// SPDX-License-Identifier: GPL-2.0 /* * From coreboot southbridge/intel/bd82x6x/lpc.c * * Copyright (C) 2008-2009 coresystems GmbH */ #include <common.h> #include <dm.h> #include <errno.h> #include <fdtdec.h> #include <rtc.h> #include <pci.h> #include <asm/intel_regs.h> #include <asm/interrupt.h> #include <asm/io.h> #include <asm/ioapic.h> #include <asm/lpc_common.h> #include <asm/pci.h> #include <asm/arch/pch.h> DECLARE_GLOBAL_DATA_PTR; #define NMI_OFF 0 #define ENABLE_ACPI_MODE_IN_COREBOOT 0 #define TEST_SMM_FLASH_LOCKDOWN 0 static int pch_enable_apic(struct udevice *pch) { u32 reg32; int i; /* Enable ACPI I/O and power management. Set SCI IRQ to IRQ9 */ dm_pci_write_config8(pch, ACPI_CNTL, 0x80); writel(0, IO_APIC_INDEX); writel(1 << 25, IO_APIC_DATA); /* affirm full set of redirection table entries ("write once") */ writel(1, IO_APIC_INDEX); reg32 = readl(IO_APIC_DATA); writel(1, IO_APIC_INDEX); writel(reg32, IO_APIC_DATA); writel(0, IO_APIC_INDEX); reg32 = readl(IO_APIC_DATA); debug("PCH APIC ID = %x\n", (reg32 >> 24) & 0x0f); if (reg32 != (1 << 25)) { printf("APIC Error - cannot write to registers\n"); return -EPERM; } debug("Dumping IOAPIC registers\n"); for (i = 0; i < 3; i++) { writel(i, IO_APIC_INDEX); debug(" reg 0x%04x:", i); reg32 = readl(IO_APIC_DATA); debug(" 0x%08x\n", reg32); } /* Select Boot Configuration register. */ writel(3, IO_APIC_INDEX); /* Use Processor System Bus to deliver interrupts. */ writel(1, IO_APIC_DATA); return 0; } static void pch_enable_serial_irqs(struct udevice *pch) { u32 value; /* Set packet length and toggle silent mode bit for one frame. */ value = (1 << 7) | (1 << 6) | ((21 - 17) << 2) | (0 << 0); #ifdef CONFIG_SERIRQ_CONTINUOUS_MODE dm_pci_write_config8(pch, SERIRQ_CNTL, value); #else dm_pci_write_config8(pch, SERIRQ_CNTL, value | (1 << 6)); #endif } static int pch_pirq_init(struct udevice *pch) { uint8_t route[8], *ptr; if (fdtdec_get_byte_array(gd->fdt_blob, dev_of_offset(pch), "intel,pirq-routing", route, sizeof(route))) return -EINVAL; ptr = route; dm_pci_write_config8(pch, PIRQA_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQB_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQC_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQD_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQE_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQF_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQG_ROUT, *ptr++); dm_pci_write_config8(pch, PIRQH_ROUT, *ptr++); /* * TODO(sjg@chromium.org): U-Boot does not set up the interrupts * here. It's unclear if it is needed */ return 0; } static int pch_gpi_routing(struct udevice *pch) { u8 route[16]; u32 reg; int gpi; if (fdtdec_get_byte_array(gd->fdt_blob, dev_of_offset(pch), "intel,gpi-routing", route, sizeof(route))) return -EINVAL; for (reg = 0, gpi = 0; gpi < ARRAY_SIZE(route); gpi++) reg |= route[gpi] << (gpi * 2); dm_pci_write_config32(pch, 0xb8, reg); return 0; } static int pch_power_options(struct udevice *pch) { const void *blob = gd->fdt_blob; int node = dev_of_offset(pch); u8 reg8; u16 reg16, pmbase; u32 reg32; const char *state; int pwr_on; int nmi_option; int ret; /* * Which state do we want to goto after g3 (power restored)? * 0 == S0 Full On * 1 == S5 Soft Off * * If the option is not existent (Laptops), use Kconfig setting. * TODO(sjg@chromium.org): Make this configurable */ pwr_on = MAINBOARD_POWER_ON; dm_pci_read_config16(pch, GEN_PMCON_3, ®16); reg16 &= 