_OTHERREGS_OFFSET 0x800 #define UCTRL_PWR_POL (1 << 9) static iomux_v3_cfg_t const usb_otg_pads[] = { /* OGT1 */ MX6_PAD_GPIO1_IO09__USB_OTG1_PWR | MUX_PAD_CTRL(NO_PAD_CTRL), MX6_PAD_GPIO1_IO10__ANATOP_OTG1_ID | MUX_PAD_CTRL(NO_PAD_CTRL), /* OTG2 */ MX6_PAD_GPIO1_IO12__USB_OTG2_PWR | MUX_PAD_CTRL(NO_PAD_CTRL) }; static void setup_usb(void) { imx_iomux_v3_setup_multiple_pads(usb_otg_pads, ARRAY_SIZE(usb_otg_pads)); } int board_usb_phy_mode(int port) { if (port == 1) return USB_INIT_HOST; else return usb_phy_mode(port); } int board_ehci_hcd_init(int port) { u32 *usbnc_usb_ctrl; if (port > 1) return -EINVAL; usbnc_usb_ctrl = (u32 *)(USB_BASE_ADDR + USB_OTHERREGS_OFFSET + port * 4); /* Set Power polarity */ setbits_le32(usbnc_usb_ctrl, UCTRL_PWR_POL); return 0; } #endif int board_early_init_f(void) { setup_iomux_uart(); return 0; } #ifdef CONFIG_FSL_QSPI #define QSPI_PAD_CTRL1 \ (PAD_CTL_SRE_FAST | PAD_CTL_SPEED_HIGH | \ PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_47K_UP | PAD_CTL_DSE_40ohm) static iomux_v3_cfg_t const quadspi_pads[] = { MX6_PAD_QSPI1A_SS0_B__QSPI1_A_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1A_SCLK__QSPI1_A_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1A_DATA0__QSPI1_A_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1A_DATA1__QSPI1_A_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1A_DATA2__QSPI1_A_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1A_DATA3__QSPI1_A_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1B_SS0_B__QSPI1_B_SS0_B | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1B_SCLK__QSPI1_B_SCLK | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1B_DATA0__QSPI1_B_DATA_0 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1B_DATA1__QSPI1_B_DATA_1 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1B_DATA2__QSPI1_B_DATA_2 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), MX6_PAD_QSPI1B_DATA3__QSPI1_B_DATA_3 | MUX_PAD_CTRL(QSPI_PAD_CTRL1), }; int board_qspi_init(void) { /* Set the iomux */ imx_iomux_v3_setup_multiple_pads(quadspi_pads, ARRAY_SIZE(quadspi_pads)); /* Set the clock */ enable_qspi_clk(0); return 0; } #endif #ifdef CONFIG_NAND_MXS iomux_v3_cfg_t gpmi_pads[] = { MX6_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL0), MX6_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), MX6_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2), }; static void setup_gpmi_nand(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; /* config gpmi nand iomux */ imx_iomux_v3_setup_multiple_pads(gpmi_pads, ARRAY_SIZE(gpmi_pads)); setup_gpmi_io_clk((MXC_CCM_CS2CDR_QSPI2_CLK_PODF(0) | MXC_CCM_CS2CDR_QSPI2_CLK_PRED(3) | MXC_CCM_CS2CDR_QSPI2_CLK_SEL(3))); /* enable apbh clock gating */ setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK); } #endif int board_init(void) { struct gpio_desc desc; int ret; /* Address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; ret = dm_gpio_lookup_name("gpio@30_4", &desc); if (ret) return ret; ret = dm_gpio_request(&desc, "cpu_per_rst_b"); if (ret) return ret; /* Reset CPU_PER_RST_B signal for enet phy and PCIE */ dm_gpio_set_dir_flags(&desc, GPIOD_IS_OUT); udelay(500); dm_gpio_set_value(&desc, 1); ret = dm_gpio_lookup_name("gpio@32_2", &desc); if (ret) return ret; ret = dm_gpio_request(&desc, "steer_enet"); if (ret) return ret; dm_gpio_set_dir_flags(&desc, GPIOD_IS_OUT); udelay(500); /* Set steering signal to L for selecting B0 */ dm_gpio_set_value(&desc, 0); #ifdef CONFIG_USB_EHCI_MX6 setup_usb(); #endif #ifdef CONFIG_FSL_QSPI board_qspi_init(); #endif #ifdef CONFIG_NAND_MXS setup_gpmi_nand(); #endif return 0; } #ifdef CONFIG_CMD_BMODE static const struct boot_mode board_boot_modes[] = { {"sda", MAKE_CFGVAL(0x42, 0x30, 0x00, 0x00)}, {"sdb", MAKE_CFGVAL(0x40, 0x38, 0x00, 0x00)}, {"qspi1", MAKE_CFGVAL(0x10, 0x00, 0x00, 0x00)}, {"nand", MAKE_CFGVAL(0x82, 0x00, 0x00, 0x00)}, {NULL, 0}, }; #endif int board_late_init(void) { #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif return 0; } int checkboard(void) { puts("Board: MX6SX SABRE AUTO\n"); return 0; }