// SPDX-License-Identifier: Intel /* * Copyright (C) 2013, Intel Corporation * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com> * * Ported from Intel released Quark UEFI BIOS * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei */ #include <common.h> #include <asm/arch/mrc.h> #include <asm/arch/msg_port.h> #include "mrc_util.h" #include "hte.h" /** * Enable HTE to detect all possible errors for the given training parameters * (per-bit or full byte lane). */ static void hte_enable_all_errors(void) { msg_port_write(HTE, 0x000200a2, 0xffffffff); msg_port_write(HTE, 0x000200a3, 0x000000ff); msg_port_write(HTE, 0x000200a4, 0x00000000); } /** * Go and read the HTE register in order to find any error * * @return: The errors detected in the HTE status register */ static u32 hte_check_errors(void) { return msg_port_read(HTE, 0x000200a7); } /** * Wait until HTE finishes */ static void hte_wait_for_complete(void) { u32 tmp; ENTERFN(); do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0); tmp = msg_port_read(HTE, 0x00020011); tmp |= (1 << 9); tmp &= ~((1 << 12) | (1 << 13)); msg_port_write(HTE, 0x00020011, tmp); LEAVEFN(); } /** * Clear registers related with errors in the HTE */ static void hte_clear_error_regs(void) { u32 tmp; /* * Clear all HTE errors and enable error checking * for burst and chunk. */ tmp = msg_port_read(HTE, 0x000200a1); tmp |= (1 << 8); msg_port_write(HTE, 0x000200a1, tmp); } /** * Execute a basic single-cache-line memory write/read/verify test using simple * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. * * See hte_basic_write_read() which is the external visible wrapper. * * @mrc_params: host structure for all MRC global data * @addr: memory adress being tested (must hit specific channel/rank) * @first_run: if set then the HTE registers are configured, otherwise it is * assumed configuration is done and we just re-run the test * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) * * @return: byte lane failure on each bit (for Quark only bit0 and bit1) */ static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr, u8 first_run, u8 mode) { u32 pattern; u32 offset; if (first_run) { msg_port_write(HTE, 0x00020020, 0x01b10021); msg_port_write(HTE, 0x00020021, 0x06000000); msg_port_write(HTE, 0x00020022, addr >> 6); msg_port_write(HTE, 0x00020062, 0x00800015); msg_port_write(HTE, 0x00020063, 0xaaaaaaaa); msg_port_write(HTE, 0x00020064, 0xcccccccc); msg_port_write(HTE, 0x00020065, 0xf0f0f0f0); msg_port_write(HTE, 0x00020061, 0x00030008); if (mode == WRITE_TRAIN) pattern = 0xc33c0000; else /* READ_TRAIN */ pattern = 0xaa5555aa; for (offset = 0x80; offset <= 0x8f; offset++) msg_port_write(HTE, offset, pattern); } msg_port_write(HTE, 0x000200a1, 0xffff1000); msg_port_write(HTE, 0x00020011, 0x00011000); msg_port_write(HTE, 0x00020011, 0x00011100); hte_wait_for_complete(); /* * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for * any bytelane errors. */ return (hte_check_errors() >> 8) & 0xff; } /** * Examine a single-cache-line memory with write/read/verify test using multiple * data patterns (victim-aggressor algorithm). * * See hte_write_stress_bit_lanes() which is the external visible wrapper. * * @mrc_params: host structure for all MRC global data * @addr: memory adress being tested (must hit specific channel/rank) * @loop_cnt: number of test iterations * @seed_victim: victim data pattern seed * @seed_aggressor: aggressor data pattern seed * @victim_bit: should be 0 as auto-rotate feature is in use * @first_run: if set then the HTE registers are configured, otherwise it is * assumed configuration is done and we just re-run the test * * @return: byte lane failure on each bit (for Quark only bit0 and bit1) */ static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr, u8 loop_cnt, u32 seed_victim, u32 seed_aggressor, u8 victim_bit, u8 first_run) { u32 offset; u32 tmp; if (first_run) { msg_port_write(HTE, 0x00020020, 0x00910024); msg_port_write(HTE, 0x00020023, 0x00810024); msg_port_write(HTE, 0x00020021, 0x06070000); msg_port_write(HTE, 0x00020024, 0x06070000); msg_port_write(HTE, 0x00020022, addr >> 6); msg_port_write(HTE, 0x00020025, addr >> 6); msg_port_write(HTE, 0x00020062, 0x0000002a); msg_port_write(HTE, 0x00020063, seed_victim); msg_port_write(HTE, 0x00020064, seed_aggressor); msg_port_write(HTE, 0x00020065, seed_victim); /* * Write the pattern buffers to select the victim bit * * Start with bit0 */ for (offset = 0x80; offset <= 0x8f; offset++) { if ((offset % 8) == victim_bit) msg_port_write(HTE, offset, 0x55555555); else msg_port_write(HTE, offset, 0xcccccccc); } msg_port_write(HTE, 0x00020061, 0x00000000); msg_port_write(HTE, 0x00020066, 0x03440000); msg_port_write(HTE, 0x000200a1, 0xffff1000); } tmp = 0x10001000 | (loop_cnt << 16); msg_port_write(HTE, 0x00020011, tmp); msg_port_write(HTE, 0x00020011, tmp | (1 << 8)); hte_wait_for_complete(); /* * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for * any bytelane errors. */ return (hte_check_errors() >> 8) & 0xff; } /** * Use HW HTE engine to initialize or test all memory attached to a given DUNIT. * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5 * pattern to all memory locations on the RankMask and then read it back. * Then it sends an A55AA55A pattern to all memory locations on the RankMask * and reads it back. * * @mrc_params: host structure for all MRC global data * @flag: MRC_MEM_INIT or