0xfffe; switch (pwr_on) { case MAINBOARD_POWER_OFF: reg16 |= 1; state = "off"; break; case MAINBOARD_POWER_ON: reg16 &= ~1; state = "on"; break; case MAINBOARD_POWER_KEEP: reg16 &= ~1; state = "state keep"; break; default: state = "undefined"; } reg16 &= ~(3 << 4); /* SLP_S4# Assertion Stretch 4s */ reg16 |= (1 << 3); /* SLP_S4# Assertion Stretch Enable */ reg16 &= ~(1 << 10); reg16 |= (1 << 11); /* SLP_S3# Min Assertion Width 50ms */ reg16 |= (1 << 12); /* Disable SLP stretch after SUS well */ dm_pci_write_config16(pch, GEN_PMCON_3, reg16); debug("Set power %s after power failure.\n", state); /* Set up NMI on errors. */ reg8 = inb(0x61); reg8 &= 0x0f; /* Higher Nibble must be 0 */ reg8 &= ~(1 << 3); /* IOCHK# NMI Enable */ reg8 |= (1 << 2); /* PCI SERR# Disable for now */ outb(reg8, 0x61); reg8 = inb(0x70); /* TODO(sjg@chromium.org): Make this configurable */ nmi_option = NMI_OFF; if (nmi_option) { debug("NMI sources enabled.\n"); reg8 &= ~(1 << 7); /* Set NMI. */ } else { debug("NMI sources disabled.\n"); /* Can't mask NMI from PCI-E and NMI_NOW */ reg8 |= (1 << 7); } outb(reg8, 0x70); /* Enable CPU_SLP# and Intel Speedstep, set SMI# rate down */ dm_pci_read_config16(pch, GEN_PMCON_1, ®16); reg16 &= ~(3 << 0); /* SMI# rate 1 minute */ reg16 &= ~(1 << 10); /* Disable BIOS_PCI_EXP_EN for native PME */ #if DEBUG_PERIODIC_SMIS /* Set DEBUG_PERIODIC_SMIS in pch.h to debug using periodic SMIs */ reg16 |= (3 << 0); /* Periodic SMI every 8s */ #endif dm_pci_write_config16(pch, GEN_PMCON_1, reg16); /* Set the board's GPI routing. */ ret = pch_gpi_routing(pch); if (ret) return ret; dm_pci_read_config16(pch, 0x40, &pmbase); pmbase &= 0xfffe; writel(fdtdec_get_int(blob, node, "intel,gpe0-enable", 0), (ulong)pmbase + GPE0_EN); writew(fdtdec_get_int(blob, node, "intel,alt-gp-smi-enable", 0), (ulong)pmbase + ALT_GP_SMI_EN); /* Set up power management block and determine sleep mode */ reg32 = inl(pmbase + 0x04); /* PM1_CNT */ reg32 &= ~(7 << 10); /* SLP_TYP */ reg32 |= (1 << 0); /* SCI_EN */ outl(reg32, pmbase + 0x04); /* Clear magic status bits to prevent unexpected wake */ setbits_le32(RCB_REG(0x3310), (1 << 4) | (1 << 5) | (1 << 0)); clrbits_le32(RCB_REG(0x3f02), 0xf); return 0; } static void pch_rtc_init(struct udevice *pch) { int rtc_failed; u8 reg8; dm_pci_read_config8(pch, GEN_PMCON_3, ®8); rtc_failed = reg8 & RTC_BATTERY_DEAD; if (rtc_failed) { reg8 &= ~RTC_BATTERY_DEAD; dm_pci_write_config8(pch, GEN_PMCON_3, reg8); } debug("rtc_failed = 0x%x\n", rtc_failed); /* TODO: Handle power failure */ if (rtc_failed) printf("RTC power failed\n"); } /* CougarPoint PCH Power Management init */ static void cpt_pm_init(struct udevice *pch) { debug("CougarPoint PM init\n"); dm_pci_write_config8(pch, 0xa9, 0x47); setbits_le32(RCB_REG(0x2238), (1 << 6) | (1 << 0)); setbits_le32(RCB_REG(0x228c), 1 << 0); setbits_le32(RCB_REG(0x1100), (1 << 13) | (1 << 14)); setbits_le32(RCB_REG(0x0900), 1 << 14); writel(0xc0388400, RCB_REG(0x2304)); setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18)); setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1)); clrsetbits_le32(RCB_REG(0x3314), ~0x1f, 0xf); writel(0x050f0000, RCB_REG(0x3318)); writel(0x04000000, RCB_REG(0x3324)); setbits_le32(RCB_REG(0x3340), 0xfffff); setbits_le32(RCB_REG(0x3344), 1 << 