// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015 Freescale Semiconductor, Inc. */ #include <common.h> #include <i2c.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/fsl_serdes.h> #include <asm/arch/soc.h> #include <fdt_support.h> #include <hwconfig.h> #include <ahci.h> #include <mmc.h> #include <scsi.h> #include <fm_eth.h> #include <fsl_esdhc.h> #include <fsl_ifc.h> #include <fsl_sec.h> #include "cpld.h" #ifdef CONFIG_U_QE #include <fsl_qe.h> #endif #include <asm/arch/ppa.h> DECLARE_GLOBAL_DATA_PTR; int board_early_init_f(void) { fsl_lsch2_early_init_f(); return 0; } #ifndef CONFIG_SPL_BUILD int checkboard(void) { static const char *freq[2] = {"100.00MHZ", "156.25MHZ"}; #ifndef CONFIG_SD_BOOT u8 cfg_rcw_src1, cfg_rcw_src2; u16 cfg_rcw_src; #endif u8 sd1refclk_sel; printf("Board: LS1043ARDB, boot from "); #ifdef CONFIG_SD_BOOT puts("SD\n"); #else cfg_rcw_src1 = CPLD_READ(cfg_rcw_src1); cfg_rcw_src2 = CPLD_READ(cfg_rcw_src2); cpld_rev_bit(&cfg_rcw_src1); cfg_rcw_src = cfg_rcw_src1; cfg_rcw_src = (cfg_rcw_src << 1) | cfg_rcw_src2; if (cfg_rcw_src == 0x25) printf("vBank %d\n", CPLD_READ(vbank)); else if (cfg_rcw_src == 0x106) puts("NAND\n"); else printf("Invalid setting of SW4\n"); #endif printf("CPLD: V%x.%x\nPCBA: V%x.0\n", CPLD_READ(cpld_ver), CPLD_READ(cpld_ver_sub), CPLD_READ(pcba_ver)); puts("SERDES Reference Clocks:\n"); sd1refclk_sel = CPLD_READ(sd1refclk_sel); printf("SD1_CLK1 = %s, SD1_CLK2 = %s\n", freq[sd1refclk_sel], freq[0]); return 0; } int board_init(void) { struct ccsr_scfg *scfg = (struct ccsr_scfg *)CONFIG_SYS_FSL_SCFG_ADDR; #ifdef CONFIG_SYS_FSL_ERRATUM_A010315 erratum_a010315(); #endif #ifdef CONFIG_FSL_IFC init_final_memctl_regs(); #endif #ifdef CONFIG_SECURE_BOOT /* In case of Secure Boot, the IBR configures the SMMU * to allow only Secure transactions. * SMMU must be reset in bypass mode. * Set the ClientPD bit and Clear the USFCFG Bit */ u32 val; val = (in_le32(SMMU_SCR0) | SCR0_CLIENTPD_MASK) & ~(SCR0_USFCFG_MASK); out_le32(SMMU_SCR0, val); val = (in_le32(SMMU_NSCR0) | SCR0_CLIENTPD_MASK) & ~(SCR0_USFCFG_MASK); out_le32(SMMU_NSCR0, val); #endif #ifdef CONFIG_FSL_CAAM sec_init(); #endif #ifdef CONFIG_FSL_LS_PPA ppa_init(); #endif #ifdef CONFIG_U_QE u_qe_init(); #endif /* invert AQR105 IRQ pins polarity */ out_be32(&scfg->intpcr, AQR105_IRQ_MASK); return 0; } int config_board_mux(void) { struct ccsr_scfg *scfg = (struct ccsr_scfg *)CONFIG_SYS_FSL_SCFG_ADDR; u32 usb_pwrfault; if (hwconfig("qe-hdlc")) { out_be32(&scfg->rcwpmuxcr0, (in_be32(&scfg->rcwpmuxcr0) & ~0xff00) | 0x6600); printf("Assign to qe-hdlc clk, rcwpmuxcr0=%x\n", in_be32(&scfg->rcwpmuxcr0)); } else { #ifdef CONFIG_HAS_FSL_XHCI_USB out_be32(&scfg->rcwpmuxcr0, 0x3333); out_be32(&scfg->usbdrvvbus_selcr, SCFG_USBDRVVBUS_SELCR_USB1); usb_pwrfault = (SCFG_USBPWRFAULT_DEDICATED << SCFG_USBPWRFAULT_USB3_SHIFT) | (SCFG_USBPWRFAULT_DEDICATED << SCFG_USBPWRFAULT_USB2_SHIFT) | (SCFG_USBPWRFAULT_SHARED << SCFG_USBPWRFAULT_USB1_SHIFT); out_be32(&scfg->usbpwrfault_selcr, usb_pwrfault); #endif } return 0; } #if defined(CONFIG_MISC_INIT_R) int misc_init_r(void) { config_board_mux(); return 0; } #endif void fdt_del_qe(void *blob) { int nodeoff = 0; while ((nodeoff = fdt_node_offset_by_compatible(blob, 0, "fsl,qe")) >= 0) { fdt_del_node(blob, nodeoff); } } int ft_board_setup(void *blob, bd_t *bd) { u64 base[CONFIG_NR_DRAM_BANKS]; u64 size[CONFIG_NR_DRAM_BANKS]; /* fixup DT for the two DDR banks */ base[0] = gd->bd->bi_dram[0].start; size[0] = gd->bd->bi_dram[0].size; base[1] = gd->bd->bi_dram[1].start; size[1] = gd->bd->bi_dram[1].size; fdt_fixup_memory_banks(blob, base, size, 2); ft_cpu_setup(blob, bd); #ifdef CONFIG_SYS_DPAA_FMAN fdt_fixup_fman_ethernet(blob); #endif /* * qe-hdlc and usb multi-use the pins, * when set hwconfig to qe-hdlc, delete usb node. */ if (hwconfig("qe-hdlc")) #ifdef CONFIG_HAS_FSL_XHCI_USB fdt_del_node_and_alias(blob, "usb1"); #endif /* * qe just support qe-uart and qe-hdlc, * if qe-uart and qe-hdlc are not set in hwconfig, * delete qe node. */ if (!hwconfig("qe-uart") && !hwconfig("qe-hdlc")) fdt_del_qe(blob); return 0; } u8 flash_read8(void *addr) { return __raw_readb(addr + 1); } void flash_write16(u16 val, void *addr) { u16 shftval = (((val >> 8) & 0xff) | ((val << 8) & 0xff00)); __raw_writew(shftval, addr); } u16 flash_read16(void *addr) { u16 val = __raw_readw(addr); return (((val) >> 8) & 0x00ff) | (((val) << 8) & 0xff00); } #endif