// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Google, Inc * * Based on code from the coreboot file of the same name */ #include <common.h> #include <cpu.h> #include <dm.h> #include <errno.h> #include <malloc.h> #include <qfw.h> #include <asm/atomic.h> #include <asm/cpu.h> #include <asm/interrupt.h> #include <asm/lapic.h> #include <asm/microcode.h> #include <asm/mp.h> #include <asm/msr.h> #include <asm/mtrr.h> #include <asm/processor.h> #include <asm/sipi.h> #include <dm/device-internal.h> #include <dm/uclass-internal.h> #include <dm/lists.h> #include <dm/root.h> #include <linux/linkage.h> DECLARE_GLOBAL_DATA_PTR; /* Total CPUs include BSP */ static int num_cpus; /* This also needs to match the sipi.S assembly code for saved MSR encoding */ struct saved_msr { uint32_t index; uint32_t lo; uint32_t hi; } __packed; struct mp_flight_plan { int num_records; struct mp_flight_record *records; }; static struct mp_flight_plan mp_info; struct cpu_map { struct udevice *dev; int apic_id; int err_code; }; static inline void barrier_wait(atomic_t *b) { while (atomic_read(b) == 0) asm("pause"); mfence(); } static inline void release_barrier(atomic_t *b) { mfence(); atomic_set(b, 1); } static inline void stop_this_cpu(void) { /* Called by an AP when it is ready to halt and wait for a new task */ for (;;) cpu_hlt(); } /* Returns 1 if timeout waiting for APs. 0 if target APs found */ static int wait_for_aps(atomic_t *val, int target, int total_delay, int delay_step) { int timeout = 0; int delayed = 0; while (atomic_read(val) != target) { udelay(delay_step); delayed += delay_step; if (delayed >= total_delay) { timeout = 1; break; } } return timeout; } static void ap_do_flight_plan(struct udevice *cpu) { int i; for (i = 0; i < mp_info.num_records; i++) { struct mp_flight_record *rec = &mp_info.records[i]; atomic_inc(&rec->cpus_entered); barrier_wait(&rec->barrier); if (rec->ap_call != NULL) rec->ap_call(cpu, rec->ap_arg); } } static int find_cpu_by_apic_id(int apic_id, struct udevice **devp) { struct udevice *dev; *devp = NULL; for (uclass_find_first_device(UCLASS_CPU, &dev); dev; uclass_find_next_device(&dev)) { struct cpu_platdata *plat = dev_get_parent_platdata(dev); if (plat->cpu_id == apic_id) { *devp = dev; return 0; } } return -ENOENT; } /* * By the time APs call ap_init() caching has been setup, and microcode has * been loaded */ static void ap_init(unsigned int cpu_index) { struct udevice *dev; int apic_id; int ret; /* Ensure the local apic is enabled */ enable_lapic(); apic_id = lapicid(); ret = find_cpu_by_apic_id(apic_id, &dev); if (ret) { debug("Unknown CPU apic_id %x\n", apic_id); goto done; } debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id, dev ? dev->name : "(apic_id not found)"); /* Walk the flight plan */ ap_do_flight_plan(dev); /* Park the AP */ debug("parking\n"); done: stop_this_cpu(); } static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = { MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR, MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR, MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR, MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR, }; static inline struct saved_msr *save_msr(int index, struct saved_msr *entry) { msr_t msr; msr = msr_read(index); entry->index = index; entry->lo = msr.lo; entry->hi = msr.hi; /* Return the next entry */ entry++; return entry; } static int save_bsp_msrs(char *start, int size) { int msr_count; int num_var_mtrrs; struct saved_msr *msr_entry; int i; msr_t msr; /* Determine number of MTRRs need to be saved */ msr = msr_read(MTRR_CAP_MSR); num_var_mtrrs = msr.lo & 0xff; /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */ msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1; if ((msr_count * sizeof(struct saved_msr)) > size) { printf("Cannot mirror all %d msrs\n", msr_count); return -ENOSPC; } msr_entry = (void *)start; for (i = 0; i < NUM_FIXED_MTRRS; i++) msr_entry = save_msr(fixed_mtrrs[i], msr_entry); for (i = 0; i < num_var_mtrrs; i++) { msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry); msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry); } msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry); return msr_count; } static int load_sipi_vector(atomic_t **ap_countp, int num_cpus) { struct sipi_params_16bit *params16; struct sipi_params *params; static char msr_save[512]; char *stack; ulong addr; int code_len; int size; int ret; /* Copy in the code */ code_len = ap_start16_code_end - ap_start16; debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE, code_len); memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len); addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16; params16 = (struct sipi_params_16bit *)addr; params16->ap_start = (uint32_t)ap_start; params16->gdt = (uint32_t)gd->arch.gdt; params16->gdt_limit = X86_GDT_SIZE - 1; debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit); params = (struct sipi_params *)sipi_params; debug("SIPI 32-bit params at %p\n", params); params->idt_ptr = (uint32_t)x86_get_idt(); params->stack_size = CONFIG_AP_STACK_SIZE; size = params->stack_size * num_cpus; stack = memalign(4096, size); if (!stack) return -ENOMEM; params->stack_top = (u32)(stack + size); #if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \ !defined(CONFIG_INTEL_MID) params->microcode_ptr = ucode_base; debug("Microcode at %x\n", params->microcode_ptr); #endif params->msr_table_ptr = (u32)msr_save; ret = save_bsp_msrs(msr_save, sizeof(msr_save)); if (ret < 0) return ret; params->msr_count = ret; params->c_handler = (uint32_t)&ap_init; *ap_countp = ¶ms->ap_count; atomic_set(*ap_countp, 0); debug("SIPI vector is ready\n"); return 0; } static int check_cpu_devices(int expected_cpus) { int i; for (i = 0; i < expected_cpus; i++) { struct udevice *dev; int ret; ret = uclass_find_device(UCLASS_CPU, i, &dev); if (ret) { debug("Cannot find CPU %d in device tree\n", i); return ret; } } return 0; } /* Returns 1 for timeout. 0 on success */ static int apic_wait_timeout(int total_delay, const char *msg) { int total = 0; if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) return 0; debug("Waiting for %s...", msg); while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) { udelay(50); total += 50; if (total >= total_delay) { debug("timed out: aborting\n"); return -ETIMEDOUT; } } debug("done\n"); return 0; } static int start_aps(int ap_count, atomic_t *num_aps) { int sipi_vector; /* Max location is 4KiB below 1MiB */ const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12; if (ap_count == 0) return 0; /* The vector is sent as a 4k aligned address in one byte */ sipi_vector = AP_DEFAULT_BASE >> 12; if (sipi_vector > max_vector_loc) { printf("SIPI vector too large! 0x%08x\n", sipi_vector); return -1; } debug("Attempting to start %d APs\n", ap_count); if (apic_wait_timeout(1000, "ICR not to be busy")) return -ETIMEDOUT; /* Send INIT IPI to all but self */ lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | LAPIC_DM_INIT); debug("Waiting for 10ms after sending INIT\n"); mdelay(10); /* Send 1st SIPI */ if (apic_wait_timeout(1000, "ICR not to be busy")) return -ETIMEDOUT; lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | LAPIC_DM_STARTUP | sipi_vector); if (apic_wait_timeout(10000, "first SIPI to complete")) return -ETIMEDOUT; /* Wait for CPUs to check in up to 200 us */ wait_for_aps(num_aps, ap_count, 200, 15); /* Send 2nd SIPI */ if (apic_wait_timeout(1000, "ICR not to be busy")) return -ETIMEDOUT; lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | LAPIC_DM_STARTUP | sipi_vector); if (apic_wait_timeout(10000, "second SIPI to complete")) return -ETIMEDOUT; /* Wait for CPUs to check in */ if (wait_for_aps(num_aps, ap_count, 10000, 50)) { debug("Not all APs checked in: %d/%d\n", atomic_read(num_aps), ap_count); return -1; } return 0; } static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params) { int i; int ret = 0; const int timeout_us = 100000; const int step_us = 100; int num_aps = num_cpus - 1; for (i = 0; i < mp_params->num_records; i++) { struct mp_flight_record *rec = &mp_params->flight_plan[i]; /* Wait