1); writel(0x0001c000, RCB_REG(0x3360)); writel(0x00061100, RCB_REG(0x3368)); writel(0x7f8fdfff, RCB_REG(0x3378)); writel(0x000003fc, RCB_REG(0x337c)); writel(0x00001000, RCB_REG(0x3388)); writel(0x0001c000, RCB_REG(0x3390)); writel(0x00000800, RCB_REG(0x33a0)); writel(0x00001000, RCB_REG(0x33b0)); writel(0x00093900, RCB_REG(0x33c0)); writel(0x24653002, RCB_REG(0x33cc)); writel(0x062108fe, RCB_REG(0x33d0)); clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060); writel(0x01010000, RCB_REG(0x3a28)); writel(0x01010404, RCB_REG(0x3a2c)); writel(0x01041041, RCB_REG(0x3a80)); clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001); setbits_le32(RCB_REG(0x3a84), 1 << 24); /* SATA 2/3 disabled */ setbits_le32(RCB_REG(0x3a88), 1 << 0); /* SATA 4/5 disabled */ writel(0x00000001, RCB_REG(0x3a6c)); clrsetbits_le32(RCB_REG(0x2344), ~0x00ffff00, 0xff00000c); clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20); writel(0, RCB_REG(0x33c8)); setbits_le32(RCB_REG(0x21b0), 0xf); } /* PantherPoint PCH Power Management init */ static void ppt_pm_init(struct udevice *pch) { debug("PantherPoint PM init\n"); dm_pci_write_config8(pch, 0xa9, 0x47); setbits_le32(RCB_REG(0x2238), 1 << 0); setbits_le32(RCB_REG(0x228c), 1 << 0); setbits_le16(RCB_REG(0x1100), (1 << 13) | (1 << 14)); setbits_le16(RCB_REG(0x0900), 1 << 14); writel(0xc03b8400, RCB_REG(0x2304)); setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18)); setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1)); clrsetbits_le32(RCB_REG(0x3314), 0x1f, 0xf); writel(0x054f0000, RCB_REG(0x3318)); writel(0x04000000, RCB_REG(0x3324)); setbits_le32(RCB_REG(0x3340), 0xfffff); setbits_le32(RCB_REG(0x3344), (1 << 1) | (1 << 0)); writel(0x0001c000, RCB_REG(0x3360)); writel(0x00061100, RCB_REG(0x3368)); writel(0x7f8fdfff, RCB_REG(0x3378)); writel(0x000003fd, RCB_REG(0x337c)); writel(0x00001000, RCB_REG(0x3388)); writel(0x0001c000, RCB_REG(0x3390)); writel(0x00000800, RCB_REG(0x33a0)); writel(0x00001000, RCB_REG(0x33b0)); writel(0x00093900, RCB_REG(0x33c0)); writel(0x24653002, RCB_REG(0x33cc)); writel(0x067388fe, RCB_REG(0x33d0)); clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060); writel(0x01010000, RCB_REG(0x3a28)); writel(0x01010404, RCB_REG(0x3a2c)); writel(0x01040000, RCB_REG(0x3a80)); clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001); /* SATA 2/3 disabled */ setbits_le32(RCB_REG(0x3a84), 1 << 24); /* SATA 4/5 disabled */ setbits_le32(RCB_REG(0x3a88), 1 << 0); writel(0x00000001, RCB_REG(0x3a6c)); clrsetbits_le32(RCB_REG(0x2344), 0xff0000ff, 0xff00000c); clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20); setbits_le32(RCB_REG(0x33a4), (1 << 0)); writel(0, RCB_REG(0x33c8)); setbits_le32(RCB_REG(0x21b0), 0xf); } static void enable_hpet(void) { /* Move HPET to default address 0xfed00000 and enable it */ clrsetbits_le32(RCB_REG(HPTC), 3 << 0, 1 << 7); } static void enable_clock_gating(struct udevice *pch) { u32 reg32; u16 reg16; setbits_le32(RCB_REG(0x2234), 0xf); dm_pci_read_config16(pch, GEN_PMCON_1, ®16); reg16 |= (1 << 2) | (1 << 11); dm_pci_write_config16(pch, GEN_PMCON_1, reg16); pch_iobp_update(pch, 0xeb007f07, ~0U, 1 << 31); pch_iobp_update(pch, 0xeb004000, ~0U, 1 << 7); pch_iobp_update(pch, 0xec007f07, ~0U, 1 << 31); pch_iobp_update(pch, 0xec004000, ~0U, 1 << 7); reg32 = readl(RCB_REG(CG)); reg32 |= (1 << 31); reg32 |= (1 << 29) | (1 << 28); reg32 |= (1 << 27) | (1 << 26) | (1 << 25) | (1 << 24); reg32 |= (1 << 16); reg32 |= (1 << 17); reg32 |= (1 << 18); reg32 |= (1 << 22); reg32 |= (1 << 23); reg32 &= ~(1 << 20); reg32 |= (1 << 19); reg32 |= (1 << 