MRC_MEM_TEST * * @return: errors register showing HTE failures. Also prints out which rank * failed the HTE test if failure occurs. For rank detection to work, * the address map must be left in its default state. If MRC changes * the address map, this function must be modified to change it back * to default at the beginning, then restore it at the end. */ u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag) { u32 offset; int test_num; int i; /* * Clear out the error registers at the start of each memory * init or memory test run. */ hte_clear_error_regs(); msg_port_write(HTE, 0x00020062, 0x00000015); for (offset = 0x80; offset <= 0x8f; offset++) msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5)); msg_port_write(HTE, 0x00020021, 0x00000000); msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1); msg_port_write(HTE, 0x00020063, 0xaaaaaaaa); msg_port_write(HTE, 0x00020064, 0xcccccccc); msg_port_write(HTE, 0x00020065, 0xf0f0f0f0); msg_port_write(HTE, 0x00020066, 0x03000000); switch (flag) { case MRC_MEM_INIT: /* * Only 1 write pass through memory is needed * to initialize ECC */ test_num = 1; break; case MRC_MEM_TEST: /* Write/read then write/read with inverted pattern */ test_num = 4; break; default: DPF(D_INFO, "Unknown parameter for flag: %d\n", flag); return 0xffffffff; } DPF(D_INFO, "hte_mem_init"); for (i = 0; i < test_num; i++) { DPF(D_INFO, "."); if (i == 0) { msg_port_write(HTE, 0x00020061, 0x00000000); msg_port_write(HTE, 0x00020020, 0x00110010); } else if (i == 1) { msg_port_write(HTE, 0x00020061, 0x00000000); msg_port_write(HTE, 0x00020020, 0x00010010); } else if (i == 2) { msg_port_write(HTE, 0x00020061, 0x00010100); msg_port_write(HTE, 0x00020020, 0x00110010); } else { msg_port_write(HTE, 0x00020061, 0x00010100); msg_port_write(HTE, 0x00020020, 0x00010010); } msg_port_write(HTE, 0x00020011, 0x00111000); msg_port_write(HTE, 0x00020011, 0x00111100); hte_wait_for_complete(); /* If this is a READ pass, check for errors at the end */ if ((i % 2) == 1) { /* Return immediately if error */ if (hte_check_errors()) break; } } DPF(D_INFO, "done\n"); return hte_check_errors(); } /** * Execute a basic single-cache-line memory write/read/verify test using simple * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes. * * @mrc_params: host structure for all MRC global data * @addr: memory adress being tested (must hit specific channel/rank) * @first_run: if set then the HTE registers are configured, otherwise it is * assumed configuration is done and we just re-run the test * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern) * * @return: byte lane failure on each bit (for Quark only bit0 and bit1) */ u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr, u8 first_run, u8 mode) { u16 errors; ENTERFN(); /* Enable all error reporting in preparation for HTE test */ hte_enable_all_errors(); hte_clear_error_regs(); errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode); LEAVEFN(); return errors; } /** * Examine a single-cache-line memory with write/read/verify test using multiple * data patterns (victim-aggressor algorithm). * * @mrc_params: host structure for all MRC global data * @addr: memory adress being tested (must hit specific channel/rank) * @first_run: if set then the HTE registers are configured, otherwise it is * assumed configuration is done and we just re-run the test * * @return: byte lane failure on each bit (for Quark only bit0 and bit1) */ u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params, u32 addr, u8 first_run) { u16 errors; u8 victim_bit = 0; ENTERFN(); /* Enable all error reporting in preparation for HTE test */ hte_enable_all_errors(); hte_clear_error_regs(); /* * Loop through each bit in the bytelane. * * Each pass creates a victim bit while keeping all other bits the same * as aggressors. AVN HTE adds an auto-rotate feature which allows us * to program the entire victim/aggressor sequence in 1 step. * * The victim bit rotates on each pass so no need to have software * implement a victim bit loop like on VLV. */ errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT, HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED, victim_bit, first_run); LEAVEFN(); return errors; } /** * Execute a basic single-cache-line memory write or read. * This is just for receive enable / fine write-levelling purpose. * * @addr: memory adress being tested (must hit specific channel/rank) * @first_run: if set then the HTE registers are configured, otherwise it is * assumed configuration is done and we just re-run the test * @is_write: when non-zero memory write operation executed, otherwise read */ void hte_mem_op(u32 addr, u8 first_run, u8 is_write) { u32 offset; u32 tmp; hte_enable_all_errors(); hte_clear_error_regs(); if (first_run) { tmp = is_write ? 0x01110021 : 0x01010021; msg_port_write(HTE, 0x00020020, tmp); msg_port_write(HTE, 0x00020021, 0x06000000); msg_port_write(HTE, 0x00020022, addr >> 6); msg_port_write(HTE, 0x00020062, 0x00800015); msg_port_write(HTE, 0x00020063, 0xaaaaaaaa); msg_port_write(HTE, 0x00020064, 0xcccccccc); msg_port_write(HTE, 0x00020065, 0xf0f0f0f0); msg_port_write(HTE, 0x00020061, 0x00030008); for (offset = 0x80; offset <= 0x8f; offset++) msg_port_write(HTE, offset, 0xc33c0000); } msg_port_write(HTE, 0x000200a1, 0xffff1000); msg_port_write(HTE, 0x00020011, 0x00011000); msg_port_write(HTE, 0x00020011, 0x00011100); hte_wait_for_complete(); }