for APs if the record is not released */ if (atomic_read(&rec->barrier) == 0) { /* Wait for the APs to check in */ if (wait_for_aps(&rec->cpus_entered, num_aps, timeout_us, step_us)) { debug("MP record %d timeout\n", i); ret = -1; } } if (rec->bsp_call != NULL) rec->bsp_call(cpu, rec->bsp_arg); release_barrier(&rec->barrier); } return ret; } static int init_bsp(struct udevice **devp) { char processor_name[CPU_MAX_NAME_LEN]; int apic_id; int ret; cpu_get_name(processor_name); debug("CPU: %s\n", processor_name); apic_id = lapicid(); ret = find_cpu_by_apic_id(apic_id, devp); if (ret) { printf("Cannot find boot CPU, APIC ID %d\n", apic_id); return ret; } return 0; } #ifdef CONFIG_QFW static int qemu_cpu_fixup(void) { int ret; int cpu_num; int cpu_online; struct udevice *dev, *pdev; struct cpu_platdata *plat; char *cpu; /* first we need to find '/cpus' */ for (device_find_first_child(dm_root(), &pdev); pdev; device_find_next_child(&pdev)) { if (!strcmp(pdev->name, "cpus")) break; } if (!pdev) { printf("unable to find cpus device\n"); return -ENODEV; } /* calculate cpus that are already bound */ cpu_num = 0; for (uclass_find_first_device(UCLASS_CPU, &dev); dev; uclass_find_next_device(&dev)) { cpu_num++; } /* get actual cpu number */ cpu_online = qemu_fwcfg_online_cpus(); if (cpu_online < 0) { printf("unable to get online cpu number: %d\n", cpu_online); return cpu_online; } /* bind addtional cpus */ dev = NULL; for (; cpu_num < cpu_online; cpu_num++) { /* * allocate device name here as device_bind_driver() does * not copy device name, 8 bytes are enough for * sizeof("cpu@") + 3 digits cpu number + '\0' */ cpu = malloc(8); if (!cpu) { printf("unable to allocate device name\n"); return -ENOMEM; } sprintf(cpu, "cpu@%d", cpu_num); ret = device_bind_driver(pdev, "cpu_qemu", cpu, &dev); if (ret) { printf("binding cpu@%d failed: %d\n", cpu_num, ret); return ret; } plat = dev_get_parent_platdata(dev); plat->cpu_id = cpu_num; } return 0; } #endif int mp_init(struct mp_params *p) { int num_aps; atomic_t *ap_count; struct udevice *cpu; int ret; /* This will cause the CPUs devices to be bound */ struct uclass *uc; ret = uclass_get(UCLASS_CPU, &uc); if (ret) return ret; #ifdef CONFIG_QFW ret = qemu_cpu_fixup(); if (ret) return ret; #endif ret = init_bsp(&cpu); if (ret) { debug("Cannot init boot CPU: err=%d\n", ret); return ret; } if (p == NULL || p->flight_plan == NULL || p->num_records < 1) { printf("Invalid MP parameters\n"); return -1; } num_cpus = cpu_get_count(cpu); if (num_cpus < 0) { debug("Cannot get number of CPUs: err=%d\n", num_cpus); return num_cpus; } if (num_cpus < 2) debug("Warning: Only 1 CPU is detected\n"); ret = check_cpu_devices(num_cpus); if (ret) debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n"); /* Copy needed parameters so that APs have a reference to the plan */ mp_info.num_records = p->num_records; mp_info.records = p->flight_plan; /* Load the SIPI vector */ ret = load_sipi_vector(&ap_count, num_cpus); if (ap_count == NULL) return -1; /* * Make sure SIPI data hits RAM so the APs that come up will see * the startup code even if the caches are disabled */ wbinvd(); /* Start the APs providing number of APs and the cpus_entered field */ num_aps = num_cpus - 1; ret = start_aps(num_aps, ap_count); if (ret) { mdelay(1000); debug("%d/%d eventually checked in?\n", atomic_read(ap_count), num_aps); return ret; } /* Walk the flight plan for the BSP */ ret = bsp_do_flight_plan(cpu, p); if (ret) { debug("CPU init failed: err=%d\n", ret); return ret; } return 0; } int mp_init_cpu(struct udevice *cpu, void *unused) { struct cpu_platdata *plat = dev_get_parent_platdata(cpu); /* * Multiple APs are brought up simultaneously and they may get the same * seq num in the uclass_resolve_seq() during device_probe(). To avoid * this, set req_seq to the reg number in the device tree in advance. */ cpu->req_seq = fdtdec_get_int(gd->fdt_blob, dev_of_offset(cpu), "reg", -1); plat->ucode_version = microcode_read_rev(); plat->device_id = gd->arch.x86_device; return device_probe(cpu); }