0); reg32 |= (0xf << 1); writel(reg32, RCB_REG(CG)); setbits_le32(RCB_REG(0x38c0), 0x7); setbits_le32(RCB_REG(0x36d4), 0x6680c004); setbits_le32(RCB_REG(0x3564), 0x3); } static void pch_disable_smm_only_flashing(struct udevice *pch) { u8 reg8; debug("Enabling BIOS updates outside of SMM... "); dm_pci_read_config8(pch, 0xdc, ®8); /* BIOS_CNTL */ reg8 &= ~(1 << 5); dm_pci_write_config8(pch, 0xdc, reg8); } static void pch_fixups(struct udevice *pch) { u8 gen_pmcon_2; /* Indicate DRAM init done for MRC S3 to know it can resume */ dm_pci_read_config8(pch, GEN_PMCON_2, &gen_pmcon_2); gen_pmcon_2 |= (1 << 7); dm_pci_write_config8(pch, GEN_PMCON_2, gen_pmcon_2); /* Enable DMI ASPM in the PCH */ clrbits_le32(RCB_REG(0x2304), 1 << 10); setbits_le32(RCB_REG(0x21a4), (1 << 11) | (1 << 10)); setbits_le32(RCB_REG(0x21a8), 0x3); } static void set_spi_speed(void) { u32 fdod; /* Observe SPI Descriptor Component Section 0 */ writel(0x1000, RCB_REG(SPI_DESC_COMP0)); /* Extract the1 Write/Erase SPI Frequency from descriptor */ fdod = readl(RCB_REG(SPI_FREQ_WR_ERA)); fdod >>= 24; fdod &= 7; /* Set Software Sequence frequency to match */ clrsetbits_8(RCB_REG(SPI_FREQ_SWSEQ), 7, fdod); } static int lpc_init_extra(struct udevice *dev) { struct udevice *pch = dev->parent; debug("pch: lpc_init\n"); dm_pci_write_bar32(pch, 0, 0); dm_pci_write_bar32(pch, 1, 0xff800000); dm_pci_write_bar32(pch, 2, 0xfec00000); dm_pci_write_bar32(pch, 3, 0x800); dm_pci_write_bar32(pch, 4, 0x900); /* Set the value for PCI command register. */ dm_pci_write_config16(pch, PCI_COMMAND, 0x000f); /* IO APIC initialization. */ pch_enable_apic(pch); pch_enable_serial_irqs(pch); /* Setup the PIRQ. */ pch_pirq_init(pch); /* Setup power options. */ pch_power_options(pch); /* Initialize power management */ switch (pch_silicon_type(pch)) { case PCH_TYPE_CPT: /* CougarPoint */ cpt_pm_init(pch); break; case PCH_TYPE_PPT: /* PantherPoint */ ppt_pm_init(pch); break; default: printf("Unknown Chipset: %s\n", pch->name); return -ENOSYS; } /* Initialize the real time clock. */ pch_rtc_init(pch); /* Initialize the High Precision Event Timers, if present. */ enable_hpet(); /* Initialize Clock Gating */ enable_clock_gating(pch); pch_disable_smm_only_flashing(pch); pch_fixups(pch); return 0; } static int bd82x6x_lpc_early_init(struct udevice *dev) { set_spi_speed(); /* Setting up Southbridge. In the northbridge code. */ debug("Setting up static southbridge registers\n"); dm_pci_write_config32(dev->parent, PCH_RCBA_BASE, RCB_BASE_ADDRESS | 1); dm_pci_write_config32(dev->parent, PMBASE, DEFAULT_PMBASE | 1); /* Enable ACPI BAR */ dm_pci_write_config8(dev->parent, ACPI_CNTL, 0x80); debug("Disabling watchdog reboot\n"); setbits_le32(RCB_REG(GCS), 1 >> 5); /* No reset */ outw(1 << 11, DEFAULT_PMBASE | 0x60 | 0x08); /* halt timer */ dm_pci_write_config32(dev->parent, GPIO_BASE, DEFAULT_GPIOBASE | 1); dm_pci_write_config32(dev->parent, GPIO_CNTL, 0x10); return 0; } static int bd82x6x_lpc_probe(struct udevice *dev) { int ret; if (!(gd->flags & GD_FLG_RELOC)) { ret = lpc_common_early_init(dev); if (ret) { debug("%s: lpc_early_init() failed\n", __func__); return ret; } return bd82x6x_lpc_early_init(dev); } return lpc_init_extra(dev); } static const struct udevice_id bd82x6x_lpc_ids[] = { { .compatible = "intel,bd82x6x-lpc" }, { } }; U_BOOT_DRIVER(bd82x6x_lpc_drv) = { .name = "lpc", .id = UCLASS_LPC, .of_match = bd82x6x_lpc_ids, .probe = bd82x6x_lpc_probe, };